
electronics

Article

HLS Based Approach to Develop an Implementable
HDR Algorithm

Rappy Saha , Partha Pratim Banik and Ki-Doo Kim *

School of Electronics Engineering, Kookmin University, Seoul 02707, Korea; rappysaha@kookmin.ac.kr (R.S.);
ppbanik006@kookmin.ac.kr (P.P.B.)
* Correspondence: kdk@kookmin.ac.kr; Tel.: +82-2-910-4707

Received: 20 September 2018; Accepted: 15 November 2018; Published: 19 November 2018 ����������
�������

Abstract: Hardware suitability of an algorithm can only be verified when the algorithm is actually
implemented in the hardware. By hardware, we indicate system on chip (SoC) where both processor
and field-programmable gate array (FPGA) are available. Our goal is to develop a simple algorithm
that can be implemented on hardware where high-level synthesis (HLS) will reduce the tiresome work
of manual hardware description language (HDL) optimization. We propose an algorithm to achieve
high dynamic range (HDR) image from a single low dynamic range (LDR) image. We use highlight
removal technique for this purpose. Our target is to develop parameter free simple algorithm that
can be easily implemented on hardware. For this purpose, we use statistical information of the
image. While software development is verified with state of the art, the HLS approach confirms
that the proposed algorithm is implementable to hardware. The performance of the algorithm is
measured using four no-reference metrics. According to the measurement of the structural similarity
(SSIM) index metric and peak signal-to-noise ratio (PSNR), hardware simulated output is at least
98.87 percent and 39.90 dB similar to the software simulated output. Our approach is novel and
effective in the development of hardware implementable HDR algorithm from a single LDR image
using the HLS tool.

Keywords: field-programmable gate array; high-dynamic range image; high-level synthesis;
low-dynamic range image; system on chip

1. Introduction

Vision is one of the most important senses. The things observed by us are analyzed by the brain
to help us in taking decision. When we talk about modern science, the camera is an instrument
that is analogous to eyes but the capability of eyes is far better than the camera. A camera can
capture a moment through an image or video and store it. However, camera by itself cannot take a
decision and, for that purpose, camera needs a system similar to the human brain to analyze the data.
A field-programmable gate array (FPGA) can be used in a camera as a real-time system to analyze the
captured image. The language for FPGA is related to the way of resource implementation in the FPGA.
In the case of software programming, we do not need to think about resource consumption. This
fact limits the algorithmic computational complexity in FPGA. Hence, research has been conducted
on different types of computational acceleration techniques [1,2]. Image classification [1], real-time
anomaly detection of hyperspectral images [3], synthetic aperture imaging [4], feature detection for
image analysis [5], bilateral filter design for real-time image denoising [6], and panorama real-time
video system with high-speed image distortion correction [7] are FPGA-based implementations in the
field of image processing.

HLS has become popular in recent years because of its design performance, low complexity,
and reduced product development time [8]. HLS connects hardware description languages (HDL),

Electronics 2018, 7, 332; doi:10.3390/electronics7110332 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9581-0193
http://dx.doi.org/10.3390/electronics7110332
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/11/332?type=check_update&version=2

Electronics 2018, 7, 332 2 of 18

e.g., VHSIC hardware description language (VHDL) and Verilog, to high-level languages (HLL), e.g.,
C/C++. In simple terms, it converts HLL to HDL with optimization techniques. In [8], Nane et al.
conducted a survey of HLS tools and compared their optimization techniques, e.g., operation chaining,
bit-width analysis and optimization, memory space allocation, loop optimization, hardware resource
library, speculation, and code notion, thereby exploiting spatial parallelism and if-conversion. As HLS
brings relationship between HLL to HDL, we see a feasibility to develop an implementable algorithm
using HLS. Therefore, we convert and optimize our proposed algorithm for the FPGA implementation
using HLS.

Dynamic range of an image depends on the exposure quality and visual quality of the scene.
However, highlight hides the perfect information about the surface of an image. It adds extra difficulty
to any image processing algorithm. Highlights correspond to regions in an image where the light
intensity is so high that we cannot see the object behind it. Active light sources, e.g., sun, light
emitting diodes (LEDs), and tube light, are not included in this definition. According to Lee [9],
the highlight parts are the combination of diffuse reflection and specular reflection where specular
reflection dominates. Based on this point, Shafer introduced the dichromatic reflection model [10].
The total reflection, R, from an inhomogeneous object is the sum of the two independent parts:
light reflected from the surface, Rs, and light reflected from the body, Rb, shown in Equation (1).
Inhomogeneous objects include varnishes, paper, plastics, and ceramics, while homogeneous objects
are polished objects, e.g., metals and diamonds.

R = Rs + Rb (1)

Based on the dichromatic model, Ren et al. defined the illumination chromaticity [11]. They
estimated illumination chromaticity from a novel idea of color line constraint to remove highlight
from an image [11]. In Figure 1, we mark three highlight areas where the dynamic range of the object
is considerably low due to severe illumination. Our primary objective is to remove the highlights
and recover the missing information, which results in local improvement of the dynamic range and
enhanced global visibility of the image.

Electronics 2018, 7, x FOR PEER REVIEW 2 of 18

VHSIC hardware description language (VHDL) and Verilog, to high-level languages (HLL), e.g.,
C/C++. In simple terms, it converts HLL to HDL with optimization techniques. In [8], Nane et al.
conducted a survey of HLS tools and compared their optimization techniques, e.g., operation
chaining, bit-width analysis and optimization, memory space allocation, loop optimization,
hardware resource library, speculation, and code notion, thereby exploiting spatial parallelism and
if-conversion. As HLS brings relationship between HLL to HDL, we see a feasibility to develop an
implementable algorithm using HLS. Therefore, we convert and optimize our proposed algorithm
for the FPGA implementation using HLS.

Dynamic range of an image depends on the exposure quality and visual quality of the scene.
However, highlight hides the perfect information about the surface of an image. It adds extra
difficulty to any image processing algorithm. Highlights correspond to regions in an image where
the light intensity is so high that we cannot see the object behind it. Active light sources, e.g., sun,
light emitting diodes (LEDs), and tube light, are not included in this definition. According to Lee [9],
the highlight parts are the combination of diffuse reflection and specular reflection where specular
reflection dominates. Based on this point, Shafer introduced the dichromatic reflection model [10].
The total reflection, R, from an inhomogeneous object is the sum of the two independent parts: light
reflected from the surface, Rs, and light reflected from the body, Rb, shown in Equation (1).
Inhomogeneous objects include varnishes, paper, plastics, and ceramics, while homogeneous objects
are polished objects, e.g., metals and diamonds.

s bR R R= + (1)

Based on the dichromatic model, Ren et al. defined the illumination chromaticity [11]. They
estimated illumination chromaticity from a novel idea of color line constraint to remove highlight
from an image [11]. In Figure 1, we mark three highlight areas where the dynamic range of the object
is considerably low due to severe illumination. Our primary objective is to remove the highlights and
recover the missing information, which results in local improvement of the dynamic range and
enhanced global visibility of the image.

Figure 1. Target highlight areas to improve dynamic range (red box).

In our previous papers [12,13], we proposed a new model of single LDR image to HDR image
generation by highlight removal technique and described an HLS based implementation scenario,
respectively. However, our previous technique performance completely depended on four
parameters. This parameter dependency limited our technique in the case of hardware
implementation. To remove such kind of limitation, in this paper, we describe a new technique based
on the previous concept. Our new method is parameter free, which makes it more robust. Although
our final target is complete SoC implementation, we describe a significant portion of our
implementation here by using HLS tool. From this explanation, we can claim that our method is
implementable to the hardware that increases the acceptability of our algorithm. Our proposed HDR
algorithm removes the highlights from the image and recovers image information, e.g., color and
texture. The main assumptions of the algorithm are: (a) the pixels are not fully saturated; and (b) the
surface is inhomogeneous. At first, we detect the highlight area (HA) using statistical information of
an image. We modify the HA depending on the information of non-highlight area (NHA). Finally,
we improve the global brightness since highlight-free (HF) image is dark type image. For hardware
implementation, our target is system on chip (SoC) based implementation. Here, we elaborate on the

Figure 1. Target highlight areas to improve dynamic range (red box).

In our previous papers [12,13], we proposed a new model of single LDR image to HDR image
generation by highlight removal technique and described an HLS based implementation scenario,
respectively. However, our previous technique performance completely depended on four parameters.
This parameter dependency limited our technique in the case of hardware implementation. To remove
such kind of limitation, in this paper, we describe a new technique based on the previous concept.
Our new method is parameter free, which makes it more robust. Although our final target is complete
SoC implementation, we describe a significant portion of our implementation here by using HLS tool.
From this explanation, we can claim that our method is implementable to the hardware that increases
the acceptability of our algorithm. Our proposed HDR algorithm removes the highlights from the
image and recovers image information, e.g., color and texture. The main assumptions of the algorithm
are: (a) the pixels are not fully saturated; and (b) the surface is inhomogeneous. At first, we detect the
highlight area (HA) using statistical information of an image. We modify the HA depending on the
information of non-highlight area (NHA). Finally, we improve the global brightness since highlight-free

Electronics 2018, 7, 332 3 of 18

(HF) image is dark type image. For hardware implementation, our target is system on chip (SoC)
based implementation. Here, we elaborate on the programmable logic (PL) side development. Finally,
we evaluate our method from various point of views using no-reference [14–17] and full-reference
metrics [18,19].

The remainder of this paper is organized as follows: Section 2 discusses related work; Section 3
describes the proposed algorithm; Section 4 describes hardware development; Section 5 presents the
results of our software and hardware evaluation; and Section 6 concludes this study.

2. Related Works

Tan et al. [20] proposed the idea of intensity logarithmic differentiation to remove highlight
iteratively from the input image by comparing it between input image and its specular free image [20].
Yoon et al. [21] explained that diffuse reflection component of a non-saturated input image under
the uniform illumination could be extracted by comparing the local ratios of input image and the
specular-free two-band image [21]. Shen et al. [22] proposed an algorithm based on the error analysis of
chromaticity to separate reflections [22]. Shen et al. [23] described another method by adding offset to
modified specular free (MSF) image, whereas MSF chromaticity closes to the diffuse chromaticity [23].
Yang et al. [24] removed highlight from image with bilateral filter by propagating maximum diffuse
chromaticity values from diffuse pixels to specular pixels [24].

Researchers introduced several algorithms to produce HDR image from a single low-dynamic
range (LDR) image [25–28]. Reinhard et al. [25] described dodging and burning based tone-mapping
method in high and low contrast region of LDR image. Dodging and burning is a printing approach to
withhold or add light to a portion of an image [25]. Rempel et al. [26] boosted the dynamic range of
images for viewing in HDR displays by using reverse tone-mapping algorithm [26]. Banterle et al. [27]
introduced a new framework of inverse tone-mapping operator for boosting up the LDR image
to HDR image by linear interpolation of original LDR image. Huo et al. [28] showed that linear
expansion of HF LDR image can expand the dynamic range of LDR image. They developed highlight
removal technique by the help of principal component analysis (PCA) and polynomial transformation.
However, all of these methods target software analysis only, which does not guarantee real-time
FPGA implementation. Our aim is to develop an algorithm as well as make sure that the algorithm is
implementable to the hardware.

Vonikakis et al. [29] presented an image enhancement-based HDR imaging technique. They
stretched the luminance value of every frame by building a pipelined structure and implemented their
algorithm in Altera’s Stratix II. Stretching the luminance value helps in adding more brightness to
the resultant image, especially in the underexposed regions of the image, although it can also affect
the overexposed regions. Multi-frame-based implementations were usually adopted to get HDR
imaging [30,31]. Some researchers also implemented algorithm from dual-camera settings to increase
the frame rate [32]. From the point of view of implemented work for HDR algorithm, the novelty of our
work is that HDR images are generated from a single image. Besides, we describe the implementation
scenario for single image, while others focus on multi-frame implementation.

The applicability and reliability of the HLS are discussed in [33–37]. Tambara et al. [33] analyzed
the utilization and performance of HLS-based optimization techniques, e.g., pipelining, loop unrolling,
array partitioning, and function inlining. These techniques are used in three different combinations
on matrix multiplication (MM), advanced encryption standard (AES), and adaptive differential pulse
code modulation (ADPCM). Choi et al. [34] measured the performance of different applications, e.g.,
Qsort, Log reg, Mat mul, and ConvNN using HLS-based coding. Li et al. [35] focused on multi-loop
optimization technique in an algorithmic way for applications such as image segmentation, denoising,
edge minimization, and matrix multiplication. A data acquisition system was built based on HLS using
finite impulse response (FIR) filtering by CERN researchers [36]. Daud et al. [37] used an HLS-based
approach to develop an intellectual property (IP) of glucose–insulin analysis. An IP is a package of
HDL coding that can be used directly in system-level register transfer logic (RTL) design. Thus far,

Electronics 2018, 7, 332 4 of 18

HLS-related research has mainly focused on the performance estimation of pre-built algorithms [33–35].
In [36,37], the authors presented application based works, but none are related to the image processing
application. The most novel aspect of our work is the development of a single image HDR algorithm
by HLS-based implementation in hardware.

3. Proposed Method

The target of our algorithm is to make it simple while being able to produce a competitive result.
The simplicity will help us for efficient implementation in the hardware. The algorithm is described by
the block diagram in Figure 2.

Electronics 2018, 7, x FOR PEER REVIEW 4 of 18

3. Proposed Method

The target of our algorithm is to make it simple while being able to produce a competitive result.
The simplicity will help us for efficient implementation in the hardware. The algorithm is described
by the block diagram in Figure 2.

Detecting
HA

Calculating
MSF in HA

Removing
brightness
mismatch

HDR image

Highlight-free

Low-light
area

enhancement

Figure 2. Proposed LDR to HDR generation algorithm.

3.1. Highlight Detection and Modification

(),iP x y is the input image. (x,y) indicates the input pixel location. According to previous

researches [20,22–24,28], the minimum channel value ()min ,P x y is used for highlight detection from
the assumption that HA is not fully saturated. ()min ,P x y can be expressed as follows:

() ()()min , min ,iP x y P x y=
(2)

The highlight is simply detected by comparing in the following way,

()min min, 2 , highlight else non-highlightP x y P> × (3)

We experimentally set this condition. For all test images, it detects the HA properly. We detect
the HA to work with only that region. We assume that other parts of the image contain properly
diffused pixels. In the HA, we modify the highlight pixels by Equations (4) and (5). We call this image
as MSF image.

() () (), , , min, , , , RGB channel and Pixels belong to HAMSF i C i C MSFP x y P x y P x y C i C= − + ∈ ∈ (4)

min
min, ,+MSF NHA SD NHAC P P= (5)

First, we reduce the ()min ,P x y from each HA pixel, (), ,i CP x y . This is called specular free (SF)
image [22,23,28]. SF image is usually dark and texture is not rich enough. Therefore, we add an offset
MSFC to (), , ,MSF i CP x y . Since we reduce the ()min ,P x y from HA and ()min ,P x y in HA area is usually

higher, it is more logical to calculate the reasonable portion of ()min ,P x y for addition. For extracting
the appropriate diffuse information of HA, we have to consider the minP of NHA because NHA is
the diffuse area. However, we do not yet know the appropriate diffuse intensity of HA but we know
about the area where we can find it. Thus, we can take the average of minP of NHA (min,NHAP) to use it
for extracting the diffuse information of HA. However, NHA is comprised of object and background
area. Due to the highlight, the background goes darker during capturing by LDR image sensor. It is
a general characteristic of LDR camera. Because of this characteristic of LDR image sensor, we can
say that NHA is darker area and min,NHAP will also become a low intensity than the appropriate

diffuse value of HA. As min,NHAP is the average of NHA, it brings the diffuse information of object and

Figure 2. Proposed LDR to HDR generation algorithm.

3.1. Highlight Detection and Modification

Pi(x, y) is the input image. (x,y) indicates the input pixel location. According to previous
researches [20,22–24,28], the minimum channel value Pmin(x, y) is used for highlight detection from
the assumption that HA is not fully saturated. Pmin(x, y) can be expressed as follows:

Pmin(x, y) = min(Pi(x, y)) (2)

The highlight is simply detected by comparing in the following way,

Pmin(x, y) > 2× Pmin, highlight else non-highlight (3)

We experimentally set this condition. For all test images, it detects the HA properly. We detect the
HA to work with only that region. We assume that other parts of the image contain properly diffused
pixels. In the HA, we modify the highlight pixels by Equations (4) and (5). We call this image as
MSF image.

PMSF,i,C(x, y) = Pi,C(x, y)− Pmin(x, y) + CMSF, i ∈ RGB channel and C ∈ Pixels belong to HA (4)

CMSF = Pmin,NHA + Pmin
SD,NHA (5)

First, we reduce the Pmin(x, y) from each HA pixel, Pi,C(x, y). This is called specular free (SF)
image [22,23,28]. SF image is usually dark and texture is not rich enough. Therefore, we add an offset
CMSF to PMSF,i,C(x, y). Since we reduce the Pmin(x, y) from HA and Pmin(x, y) in HA area is usually
higher, it is more logical to calculate the reasonable portion of Pmin(x, y) for addition. For extracting
the appropriate diffuse information of HA, we have to consider the Pmin of NHA because NHA is
the diffuse area. However, we do not yet know the appropriate diffuse intensity of HA but we know
about the area where we can find it. Thus, we can take the average of Pmin of NHA (Pmin,NHA) to use it
for extracting the diffuse information of HA. However, NHA is comprised of object and background
area. Due to the highlight, the background goes darker during capturing by LDR image sensor. It is

Electronics 2018, 7, 332 5 of 18

a general characteristic of LDR camera. Because of this characteristic of LDR image sensor, we can
say that NHA is darker area and Pmin,NHA will also become a low intensity than the appropriate
diffuse value of HA. As Pmin,NHA is the average of NHA, it brings the diffuse information of object and
background surface of the image. From the results in Figure 3d, we can say that the pixel distribution
is close to Gaussian distribution in NHA. If we add Pmin

SD,NHA to Pmin,NHA, it seems that we move to
the direction of the diffuse pixel of HA because Pmin,NHA − Pmin

SD,NHA directs to the diffuse pixel of
background of the NHA and Pmin,NHA + Pmin

SD,NHA directs to the diffuse pixel of object of NHA which is
almost same surface of the HA. This is the approximate diffuse intensity of HA and the CMSF is added
to SF image to produce a better MSF image. Another reason for taking 1 SD (standard deviation) of
Pmin(x, y) of NHA is that 2 SD may damage the diffuse pixel by directing to HA.

Electronics 2018, 7, x FOR PEER REVIEW 5 of 18

of object and background surface of the image. From the results in Figure 3d, we can say that the
pixel distribution is close to Gaussian distribution in NHA. If we add min

,SD NHAP to min,NHAP , it seems

that we move to the direction of the diffuse pixel of HA because min,NHAP − min
,SD NHAP directs to the

diffuse pixel of background of the NHA and min,NHAP + min
,SD NHAP directs to the diffuse pixel of object

of NHA which is almost same surface of the HA. This is the approximate diffuse intensity of HA and
the MSFC is added to SF image to produce a better MSF image. Another reason for taking 1 SD
(standard deviation) of ()min ,P x y of NHA is that 2 SD may damage the diffuse pixel by directing to
HA.

(a) (b) (c)

(d)

Figure 3. (a) Input image; (b) MSF replaced image of HA; (c) non-highlight pixels; and (d) distribution
of ()min ,P x y of NHA.

3.2. Removing Brightness Mismatch

The mismatch is noticeable clearly in Figure 3b. From the visual side, we can say that luminance
of two portions does not match. To remove the brightness mismatch between HA and NHA, we
argue that there is a lack of brightness offset (BO) in HA of MSF replaced image, , , (,)MSF i CP x y , shown
in Equation (4). We also argue that the value of BO will become very small because the information
of HA of MSF image is quite visible and well-recovered but not bright enough. As the brightness is
not completely dark in HA of MSF image, , , (,)MSF i CP x y , we do not need to consider the average gray

Figure 3. (a) Input image; (b) MSF replaced image of HA; (c) non-highlight pixels; and (d) distribution
of Pmin(x, y) of NHA.

3.2. Removing Brightness Mismatch

The mismatch is noticeable clearly in Figure 3b. From the visual side, we can say that luminance
of two portions does not match. To remove the brightness mismatch between HA and NHA, we argue
that there is a lack of brightness offset (BO) in HA of MSF replaced image, PMSF,i,C(x, y), shown in
Equation (4). We also argue that the value of BO will become very small because the information of
HA of MSF image is quite visible and well-recovered but not bright enough. As the brightness is not
completely dark in HA of MSF image, PMSF,i,C(x, y), we do not need to consider the average gray

Electronics 2018, 7, 332 6 of 18

value of NHA and, instead, we can consider the SD of gray value of NHA because, in most cases for
Gaussian-like distribution, SD is much lower than average value. From this analysis, we measure
the SD of gray value of HA (LSD,HA) and NHA (LSD,NHA). We take the small value between LSD,HA
and LSD,NHA as a BO to remove the brightness mismatch. Experimentally, we decide that small value
between LSD,HA and LSD,NHA is the appropriate BO to remove the mismatch. In Equation (6), we
represent BO and, in Equation (7), we represent PHF,i,C(x, y) as HF pixels on HA.

BO =

{
LSD,NHA, if LSD,NHA < LSD,HA
LSD,HA, Otherwise

(6)

PHF,i,C(x, y) = PMSF,i,C(x, y) + BO (7)

3.3. Low Light Area Enhancement

Most HF images have a histogram distribution similar to in Figure 4b. Thus, according to
Hsia et al. [14], we can conclude that these images are low light images. After increasing the brightness
of these low light images, we can claim these images as HDR images. Huo et al. [28] followed the same
approach to achieve the HDR images, while they used the linear expansion method. Instead of linear
expansion, we follow the algorithm of Li et al. [38]. They showed the following equation to brighten
the under exposed region. We use Equation (8) for producing our final HDR image, PHDR,i(x, y).
The specialty of Equation (8) is that it will boost up in the dark region only while keeping the higher
luminance value intact.

PHDR,i(x, y) = PHF,i(x, y)
(

1 + exp
(
−14

(
LHF(x, y)

255

)γ))
V (8)

The values of γ and V in Equation (8) are set experimentally to 2.2 and 1.25, respectively.

Electronics 2018, 7, x FOR PEER REVIEW 6 of 18

Gaussian-like distribution, SD is much lower than average value. From this analysis, we measure the
SD of gray value of HA (,SD HAL) and NHA (,SD NHAL). We take the small value between ,SD HAL and

,SD NHAL as a BO to remove the brightness mismatch. Experimentally, we decide that small value

between ,SD HAL and ,SD NHAL is the appropriate BO to remove the mismatch. In Equation (6), we
represent BO and, in Equation (7), we represent , , (,)HF i CP x y as HF pixels on HA.

, , ,

,

, if
BO

, Otherwise
SD NHA SD NHA SD HA

SD HA

L L L
L

<= 


(6)

, , , ,(,) (,) BOHF i C MSF i CP x y P x y= + (7)

3.3. Low Light Area Enhancement

Most HF images have a histogram distribution similar to in Figure 4b. Thus, according to Hsia
et al. [14], we can conclude that these images are low light images. After increasing the brightness of
these low light images, we can claim these images as HDR images. Huo et al. [28] followed the same
approach to achieve the HDR images, while they used the linear expansion method. Instead of linear
expansion, we follow the algorithm of Li et al. [38]. They showed the following equation to brighten
the under exposed region. We use Equation (8) for producing our final HDR image, , (,)HDR iP x y . The
specialty of Equation (8) is that it will boost up in the dark region only while keeping the higher
luminance value intact.

, ,
(,)(,) (,) 1 exp 14

255
HF

HDR i HF i
L x y

P x y P x y V
γ    = + −       

 (8)

The values of γ and V in Equation (8) are set experimentally to 2.2 and 1.25, respectively.

(a) (b)

Figure 4. (a) HF image after removing mismatch; and (b) histogram of luminance of (a).

4. Hardware Development

The HLS development part is included in this paper as a part of our next development scenario.
Our final goal is the SoC based development. We have chosen the Xilinx device Zynq for our
development due to its popularity in the field of SoC. Our primary implementation scenario is
described in Figure 5. Zynq architecture has two sides, processor (PS) and PL. The camera will feed
the video to the PS. The individual image frame is stored temporally on an off-chip memory such as
DDR3. We call it frame buffer. The required frame parameters will be estimated in the PS side. The
image frame and parameters will be supplied to the algorithm block in the PL side. This algorithm
block will be generated by HLS tool. The display driver will be used finally to see the output.

Figure 4. (a) HF image after removing mismatch; and (b) histogram of luminance of (a).

4. Hardware Development

The HLS development part is included in this paper as a part of our next development scenario.
Our final goal is the SoC based development. We have chosen the Xilinx device Zynq for our
development due to its popularity in the field of SoC. Our primary implementation scenario is
described in Figure 5. Zynq architecture has two sides, processor (PS) and PL. The camera will feed the
video to the PS. The individual image frame is stored temporally on an off-chip memory such as DDR3.
We call it frame buffer. The required frame parameters will be estimated in the PS side. The image
frame and parameters will be supplied to the algorithm block in the PL side. This algorithm block will
be generated by HLS tool. The display driver will be used finally to see the output.

Electronics 2018, 7, 332 7 of 18

Electronics 2018, 7, x FOR PEER REVIEW 7 of 18

Figure 5. Idea of implementation flow in Zynq board.

4.1. HLS Development

The target of this paper is to represent that our algorithm can be implemented in hardware while
most researchers [20,22] only focus on software part development and comparison. For this reason,
we used the HLS tool to verify that our idea is implementable in hardware. Our main target is to
simplify the PL part development using HLS tool while we also describe our optimized development
method. Since Zynq is our final device, the vivado HLS tool is selected for the development. For our
final design, we will need AXI bus to communicate from PS to PL and from PL to PS. The other
academic HLS tools are not compatible with Xilinx Zynq devices. For example, Leg UP [39] and Intel
HLS tool [40] are only compatible with Altera/Intel FPGA.

Each type of HLS tool may have different steps for achieving its goal (i.e., HLL-to-HDL
translation). D. Bailey, in his survey of HLS tools [41], identified four steps: dataflow analysis,
resource allocation, resource binding, and scheduling. The vivado HLS tool has four basic steps [42]:
C-synthesis, C-simulation, RTL verification, and IP packaging. We discuss each step output in our
description. Optimization techniques have been generalized by the survey paper [8]. The authors
discussed eight types of HLS optimization. Among them, depending on our tool necessity, we use
bit-width analysis and optimization, loop optimization, and hardware resource library.

In the beginning of our development, we have separated the part that is designated for the
development in the PS while we have also developed a part in the PL. For the PL side development,
we use the HLS tool. The operations separated for PS and PL, respectively, are shown in Figure 6.

Figure 6. Our implementation steps/operations in PS and PL side.

Figure 5. Idea of implementation flow in Zynq board.

4.1. HLS Development

The target of this paper is to represent that our algorithm can be implemented in hardware while
most researchers [20,22] only focus on software part development and comparison. For this reason, we
used the HLS tool to verify that our idea is implementable in hardware. Our main target is to simplify
the PL part development using HLS tool while we also describe our optimized development method.
Since Zynq is our final device, the vivado HLS tool is selected for the development. For our final
design, we will need AXI bus to communicate from PS to PL and from PL to PS. The other academic
HLS tools are not compatible with Xilinx Zynq devices. For example, Leg UP [39] and Intel HLS
tool [40] are only compatible with Altera/Intel FPGA.

Each type of HLS tool may have different steps for achieving its goal (i.e., HLL-to-HDL translation).
D. Bailey, in his survey of HLS tools [41], identified four steps: dataflow analysis, resource allocation,
resource binding, and scheduling. The vivado HLS tool has four basic steps [42]: C-synthesis,
C-simulation, RTL verification, and IP packaging. We discuss each step output in our description.
Optimization techniques have been generalized by the survey paper [8]. The authors discussed eight
types of HLS optimization. Among them, depending on our tool necessity, we use bit-width analysis
and optimization, loop optimization, and hardware resource library.

In the beginning of our development, we have separated the part that is designated for the
development in the PS while we have also developed a part in the PL. For the PL side development,
we use the HLS tool. The operations separated for PS and PL, respectively, are shown in Figure 6.

Electronics 2018, 7, x FOR PEER REVIEW 7 of 18

Figure 5. Idea of implementation flow in Zynq board.

4.1. HLS Development

The target of this paper is to represent that our algorithm can be implemented in hardware while
most researchers [20,22] only focus on software part development and comparison. For this reason,
we used the HLS tool to verify that our idea is implementable in hardware. Our main target is to
simplify the PL part development using HLS tool while we also describe our optimized development
method. Since Zynq is our final device, the vivado HLS tool is selected for the development. For our
final design, we will need AXI bus to communicate from PS to PL and from PL to PS. The other
academic HLS tools are not compatible with Xilinx Zynq devices. For example, Leg UP [39] and Intel
HLS tool [40] are only compatible with Altera/Intel FPGA.

Each type of HLS tool may have different steps for achieving its goal (i.e., HLL-to-HDL
translation). D. Bailey, in his survey of HLS tools [41], identified four steps: dataflow analysis,
resource allocation, resource binding, and scheduling. The vivado HLS tool has four basic steps [42]:
C-synthesis, C-simulation, RTL verification, and IP packaging. We discuss each step output in our
description. Optimization techniques have been generalized by the survey paper [8]. The authors
discussed eight types of HLS optimization. Among them, depending on our tool necessity, we use
bit-width analysis and optimization, loop optimization, and hardware resource library.

In the beginning of our development, we have separated the part that is designated for the
development in the PS while we have also developed a part in the PL. For the PL side development,
we use the HLS tool. The operations separated for PS and PL, respectively, are shown in Figure 6.

Figure 6. Our implementation steps/operations in PS and PL side. Figure 6. Our implementation steps/operations in PS and PL side.

Electronics 2018, 7, 332 8 of 18

The separation depends on the convenience of the task. Implementation of the whole algorithm in
the PS side will be easier. However, PL side has the advantage in terms of speed due to the capability
of parallel processing. Therefore, we want to take this advantage by separating our task between PS
and PL. It is generally easy to calculate the average and SD in the PS side, while implementation of
an equation in PL will always give the advantage in terms of latency and speed. Obviously, there is
trade-off among latency, resources and quality of the output. For calculation of average and SD in PL,
Popovic et al. [43] assumed the no variation of light between two frames in a sequence. If we adopt this
method in our case, we may need assumption that light is constant among four frames in a sequence
because we need three frames in a sequence to calculate the third, fourth, and fifth blocks of PS side in
Figure 6. In the fourth frame, finally, we can apply these values. High speed frame capturing can be
one solution in this purpose, but this kind of feature will not generalize our algorithm for low speed
(<60 fps) commercial camera. To avoid this kind of situation, we consider the PS based implementation
in SoC. Hence, we assigned this part (CMSF and BO) for PS development while other operations are
possible conveniently in the PL side.

4.1.1. Coding for IP Optimization

HLS coding starts with the function declaration. It is possible to have multiple functions
declaration in an IP. The main function should be selected. During the synthesis, depending on the
argument of the main function, the input/output interface is generated. We have one function in the
IP with seven arguments: input, output, row size, column size, minAvg (Pmin shown in Equation (2)),
CMSF (CMSF), and BO. AXI bus is used to communicate between PS and PL. AXI stream interfaces are
used as input/output interfaces for the image frame, named as data bus. The other arguments are
received by AXI lite interfaces, named as controlled bus. For pipeline based designing, AXI stream
interfaces are used. These interfaces are added by the pragma settings suggested by vivado HLS tool
user guide [42]. We keep the same clock for both control bus and data bus. The HLS C code is different
from general C code, as HLS does not support every feature of the C. For example, it is possible in C
to allocate dynamic memory for an array, but the size of the array in HLS must be pre-defined. The
array directly consumes space in the fixed block RAM (BRAM) of the FPGA chip and BRAM size
is limited in FPGA. Usually, for stream-based input/output, all the operations are done in a single
for-loop. This is also one of the main reasons that we have calculated all of the average and SD in the
PS side. Therefore, we do not need to use multiple for loops in the PL side.

The optimized version of the code is shown in Tables 1–3. For optimization, first, we use pipeline
directive for loop based optimization. We achieved the initiation interval (II) as one that indicates the
high throughput [8]. Secondly, we focus on bit-width optimization. During this optimization, we need
to select carefully the bit-width of every variable used in the code. Vivado HLS tool has an excellent
feature of customized bit-width. Since writing in HLS is general C/C++ code, the important thing
is combination of hardware implementation concept during the writing. We describe our code step
by step.

In Table 1, Line 8, the main function is LDR2HDR. We consider AXI_STREAM as a 24-bit stream
data type. Hence, our input and output data bit are limited to 24-bits, which is reasonable since we
are taking RGB image as an input and output. The rows (row size) and cols (column size) are at most
10-bit because all of our test images are within the limit of 1023 × 1023. However, our IP can also be
applicable to higher resolution by increasing the bit-width of the rows and cols, respectively. The rest
of the arguments (minAvg, CMSF, BO) are 8-bit. Although they are float in nature, experimentally, we
observed that rounding these values does not degrade the image quality. The variables are declared
according to necessity of the operation. The constants and variables are declared according to the
highest bit-width.

Electronics 2018, 7, 332 9 of 18

Table 1. Data types, main function, and variables.

Partial code for HLS environment

1. typedef ap_axiu <24,1,1,1> stream_24;
2. typedef hls: stream <stream_24> AXI_STREAM;
3. typedef ap_uint <24> uint_24;
4. typedef ap_uint <10> uint_10;
5. typedef ap_uint <8> uint_8;
6. typedef ap_uint <9> uint_9;
7. typedef ap_ufixed <14,9> floatC1;
8. void LDR2HDR (AXI_STREAM & image_in, AXI_STREAM & image_out, uint_10 rows, uint_10 cols, uint_8 minAvg,
uint_8 CMSF, uint_8 BO) {
9. ...
10. uint_8 rp1, gp1, bp1, min_pix = 255;
11. uint_9 rp, gp, bp;
12. float phiz, Con4 = 1, Con5 = 14, Con6 = 2.2, Con7 = 255;
13. floatC1 LMSF, delta = 0.0039, Con1 = 0.2989, Con2 = 0.5870, Con3 = 0.1140, V = 1.25;
14. ...
15. }

Table 2. Start of for loop, highlight detection and modification.

Partial code for HLS environment

1.
2. loop: for (int idxPixel = 0; idxPixel < (rows * cols); idxPixel++)
3. {
4. # pragma HLS PIPELINE
5. # pragma HLS LOOP_TRIPCOUNT min = 100; max = 1,046,529//(1023 × 1023)
6. stream_24 pixel_in;
7. pixel_in = image_in.read;
8. rp1 = pixel_in.data >> 16;
9. gp1 = pixel_in.data >> 8;
10. bp1 = pixel_in.data;
11. rp = rp1; gp = gp1; bp = bp1;
12. if (rp < min_pix) min_pix = rp;
13. if (bp < min_pix) min_pix = bp;
14. if (gp < min_pix) min_pix = gp;
15.
16. if (min_pix > (2 * minAvg))
17. {
18. rp = rp −min_pix + CMSF + BO;
19. gp = gp −min_pix + CMSF + BO;
20. bp = bp −min_pix + CMSF + BO;
21. }
22.
23. }
24. }

Beginning of the loop (Table 2) contains two loop pragmas. HLS LOOP_TRIPCOUNT indicates the
maximum and minimum number of pixels. Since our rows and cols are limited to 10-bit, the maximum
number will be 1023 × 1023 = 1,046,529. At the time of this implementation, we have found that,
during the use of comparator operator (>/<) and arithmetic operator (+/−), the data types should
be same on both sides i.e., either they will be custom data type (e.g., ap_fixed type) or regular data
type (e.g., float (32-bit)). We want to keep everything in custom data type with minimum bit required.
However, when we take the pixel line (Lines 8–10), the 8-bit data types are needed to take the data
input. Eventually, we have cast in next line to keep everything in the 9-bit. Lines 12–14 indicate the
minimum channel value selection while Lines 16–21 show HA detection and modification.

Electronics 2018, 7, 332 10 of 18

Table 3. Low light area enhancement and image out.

Partial code for HLS environment

1.
2. LMSF = Con1 * rp + Con2 * gp + Con3 * bp;
3. phiz = Con4 + expf(-Con5 * expf(Con6 * logf((float)LMSF/Con7)));
4. rp = rp * V * (floatC1)phiz;
5. gp = gp * V * (floatC1)phiz;
6. bp = bp * V * (floatC1)phiz;
7. min_pix = 255;
8. if (rp > min_pix) rp = min_pix;
9. if (bp > min_pix) bp = min_pix;
10. if (gp > min_pix) gp = min_pix;
11. ap_uint<24> pixelout = (uint_8)rp;
12. pixelout = pixelout << 16;
13. ap_uint <24> pixelout1 = (uint_8)gp;
14. pixelout1 = pixelout1 << 8;
15. ap_uint <24> pixelout2 = (uint_8)bp;
16. pixelout = pixelout|pixelout1|pixelout2;
17.
18. }
19. }

In Table 3, luminance is calculated in Line 2. The way of writing of Xy in vivado HLS is
exp f (y× log f (X)). This is the case where power is not an integer number. HLS math library
(hls_math.h) includes math functions that are synthesizable. The math functions are applicable only
for single-precision float type or double-precision float type (64-bit) [42]. Therefore, we have written
Equation (8) according to the tool’s way in Line 3. Lines 8–10 prevent the floating over flow. During
the image out (Lines 11–16), we need to cast again to the 8-bit data type.

4.1.2. Resource and Latency Comparison

Table 4 shows the resource comparison between optimized and unoptimized implementation.
In Table 4, we use terms such as latency, iteration latency (IL), initiation interval (II), trip count (TC),
dataflow, pipeline, etc. Their definitions are provided in [34,42]. Optimized version is presented in
Tables 1–3. The main difference between optimized and unoptimized is that we calculated every
equation in float (32-bit) in the case of unoptimized version. We take arguments (minAvg, CMSF, and
BO) in float as well. In our design, we do not need any BRAM. The design is optimized for 100 MHz
clock. Only 76 clocks will be needed from input to output for one pixel while we achieved the II as
one that indicates that, with every clock cycle, we can take a pixel input. In the case of unoptimized
version, the IL is 105. Fewer resources are required for the optimized version. The DSP requisition is
reduced by almost half in optimized version. Resource to quality comparison has been shown at the
end of Section 5.

Table 4. Resource and latency optimizations of IP.

Design Considerations Without Optimizations With Optimizations

Design clock (MHz) 100 (10 ns) 100 (10 ns)

Total latency Min 209 (0.00209 ms) 176 (0.00176 ms)
Max 1,046,638 (~10.4 ms) 1,046,603 (~10.4 ms)

Loop II (No. of cycles)
IL 105 (0.00105 ms) 76 (0.00076 ms)
II 1 1

TC 100–1,046,529 100–1,046,529

BRAM 0 0
DSP 79 42
FF 8352 3766

LUT 15,791 6360

Electronics 2018, 7, 332 11 of 18

During RTL verification, for Fish image, it was completely successful. Figure 7 shows the RTL
pass report for VHDL.

Electronics 2018, 7, x FOR PEER REVIEW 11 of 18

During RTL verification, for Fish image, it was completely successful. Figure 7 shows the RTL
pass report for VHDL.

Figure 7. RTL verification report.

Finally, at the IP packaging stage, final resource count for optimized version is shown in Table
5. Three DSP have been reduced in the IP packaging stage while flip-flop (FF) and look up table (LUT)
count also reduced in number. At the same time, 193 shift register lookups (SRLs) have been
consumed in the IP packaging stage. Besides, our IP achieved the post implementation clock pulse of
9.546 ns, which is less than our desired clock pulse (10 ns). Therefore, timing requirement was met
successfully.

Table 5. Resource comparison between C-synthesis and IP packaging stage.

IP Name Resources C-Synthesis IP Package

LDR2HDR

BRAM 0 0
DSP 42 39
FF 3766 2705

LUT 6360 4145
SRL NA 193

5. Results and Discussion

We used ten test images during our experiment: Doll, Stone, Hen, Idol, Red Ball, Face, Fish, Bear,
Green Pear, and Cups. For software evaluation, we used MATLAB and, as an HLS tool, Vivado HLS
v2016.4 was used. In Figure 8, we show each step output. We also compared our final HDR output
with the HDR image generated from Shen’s HF image [22]. Shen’s target was only to generate HF
image. We generated Shen’s HF image from the code that is provided in [22]. During generation, the
parameter chromaticity threshold was set to 0.05, as in [22]. We applied the same low light area
enhancement algorithm (Equation (8)) to Shen’s HF [22] image to compare with our final HDR image.
In Figure 8(aiii–ciii),(aiv–civ), our HDR output is better than the HDR output from Shen’s HF [22]
image. In the case of Doll image, Figure 8(biii), a color mismatch is noticeable at the area below the
guitar. In Figure 8(biv), we cannot see this kind of mismatch. We also compared our MATLAB output
with optimized HLS C simulation output, as shown in Figure 8(aiv–civ),(av–cv). Although, in HLS,
we reduced the bit-width, we cannot see any visible difference between MATLAB and HLS C
simulation output, indicating our IP can generate outputs with software precision level.

(ai) (aii) (aiii) (aiv) (av)

Figure 7. RTL verification report.

Finally, at the IP packaging stage, final resource count for optimized version is shown in Table 5.
Three DSP have been reduced in the IP packaging stage while flip-flop (FF) and look up table (LUT)
count also reduced in number. At the same time, 193 shift register lookups (SRLs) have been consumed
in the IP packaging stage. Besides, our IP achieved the post implementation clock pulse of 9.546 ns,
which is less than our desired clock pulse (10 ns). Therefore, timing requirement was met successfully.

Table 5. Resource comparison between C-synthesis and IP packaging stage.

IP Name Resources C-Synthesis IP Package

LDR2HDR

BRAM 0 0
DSP 42 39
FF 3766 2705

LUT 6360 4145
SRL NA 193

5. Results and Discussion

We used ten test images during our experiment: Doll, Stone, Hen, Idol, Red Ball, Face, Fish, Bear,
Green Pear, and Cups. For software evaluation, we used MATLAB and, as an HLS tool, Vivado HLS
v2016.4 was used. In Figure 8, we show each step output. We also compared our final HDR output
with the HDR image generated from Shen’s HF image [22]. Shen’s target was only to generate HF
image. We generated Shen’s HF image from the code that is provided in [22]. During generation,
the parameter chromaticity threshold was set to 0.05, as in [22]. We applied the same low light area
enhancement algorithm (Equation (8)) to Shen’s HF [22] image to compare with our final HDR image.
In Figure 8(aiii–ciii),(aiv–civ), our HDR output is better than the HDR output from Shen’s HF [22]
image. In the case of Doll image, Figure 8(biii), a color mismatch is noticeable at the area below the
guitar. In Figure 8(biv), we cannot see this kind of mismatch. We also compared our MATLAB output
with optimized HLS C simulation output, as shown in Figure 8(aiv–civ),(av–cv). Although, in HLS, we
reduced the bit-width, we cannot see any visible difference between MATLAB and HLS C simulation
output, indicating our IP can generate outputs with software precision level.

Electronics 2018, 7, x FOR PEER REVIEW 11 of 18

During RTL verification, for Fish image, it was completely successful. Figure 7 shows the RTL
pass report for VHDL.

Figure 7. RTL verification report.

Finally, at the IP packaging stage, final resource count for optimized version is shown in Table
5. Three DSP have been reduced in the IP packaging stage while flip-flop (FF) and look up table (LUT)
count also reduced in number. At the same time, 193 shift register lookups (SRLs) have been
consumed in the IP packaging stage. Besides, our IP achieved the post implementation clock pulse of
9.546 ns, which is less than our desired clock pulse (10 ns). Therefore, timing requirement was met
successfully.

Table 5. Resource comparison between C-synthesis and IP packaging stage.

IP Name Resources C-Synthesis IP Package

LDR2HDR

BRAM 0 0
DSP 42 39
FF 3766 2705

LUT 6360 4145
SRL NA 193

5. Results and Discussion

We used ten test images during our experiment: Doll, Stone, Hen, Idol, Red Ball, Face, Fish, Bear,
Green Pear, and Cups. For software evaluation, we used MATLAB and, as an HLS tool, Vivado HLS
v2016.4 was used. In Figure 8, we show each step output. We also compared our final HDR output
with the HDR image generated from Shen’s HF image [22]. Shen’s target was only to generate HF
image. We generated Shen’s HF image from the code that is provided in [22]. During generation, the
parameter chromaticity threshold was set to 0.05, as in [22]. We applied the same low light area
enhancement algorithm (Equation (8)) to Shen’s HF [22] image to compare with our final HDR image.
In Figure 8(aiii–ciii),(aiv–civ), our HDR output is better than the HDR output from Shen’s HF [22]
image. In the case of Doll image, Figure 8(biii), a color mismatch is noticeable at the area below the
guitar. In Figure 8(biv), we cannot see this kind of mismatch. We also compared our MATLAB output
with optimized HLS C simulation output, as shown in Figure 8(aiv–civ),(av–cv). Although, in HLS,
we reduced the bit-width, we cannot see any visible difference between MATLAB and HLS C
simulation output, indicating our IP can generate outputs with software precision level.

(ai) (aii) (aiii) (aiv) (av)

Figure 8. Cont.

Electronics 2018, 7, 332 12 of 18

Electronics 2018, 7, x FOR PEER REVIEW 12 of 18

(bi) (bii) (biii) (biv) (bv)

(ci) (cii) (ciii) (civ) (cv)

Figure 8. (ai–ci) Input LDR images (Idol, Doll, and Fish); (aii–cii) our HF images; (aiii–ciii) HDR
images using Shen’s HF [22] images; (aiv–civ) our HDR images; and (av–cv) our HDR images by HLS
C Simulation.

In this stage, we compared our output numerically. No-reference metrics are selected on the
basis of quality evaluation related to the HDR image. Each metric indicates the quality improvement
of an image in a specific area. Uniform distribution of light level, good color, contrast, and overall
better visual quality ensure HDR quality image. Lower value of histogram balance (HB) indicates the
image is visually better in HA and low light area [14]. Entropy (E) ensures the good contrast of an
image, whereas larger value of E represents better contrast of image. Naturalness image quality
evaluator (NIQE) and colorfulness-based patch-based contrast quality index (CPCQI) guarantee the
overall quality of the image [15–17]. Lower NIQE and larger CPCQI value represent better quality of
image. Thus, satisfying the conditions of these metrics ensures the validity of the proposed algorithm.
The software output, validated by the no-reference metrics, was used as a reference for checking the
accuracy of the hardware stage simulated output using SSIM and PSNR. SSIM indicates the similarity
between two images in terms of luminance, contrast and image structure [18]. In [19], it is assumed
that PSNR value greater than 40 dB indicates almost invisible difference between two images. Table
6 shows the detailed numerical comparison among input, HDR from Shen’s HF, and our HDR
images. The superior values are indicated in bold font. On average, our method performs numerically
better than HDR from Shen’s HF.

Table 6. Numerical Comparison among Input, HDR using Shen’s method, and Proposed Method.

Image
Name

Input Image Shen’s Method [22] Our Method
HB E NIQE CPCQI HB E NIQE CPCQI HB E NIQE CPCQI

Doll 111,110 3.82 12.08 0.3061 114,538 4.167 8.632 0.404 113,648 4.201 7.948 0.414
Stone 55,478 4.39 6.74 0.4845 49,383 4.495 5.552 0.492 49,508 4.511 6.148 0.499
Hen 734,038 4.41 5.87 0.3418 713,070 4.720 4.793 0.316 711,976 4.714 4.575 0.323
Idol 71,551 5.17 20.34 0.4068 66,451 5.551 16.343 0.540 62,474 5.609 16.002 0.557

Red Ball 316,007 5.62 3.33 0.3863 256,030 6.116 3.403 0.487 257,432 6.088 3.471 0.507
Face 48,895 6.04 6.31 0.4819 47,570 6.044 5.566 0.548 46,089 6.110 5.697 0.575
Fish 49,4260 4.08 5.50 0.1565 433,726 5.073 5.659 0.196 434,470 5.074 5.254 0.197
Bear 234,030 5.45 7.16 0.3715 190,986 5.798 5.113 0.486 177,910 5.908 5.060 0.507

Green Pear 88,910 5.23 9.60 0.5500 122,001 4.955 8.077 0.497 120,263 4.992 8.555 0.514
Cups 489,820 4.24 5.19 0.2435 429,220 5.176 5.523 0.326 431,192 5.169 4.892 0.320

Average 26,4409.9 4.845 8.212 0.3728 242,297.5 5.209 6.866 0.429 240,496.2 5.237 6.760 0.441

Shen [22] removed highlight by solving the least squares problem of the dichromatic reflection
model based on the error analysis of chromaticity and appropriate selection of body color in iterative
way. The whole process was done in three steps. In first step, Shen [22] classified diffuse and highlight
pixels. In the second and third steps, highlight was removed in an iterative way. On the other hand,

Figure 8. (ai–ci) Input LDR images (Idol, Doll, and Fish); (aii–cii) our HF images; (aiii–ciii) HDR
images using Shen’s HF [22] images; (aiv–civ) our HDR images; and (av–cv) our HDR images by HLS
C Simulation.

In this stage, we compared our output numerically. No-reference metrics are selected on the
basis of quality evaluation related to the HDR image. Each metric indicates the quality improvement
of an image in a specific area. Uniform distribution of light level, good color, contrast, and overall
better visual quality ensure HDR quality image. Lower value of histogram balance (HB) indicates
the image is visually better in HA and low light area [14]. Entropy (E) ensures the good contrast of
an image, whereas larger value of E represents better contrast of image. Naturalness image quality
evaluator (NIQE) and colorfulness-based patch-based contrast quality index (CPCQI) guarantee the
overall quality of the image [15–17]. Lower NIQE and larger CPCQI value represent better quality of
image. Thus, satisfying the conditions of these metrics ensures the validity of the proposed algorithm.
The software output, validated by the no-reference metrics, was used as a reference for checking the
accuracy of the hardware stage simulated output using SSIM and PSNR. SSIM indicates the similarity
between two images in terms of luminance, contrast and image structure [18]. Paris et al. [19] assumed
that PSNR value greater than 40 dB indicates almost invisible difference between two images. Table 6
shows the detailed numerical comparison among input, HDR from Shen’s HF, and our HDR images.
The superior values are indicated in bold font. On average, our method performs numerically better
than HDR from Shen’s HF.

Table 6. Numerical Comparison among Input, HDR using Shen’s method, and Proposed HDR Images.

Image
Name

Input Image Shen’s Method [22] Our Method

HB E NIQE CPCQI HB E NIQE CPCQI HB E NIQE CPCQI

Doll 111,110 3.82 12.08 0.3061 114,538 4.167 8.632 0.404 113,648 4.201 7.948 0.414
Stone 55,478 4.39 6.74 0.4845 49,383 4.495 5.552 0.492 49,508 4.511 6.148 0.499
Hen 734,038 4.41 5.87 0.3418 713,070 4.720 4.793 0.316 711,976 4.714 4.575 0.323
Idol 71,551 5.17 20.34 0.4068 66,451 5.551 16.343 0.540 62,474 5.609 16.002 0.557

Red Ball 316,007 5.62 3.33 0.3863 256,030 6.116 3.403 0.487 257,432 6.088 3.471 0.507
Face 48,895 6.04 6.31 0.4819 47,570 6.044 5.566 0.548 46,089 6.110 5.697 0.575
Fish 49,4260 4.08 5.50 0.1565 433,726 5.073 5.659 0.196 434,470 5.074 5.254 0.197
Bear 234,030 5.45 7.16 0.3715 190,986 5.798 5.113 0.486 177,910 5.908 5.060 0.507

Green Pear 88,910 5.23 9.60 0.5500 122,001 4.955 8.077 0.497 120,263 4.992 8.555 0.514
Cups 489,820 4.24 5.19 0.2435 429,220 5.176 5.523 0.326 431,192 5.169 4.892 0.320

Average 26,4409.9 4.845 8.212 0.3728 242,297.5 5.209 6.866 0.429 240,496.2 5.237 6.760 0.441

Shen [22] removed highlight by solving the least squares problem of the dichromatic reflection
model based on the error analysis of chromaticity and appropriate selection of body color in iterative
way. The whole process was done in three steps. In first step, Shen [22] classified diffuse and highlight
pixels. In the second and third steps, highlight was removed in an iterative way. On the other hand,

Electronics 2018, 7, 332 13 of 18

our proposed method uses only two steps. First, we also classify diffuse and highlight pixels as in [22].
However, after that, we only process on highlight pixel using the idea of diffuse and highlight pixel
distribution that directs the highlight pixel to diffuse pixel. On the other hand, Shen [22] iterated on
whole image in every step to remove highlight, although they classified the diffuse and highlight
components in the first step. At this point, our proposed method has achieved advantages in terms of
processing speed compared to Shen [22], as shown in Table 7. At the same time, quality of our output
images is also better, as proved in Figures 9 and 10. We compared the processing speed between Shen’s
method [22] and our method by using the same PC configurations. The configuration of the PC is
Windows 7 64-bit operating system, Intel Core i7-3770 K CPU and 12 GB RAM. In Table 7, we can
verify that our method is around 76 times faster than Shen’s method [22].

Table 7. MATLAB Processing Time (in Second).

Image Name
Shen’s Method [22] Our Method

LDR2HDR LDR2HDR

Doll (240 × 320) 0.573134 0.008595
Stone (202 × 239) 0.060746 0.00531
Hen (735 × 779) 4.357683 0.068634
Idol (199 × 281) 0.235915 0.007351

Red Ball (628 × 355) 1.554282 0.031045
Face (200 × 208) 0.061709 0.005579
Fish (640 × 480) 5.534559 0.033494
Bear (369 × 461) 1.208264 0.022383

Green Pear (276 × 360) 0.148036 0.009028
Cups (640 × 480) 3.806368 0.039217

Average 1.7540696 0.0230636

The MATLAB output images are used as a reference to measure the quality of the HLS
C-simulation output. For HLS C-simulation, we include the hls_math.h library in our testbench
as well as the original source file. The HLS math library includes floating point precision factors of
synthesizable math functions that are applicable to the hardware [44]. Although the HLS tool calls the
GCC compiler (C compiler) for C-simulation, it follows the HLS math library to generate the output of
the used math functions instead of standard C output [44]. Therefore, our C-simulation output verifies
the hardware stage output. Since the precision level of a math function (e.g., exp) for hardware is
different from standard C-math libraries [44], we verify our C-simulation output with the software
stage output. Table 8 shows the average SSIM and PSNR for both optimized and unoptimized versions.
It is obvious that unoptimized version is closer to the MATLAB output, since data (e.g., minAVG,
CMSF, BO, etc.) bit-width is close to the MATLAB. In Table 8, average PSNR for without optimization
is higher than that of optimized version, which verifies our expectation numerically. However, in both
cases, average PSNR is above 40 dB. According to Paris et al. [19], the difference between MATLAB
and HLS C simulation will not be visible. Besides, average SSIM is almost same for both cases, which
indicates that visual differences are indistinguishable.

Electronics 2018, 7, x FOR PEER REVIEW 13 of 18

our proposed method uses only two steps. First, we also classify diffuse and highlight pixels as in
[22]. However, after that, we only process on highlight pixel using the idea of diffuse and highlight
pixel distribution that directs the highlight pixel to diffuse pixel. On the other hand, Shen [22] iterated
on whole image in every step to remove highlight, although they classified the diffuse and highlight
components in the first step. At this point, our proposed method has achieved advantages in terms
of processing speed compared to Shen [22], as shown in Table 7. At the same time, quality of our
output images is also better, as proved in Figures 9 and 10. We compared the processing speed
between Shen [22] and our method by using the same PC configurations. The configuration of the PC
is Windows 7 64-bit operating system, Intel Core i7-3770 K CPU and 12 GB RAM. In Table 7, we can
verify that our method is around 76 times faster than Shen [22].

Table 7. MATLAB Processing Time (in Second).

Image Name
Shen Method [22] Our Method

LDR2HDR LDR2HDR
Doll (240 × 320) 0.573134 0.008595

Stone (202 × 239) 0.060746 0.00531
Hen (735 × 779) 4.357683 0.068634
Idol (199 × 281) 0.235915 0.007351

Red Ball (628 × 355) 1.554282 0.031045
Face (200 × 208) 0.061709 0.005579
Fish (640 × 480) 5.534559 0.033494
Bear (369 × 461) 1.208264 0.022383

Green Pear (276 × 360) 0.148036 0.009028
Cups (640 × 480) 3.806368 0.039217

Average 1.7540696 0.0230636

The MATLAB output images are used as a reference to measure the quality of the HLS C-
simulation output. For HLS C-simulation, we include the hls_math.h library in our testbench as well
as the original source file. The HLS math library includes floating point precision factors of
synthesizable math functions that are applicable to the hardware [44]. Although the HLS tool calls
the GCC compiler (C compiler) for C-simulation, it follows the HLS math library to generate the
output of the used math functions instead of standard C output [44]. Therefore, our C-simulation
output verifies the hardware stage output. Since the precision level of a math function (e.g., exp) for
hardware is different from standard C-math libraries [44], we verify our C-simulation output with
the software stage output. Table 8 shows the average SSIM and PSNR for both optimized and
unoptimized versions. It is obvious that unoptimized version is closer to the MATLAB output, since
data (e.g., minAVG, CMSF, BO, etc.) bit-width is close to the MATLAB. In Table 8, average PSNR for
without optimization is higher than that of optimized version, which verifies our expectation
numerically. However, in both cases, average PSNR is above 40 dB. According to Paris et al. [19], the
difference between MATLAB and HLS C simulation will not be visible. Besides, average SSIM is
almost same for both cases, which indicates that visual differences are indistinguishable.

(ai) (aii) (aiii)

Figure 9. Cont.

Electronics 2018, 7, 332 14 of 18

Electronics 2018, 7, x FOR PEER REVIEW 14 of 18

(bi) (bii) (biii)

(ci) (cii) (ciii)

Figure 9. Comparison of Shen [22] and our method locally: (ai–ci) input LDR images (Hen, Face, and
Green Pear); (aii–cii) HDR images using Shen’s [22] HF images; and (aiii–ciii) HDR images by our
proposed method.

(ai) (aii) (aiii)

(bi) (bii) (biii)

(ci) (cii) (ciii)

Figure 9. Comparison of Shen [22] and our method locally: (ai–ci) input LDR images (Hen, Face, and
Green Pear); (aii–cii) HDR images using Shen’s [22] HF images; and (aiii–ciii) HDR images by our
proposed method.

Electronics 2018, 7, x FOR PEER REVIEW 14 of 18

(bi) (bii) (biii)

(ci) (cii) (ciii)

Figure 9. Comparison of Shen [22] and our method locally: (ai–ci) input LDR images (Hen, Face, and
Green Pear); (aii–cii) HDR images using Shen’s [22] HF images; and (aiii–ciii) HDR images by our
proposed method.

(ai) (aii) (aiii)

(bi) (bii) (biii)

(ci) (cii) (ciii)

Figure 10. Cont.

Electronics 2018, 7, 332 15 of 18

Electronics 2018, 7, x FOR PEER REVIEW 15 of 18

(di) (dii) (diii)

Figure 10. Visual comparison of Shen [22] and our method globally: (ai–di) input LDR images (Stone,
Ball, Bear, and Cups); (aii–dii) HDR images using Shen’s [22] HF images; and (aiii–diii) HDR images
by our proposed method.

Table 8. Evaluation of hardware stage output.

Image Name
Our Method (without Optimization) Our Method (with Optimization)

SSIM (%) PSNR (dB) SSIM (%) PSNR (dB)
Doll 98.898351 45.797372 98.941133 43.509281
Stone 99.291045 44.870771 99.338060 40.386618
Hen 99.228186 45.912994 99.218398 44.955246
Idol 99.364302 46.234078 99.418754 44.070200

Red Ball 98.977379 42.460855 98.968631 42.071957
Face 98.928368 43.099939 98.871433 39.907252
Fish 99.839522 45.480920 99.840969 44.913258
Bear 99.966664 47.223252 99.955782 46.110997

Green Pear 99.991725 47.732003 99.970616 43.052628
Cups 99.828980 45.323002 99.823142 44.667605

Average 99.431452 45.413518 99.434469 43.3645

6. Conclusions

The main focus of this paper is the development of parameter free single LDR image to HDR
image generation technique using highlight removal algorithm that removes the parameter
dependency of our previous paper [12]. We compared our method with the state of the art [22] and
showed that our method performs better in terms of quality and processing speed. At the same time,
by describing a SoC based implementation scenario, we tried to verify that our method was hardware
friendly where PL side development was described depending on the HLS tool. This kind of
hardware development approach was completely new for single image based LDR to HDR
algorithm. By comparing SSIM and PSNR values, we can claim that, even though we limited the bit
width for operation in HLS, the C simulated output was similar to MATLAB output. The main
achievement was resolution independency by obtaining throughput one clock cycle and by avoiding
the use of BRAM. Finally, although it is true that our algorithm was developed on the assumption
that highlight part should not be fully saturated, our method worked very well for all of the test
images. In the future, we will develop manual HDL IP with more optimized resources as well as a
complete SoC implementation.

Author Contributions: The manuscript was written by R.S.; his main contribution is HLS part. P.P.B. contributed
the algorithm part and also helped to write the paper. As the corresponding author, K.-D.K. proposed the idea
as well as supervised the research.

Funding: This research was supported by Human resources Exchange program in Scientific technology through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-
2018H1D2A2075823) and was also supported by the National Research Foundation of Korea Grant funded by
the Ministry of Science, ICT, Future Planning (2015R1A5A7037615).

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 10. Visual comparison of Shen [22] and our method globally: (ai–di) input LDR images (Stone,
Ball, Bear, and Cups); (aii–dii) HDR images using Shen’s [22] HF images; and (aiii–diii) HDR images
by our proposed method.

Table 8. Evaluation of hardware stage output.

Image Name
Our Method (without Optimization) Our Method (with Optimization)

SSIM (%) PSNR (dB) SSIM (%) PSNR (dB)

Doll 98.898351 45.797372 98.941133 43.509281
Stone 99.291045 44.870771 99.338060 40.386618
Hen 99.228186 45.912994 99.218398 44.955246
Idol 99.364302 46.234078 99.418754 44.070200

Red Ball 98.977379 42.460855 98.968631 42.071957
Face 98.928368 43.099939 98.871433 39.907252
Fish 99.839522 45.480920 99.840969 44.913258
Bear 99.966664 47.223252 99.955782 46.110997

Green Pear 99.991725 47.732003 99.970616 43.052628
Cups 99.828980 45.323002 99.823142 44.667605

Average 99.431452 45.413518 99.434469 43.3645

6. Conclusions

The main focus of this paper is the development of parameter free single LDR image to HDR image
generation technique using highlight removal algorithm that removes the parameter dependency of
our previous paper [12]. We compared our method with the state of the art [22] and showed that our
method performs better in terms of quality and processing speed. At the same time, by describing a
SoC based implementation scenario, we tried to verify that our method was hardware friendly where
PL side development was described depending on the HLS tool. This kind of hardware development
approach was completely new for single image based LDR to HDR algorithm. By comparing SSIM
and PSNR values, we can claim that, even though we limited the bit width for operation in HLS, the C
simulated output was similar to MATLAB output. The main achievement was resolution independency
by obtaining throughput one clock cycle and by avoiding the use of BRAM. Finally, although it is true
that our algorithm was developed on the assumption that highlight part should not be fully saturated,
our method worked very well for all of the test images. In the future, we will develop manual HDL IP
with more optimized resources as well as a complete SoC implementation.

Author Contributions: The manuscript was written by R.S.; his main contribution is HLS part. P.P.B. contributed
the algorithm part and also helped to write the paper. As the corresponding author, K.-D.K. proposed the idea as
well as supervised the research.

Funding: This research was supported by Human resources Exchange program in Scientific technology
through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
(NRF-2018H1D2A2075823) and was also supported by the National Research Foundation of Korea Grant funded
by the Ministry of Science, ICT, Future Planning (2015R1A5A7037615).

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2018, 7, 332 16 of 18

Abbreviations

The following abbreviations are used in this manuscript:

ADPCM Adaptive Differential Pulse Code Modulation
AES Advanced Encryption Standard
BO Brightness Offset
BRAM Block RAM
CPCQI Colorfulness-based Patch-based Contrast Quality Index
DSP Digital Signal Processor
E Entropy
FF Flip-Flop
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
HA Highlight Area
HB Histogram Balance
HDL Hardware Description Language
HDR High Dynamic Range
HF Highlight-Free
HLL High-Level Languages
HLS High-Level Synthesis
II Initiation Interval
IL Iteration Latency
IP Intellectual Property
LDR Low Dynamic Range
LEDs Light Emitting Diodes
LUT Look Up Table
MM Matrix Multiplication
MSF Modified Specular-Free
NHA Non-Highlight Area
NIQE Naturalness Image Quality Evaluator
PCA Principal Component Analysis
PL Programmable Logic
PS Processor
PSNR Peak Signal-to-Noise Ratio
RTL Register Transfer Logic
SD Standard Deviation
SF Specular-Free
SoC System on Chip
SRL Shift Register Lookup
SSIM Structural Similarity
TC Trip Count
VHDL VHSIC Hardware Description Language

References

1. Qasaimeh, M.; Sagahyroon, A.; Shanableh, T. FPGA-based parallel hardware architecture for real-time image
classification. IEEE Trans. Comput. Imaging 2015, 1, 56–70. [CrossRef]

2. Wang, P.; McAllister, J. Streaming elements for FPGA signal and image processing accelerators. IEEE Trans.
Very Large Scale Integr. Syst. 2016, 24, 2262–2274. [CrossRef]

3. Yang, B.; Yang, M.; Plaza, A.; Gao, L.; Zhang, B. Dual-mode FPGA implementation of target and anomaly detection
algorithms for real-time hyperspectral imaging. IEEE J. Sel. Top. Appl. Earth Obs. 2015, 8, 2950–2961. [CrossRef]

4. Amaro, J.; Yiu, B.Y.S.; Falcao, G.; Gomes, M.A.C.; Yu, A.C.H. Software-based high-level synthesis design of
FPGA beamformers for synthetic aperture imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62,
862–870. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TCI.2015.2424077
http://dx.doi.org/10.1109/TVLSI.2015.2504871
http://dx.doi.org/10.1109/JSTARS.2015.2388797
http://dx.doi.org/10.1109/TUFFC.2014.006938
http://www.ncbi.nlm.nih.gov/pubmed/25965680

Electronics 2018, 7, 332 17 of 18

5. Chang, H.-Y.; Jiang, I.H.-R.; Hofstee, H.P.; Nam, G.-J. Feature detection for image analytics via FPGA
acceleration. IBM J. Res. Dev. 2015, 59, 8:1–8:10. [CrossRef]

6. Rose, A.G.; Kube, M.; Weigel, R.; Rose, R. An FPGA-based fully synchronized design of a bilateral filter for
real-time image denoising. IEEE Trans. Ind. Electron. 2014, 61, 4093–4104. [CrossRef]

7. Xu, Y.; Zhou, Q.; Gong, L.; Zhu, M.; Ding, X.; Teng, R.K.F. High-speed simultaneous image distortion
correction transformations for a multicamera cylindrical panorama real-time video system using FPGA.
IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 1061–1069. [CrossRef]

8. Nane, R.; Sima, V.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al.
A survey and evaluation of FPGA high-level synthesis tools. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 2016, 35, 1591–1604. [CrossRef]

9. Lee, H. Method for computing the scene-illuminant chromaticity from specular highlights. J. Opt. Soc. Am. A
1986, 3, 1694–1699. [CrossRef] [PubMed]

10. Shafer, S. Using color to separate reflection components. Color Res. Appl. 1985, 10, 210–218. [CrossRef]
11. Ren, W.; Tian, J.; Tang, Y. Specular reflection separation with color-lines constraint. IEEE Trans. Image Process.

2017, 26, 2327–2337. [CrossRef] [PubMed]
12. Banik, P.P.; Saha, R.; Kim, K.-D. HDR Image from Single LDR Image after Removing Highlight.

In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 12–14 January 2018; pp. 1–4.

13. Saha, R.; Banik, P.P.; Kim, K.-D. Conversion of LDR Image to HDR-Like Image through High-Level
Synthesis Tool for FPGA Implementation. In Proceedings of the IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2.

14. Hsia, S.; Kuo, T. High-performance high dynamic range image generation by inverted local patterns.
IET Image Process. 2015, 9, 1083–1091. [CrossRef]

15. Kamandar, M. Automatic color image contrast enhancement using gaussian mixture modeling, piecewise
linear transformation, and monotone piecewise cubic interpolant. Signal Image Video Process. 2017, 12,
625–632. [CrossRef]

16. Mittal, A.; Soundararajan, R.; Bovik, A. Making a “Completely Blind” image quality analyzer. IEEE Signal
Process. Lett. 2013, 20, 209–212. [CrossRef]

17. Gu, K.; Tao, D.; Qiao, J.; Lin, W. Learning a no-reference quality assessment model of enhanced images with
big data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1301–1313. [CrossRef] [PubMed]

18. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural
similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

19. Paris, S.; Durand, F. A fast approximation of the bilateral filter using a signal processing approach. Int. J.
Comput. Vis. 2009, 81, 24–52. [CrossRef]

20. Tan, R.; Ikeuchi, K. Separating reflection components of textured surfaces using a single image. IEEE Trans.
Pattern Anal. Mach. Intell. 2005, 27, 178–193. [CrossRef] [PubMed]

21. Yoon, K.-J.; Choi, Y.; Kweon, I.S. Fast Separation of Reflection Components Using a Specularity-Invariant
Image Representation. In Proceedings of the 13th IEEE International Conference on Image Processing,
Atlanta, GA, USA, 8–11 October 2006; pp. 973–976.

22. Shen, H.; Zhang, H.; Shao, S.; Xin, J. Chromaticity-based separation of reflection components in a single
image. Pattern Recogn. 2008, 41, 2461–2469. [CrossRef]

23. Shen, H.; Cai, Q. Simple and efficient method for specularity removal in an image. Appl. Opt. 2009, 48,
2711–2719. [CrossRef] [PubMed]

24. Yang, Q.; Wang, S.; Ahuja, N. Real-Time Specular Highlight Removal Using Bilateral Filtering. In Lecture
Notes in Computer Science, Proceedings of the in European Conference on Computer Vision (ECCV),
Heraklion, Greece, 5–11 September 2010; Part IV. Daniilidis, K., Mragos, P., Pragios, N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 87–100.

25. Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Trans.
Graph. 2002, 21, 267–276. [CrossRef]

26. Rempel, A.G.; Trentacoste, M.; Seetzen, H.; Young, H.D. Ldr2Hdr: On-the-fly reverse tone mapping of legacy
video and photographs. ACM Trans. Graph. 2007, 26, 39-1–39-6. [CrossRef]

27. Banterle, F.; Ledda, P.; Debattista, K.; Chalmers, A.; Bloj, M. A framework for inverse tone mapping.
Visual. Comput. 2007, 23, 467–478. [CrossRef]

http://dx.doi.org/10.1147/JRD.2015.2398631
http://dx.doi.org/10.1109/TIE.2013.2284133
http://dx.doi.org/10.1109/TCSVT.2013.2290576
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1364/JOSAA.3.001694
http://www.ncbi.nlm.nih.gov/pubmed/3772631
http://dx.doi.org/10.1002/col.5080100409
http://dx.doi.org/10.1109/TIP.2017.2675204
http://www.ncbi.nlm.nih.gov/pubmed/28252399
http://dx.doi.org/10.1049/iet-ipr.2014.0853
http://dx.doi.org/10.1007/s11760-017-1201-9
http://dx.doi.org/10.1109/LSP.2012.2227726
http://dx.doi.org/10.1109/TNNLS.2017.2649101
http://www.ncbi.nlm.nih.gov/pubmed/28287984
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1007/s11263-007-0110-8
http://dx.doi.org/10.1109/TPAMI.2005.36
http://www.ncbi.nlm.nih.gov/pubmed/15688556
http://dx.doi.org/10.1016/j.patcog.2008.01.026
http://dx.doi.org/10.1364/AO.48.002711
http://www.ncbi.nlm.nih.gov/pubmed/19424394
http://dx.doi.org/10.1145/566654.566575
http://dx.doi.org/10.1145/1276377.1276426
http://dx.doi.org/10.1007/s00371-007-0124-9

Electronics 2018, 7, 332 18 of 18

28. Huo, Y.; Yang, F. High-dynamic range image generation from single low-dynamic range image. IET Image
Process. 2016, 10, 198–205. [CrossRef]

29. Vonikakis, V.; Iakovidou, C.; Andreadis, I. Real-Time Biologically-Inspired Image Exposure Correction.
In IFIPAICT, VLSI-SoC: Design Methodologies for SoC and SiP; Piguet, C., Reis, R., Soudris, D., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 313, pp. 133–153.

30. Lapray, P.; Heyrman, B.; Ginhac, D. HDR-ARtiSt: An adaptive real-time smart camera for high dynamic
range imaging. J. Real-Time Image Process. 2014, 12, 747–762. [CrossRef]

31. Jacquot, B.; Johnson-Williams, N. Real-Time Algorithm Enabling High Dynamic Range Imaging and High
Frame Rate Exploitation for Custom CMOS Image Sensor System Implemented by FPGA with Co-Processor.
In Proceedings of the SPIE 9400, Real-Time Image and Video Processing, San Francisco, CA, USA, 10 February
2015; pp. 940003-1–940003-13.

32. Popovic, V.; Seyid, K.; Pignat, E.; Çogal, Ö.; Leblebici, Y. Multi-camera platform for panoramic real-time
HDR video construction and rendering. J. Real-Time Image Proc. 2016, 12, 697–708. [CrossRef]

33. Tambara, L.A.; Tofat, J.; Santos, A.; Kastensmidt, F.L.; Medina, N.H.; Added, N.; Aguiar, V.A.P.; Aguirre, F.;
Silveira, M.A.G. Analyzing reliability and performance trade-offs of HLS-based designs in SRAM-based
FPGAs under soft errors. IEEE Trans. Nucl. Sci. 2017, 64, 874–881. [CrossRef]

34. Choi, Y.-K.; Zhang, P.; Li, P.; Cong, J. HLScope+: Fast and accurate performance estimation for FPGA HLS.
In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
Irvine, CA, USA, 13–16 November 2017; pp. 691–698.

35. Li, P.; Zhang, P.; Pouchet, L.-N.; Cong, J. Resource-Aware throughput Optimization for High-Level Synthesis.
In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Montery, CA, USA, 22–24 February 2015; pp. 200–209.

36. Husejko, M.; Evans, J.; Silva, J.C.R.D. Investigation of high-level synthesis tools’ applicability to data
acquisition systems design based on the CMS ECAL Data Concentrator Card example. J. Phys. Conf. Ser.
2015, 664, 082019. [CrossRef]

37. Daud, N. A Hardware Acceleration based on High-Level Synthesis Approach for Glucose-Insulin Analysis.
In Proceedings of the AIP Conference ICESNANO, Solo, Indonesia, 3–5 August 2016; pp. 030087-1–030087-7.

38. Li, Z.; Wei, Z.; Wen, C.; Zheng, J. Detail-enhanced multi-scale exposure fusion. IEEE Trans. Image Process.
2017, 26, 1243–1252. [CrossRef] [PubMed]

39. Canis, A.; Choi, J.; Aldham, M.; Zhang, V.; Kammoona, A.; Anderson, J.H.; Brown, S.; Czajkowski, T.
LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator Systems. In Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Montery, CA, USA,
27 February–1 March 2011; pp. 33–36.

40. Intel HLS Tool. Available online: https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html (accessed on 18 November 2018).

41. Bailey, D.G. The Advantages and Limitations of High Level Synthesis for FPGA Based Image Processing.
In Proceedings of the 9th International Conference on Distributed Smart Cameras, Seville, Spain,
8–11 September 2015; pp. 134–139.

42. Vivado HLS Tool User Guide, UG902. 30 November 2016. Available online: https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2016_4/ug902-vivado-high-level-synthesis.pdf (accessed on
21 March 2018).

43. Popovic, V.; Pignat, E.; Leblebici, Y. Performance optimization and FPGA implementation of real-time tone
mapping. IEEE Trans. Circuits Syst. II Exp. Briefs 2014, 61, 803–807. [CrossRef]

44. Hrica, J. Floating-Point Design with Vivado HLS, Application Note: Vivado Design Suite, XAPP599 v1.10.
20 September 2012. Available online: https://www.xilinx.com/support/documentation/application_notes/
xapp599-floating-point-vivado-hls.pdf (accessed on 21 March 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-ipr.2014.0782
http://dx.doi.org/10.1007/s11554-013-0393-7
http://dx.doi.org/10.1007/s11554-014-0444-8
http://dx.doi.org/10.1109/TNS.2017.2648978
http://dx.doi.org/10.1088/1742-6596/664/8/082019
http://dx.doi.org/10.1109/TIP.2017.2651366
http://www.ncbi.nlm.nih.gov/pubmed/28092537
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug902-vivado-high-level-synthesis.pdf
http://dx.doi.org/10.1109/TCSII.2014.2345306
https://www.xilinx.com/support/documentation/application_notes/xapp599-floating-point-vivado-hls.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp599-floating-point-vivado-hls.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed Method
	Highlight Detection and Modification
	Removing Brightness Mismatch
	Low Light Area Enhancement

	Hardware Development
	HLS Development
	Coding for IP Optimization
	Resource and Latency Comparison

	Results and Discussion
	Conclusions
	References

