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Abstract: Clustering is a fundamental and critical data mining branch that has been widely
used in practical applications such as user purchase model analysis, image color segmentation,
outlier detection, and so on. With the increasing popularity of cloud computing, more and
more encrypted data are converging to cloud computing platforms for enjoying the revolutionary
advantages of the cloud computing paradigm, as well as mitigating the deeply concerned data privacy
issues. However, traditional data encryption makes existing clustering schemes no more effective,
which greatly obstructs effective data utilization and frustrates the wide adoption of cloud computing.
In this paper, we focus on solving the clustering problem over encrypted cloud data. In particular,
we propose a privacy-preserving k-means clustering technology over encrypted multi-dimensional
cloud data by leveraging the scalar-product-preserving encryption primitive, called PPK-means.
The proposed technique is able to achieve efficient multi-dimensional data clustering as well to
preserve the confidentiality of the outsourced cloud data. To the best of our knowledge, our work is
the first to explore the privacy-preserving multi-dimensional data clustering in the cloud computing
environment. Extensive experiments in simulation data-sets and real-life data-sets demonstrate that
our proposed PPK-means is secure, efficient, and practical.

Keywords: cloud computing; data encryption; k-means; privacy-preserving clustering

1. Introduction

1.1. Motivation

In the big data era, data mining helps people quickly discover new and valuable knowledge from
large-scale data-sets, which has been used in various fields such as finance, power, insurance, biology,
etc. Nowadays, data mining, as one of the core techniques of artificial intelligence, has been attracting
more and more attention from both industry and academia.

Depending on whether the data are labeled or not, data mining algorithms are mainly classified
into two categories: Supervised Learning and Unsupervised Learning. No matter what category of
algorithm, they commonly output a trained model, which can be used for decision or prediction for
future input data.

In recent years, with the increasing popularity of cloud computing, more and more individuals
and enterprises have had a burning desire to outsource their applications as well as large-scale
data storage to the cloud server for enjoying the abundant benefits brought by cloud computing,
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such as cost-efficiency, flexibility, elastic high quality services, etc. We demonstrate a representative
cloud-based application by the following example.

Suppose that an e-commerce company outsources a customer analysis program (CAP) to the
cloud server. To achieve fast and accurate customer analysis, a trained model is sent to the cloud server.
By the model, CAP can find underlying customers by clustering new registered users or classifying
customer groups.

However, in the above example, if the trained model and user information are uploaded to the
cloud server in the form of plaintext, the privacy problem will arise, as the cloud server is not always
fully trusted [1]. A practical case is that the cloud server could analyzes the customers’ purchase model
and satisfaction according to the outsourced model and user information, that may be considered
as a trade secret for some companies. Moreover, a user may also be unwilling to public his/her
private information to the cloud server, such as position, age, preference, etc. Encrypting trained
models and user information is an effective approach to provide a high-strength privacy guarantee
for outsourced data [2]. Unfortunately, traditional encryption schemes make the existing data mining
algorithms ineffective.

How to achieve privacy-preserving data mining over encrypted data has become a research focus
recently. Due to supporting arithmetic operations directly over ciphertexts, homomorphic encryption
is currently the most popular encryption technique to implement encrypted data mining schemes,
which can provide data semantic security via cryptographic means. By leveraging homomorphic
encryption, several data mining approaches have developed the corresponding encryption versions,
such as gradient descent [3], ridge regression [4,5], support vector machine [6], naïve bayes [6],
decision trees [6], k-Nearest Neighbor [7]. These techniques focus on the classification problem
in the data mining tasks, which belongs to the Supervised Learning scope. A limitation of these
schemes is not to efficiently process multi-dimension data due to high computational complexity of
homomorphic encryption. k-Means clustering, as the Unsupervised Learning scope, is a fundamental
and critical data mining algorithm that has been widely used in practical applications. Recently,
researchers used secure multiparty computation protocols to construct several privacy-preserving
k-means clustering schemes [8–11]. These solutions, however, require participants to cooperatively
finish the clustering tasks without revealing any of their individual data items. Moreover, in such
solutions, some intermediate computations have to rely on non-encryption data [7], which is not
suitable for the cloud-based data outsourcing paradigm, as exposed plaintext data compromise the
semantic security.

Another line of research utilizes data perturbation techniques such as differential privacy [12] to
achieve privacy-preserving data mining. Since these approaches [13–15] can only work over the data
with the form of plaintext, which are perturbed by noise, they cannot be applicable for semantically
secure encrypted data.

In this paper, we consider the cloud-based outsourcing environment and propose a privacy-preserving
k-means clustering over encrypted multi-dimensional cloud data, which achieves the following three
basic goals: (1) efficiently processes multi-dimension data; (2) the cloud server alone performs clustering
tasks without the cooperation parties; (3) achieves data semantic security against the “honest-but-curious”
cloud server.

1.2. Contributions

In this paper, we mainly make three key contributions, which can be summarized as follows.

(1) We propose an encrypted cloud-based data mining system model. In our model, the cloud
server can perform privacy-preserving clustering and decision over encrypted outsourced data
on behalf of users.

(2) Considering the clustering problem, we propose a privacy-preserving k-means clustering
framework based on our proposed system model. In terms of different attack models,
three concrete privacy-preserving k-means clustering schemes are constructed, PPK-means 1,
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PPK-means 2, and PPK-means 3, all of which allow the cloud server alone handle
multi-dimension data efficiently in a privacy-preserving manner.

(3) We provide detailed security analysis for our designs to demonstrate the privacy preservation
guarantee against different threat models. Extensive experimental evaluations in simulation
data-sets and real-life data-sets demonstrate our scheme is secure, correct, and practical.

The rest of this paper is organized as follows. We review the related work in Section 2. The scenario
of our proposed scheme is provided in Section 3, including system model, threat model, and several
basic techniques used for our scheme. We also design a work flow and framework for our scheme and
give an algorithm overview in this section. Three PPK-Means schemes are constructed in Section 4.
Security analyses and evaluations for our proposed schemes are described in Section 5 and Section 6,
respectively. Finally, we state the limitations and conclude this paper in Section 7.

2. Related Work

Since homomorphic encryption allows for direct arithmetic operations over encrypted data
without decrypting data, most of existing works mainly rely on this cryptosystems to implement
semantically secure data mining over encrypted data. Graepel et al. [3] used full homomorphic
encryption to obtain an encrypted model through gradient descent. Nikolaenko et al. [4] used garbled
circuit and additively homomorphic encryption to design a secure ridge regression scheme, which has
better computational performance compared with Graepel et al.’s work. However, it still suffers from
expensive communication cost. To further improve the time and communication costs, Hu et al. [5]
utilized only additively homomorphic to construct a secure and efficient ridge regression scheme
with negligible errors. Due to acceptable performance, their scheme makes the encrypted data
mining more practical. To solve the problem that only provides privacy-preserving during training
phase while not addressing decision [16–18], Bost et al. [6] used additively homomorphic and secure
two-party computation protocols to design efficient privacy-preserving protocols for a broad class
of classifiers, including hyperplane decision-based, naïve bayes, and decision trees. Their scheme
provides the privacy guarantees in both training phase and classification phase, yet, it involves an
impractical computation and communication cost. Liu et al. first considered an outsouced data
mining scenario and proposed an encrypted gradient descent protocol [19] and encrypted support
vector machine protocol [20]. However, the two protocols need the users and the third-party server to
perform collaborative operations in multiple rounds. The above schemes focus on the classification
problem in the data mining tasks. On the other hand, the secure multiparty computation was also
used to construct privacy-preserving classification schemes over vertically or horizontally distributed
data [21–23], in which the multiple data holders cooperatively compute trained models without
revealing their own data.

In the data mining field, clustering is a fundamental and critical branch that has been widely
used in practical applications. Because each clustering technique has its own advantage, this paper
concentrates on the most representative k-means clustering technique. The traditional k-means
was first used by James MacQueen in 1967 [24]. Basu et al. [25] proposed to presents a pairwise
constrained clustering framework and an optimal k-means method for actively selecting informative
pairwise constraints to get improved clustering performance. Recently, to improve data cluster
performance, researchers propose to use particle swarm optimization (PSO) to enhance k-means data
clustering [26]. k-means clustering is rather easy to implement and apply even on large data-sets.
It has been successfully used in various topics, including market segmentation, computer vision,
geostatistics, astronomy and agriculture [27]. In this paper, we focus on a traditional k-means algorithm.
Toward the clustering problem in encrypted data environments, researchers utilized the secure
multiparty computation techniques to design several privacy-preserving k-means clustering schemes
over partitioned data [8–11]. In such schemes, data are distributed among multiple participants,
who cooperatively perform the clustering tasks without revealing any of their own data items,
which conflicts with the basic goal of our design stated in Section 1.
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3. Scenario

3.1. System Model

Our proposed system model is shown in Figure 1, which consists of three entities, i.e., the data
owner, the data user, and the cloud server. In our system model, the data owner is actually a model
provider, who trains owned data by using a certain data mining algorithm to build a trained model
locally and provides a decision service for the data user in the cloud-based service outsourcing
paradigm. The data user sends their data to the cloud server and calls the service to make a decision.
To guarantee the privacy of the trained model and the data user’s data, they are encrypted by the data
owner and the data user, respectively, before being outsourced to the cloud sever. Once receiving the
data user’s encrypted data, the cloud server is responsible for performing decision over the encrypted
trained model without knowing any sensitive private information. Finally, the cloud server sends the
decision results (denoted by labels) to the data user.

(Local host B) (Local host A) 

Clustering 
& 

Decision 

Data User 

Data 

Encrypted 
Data 

Encryption 

Data Owner 

Data 

Model 

Training 

(Cloud Server) 

Encrypted 
Model 

Encryption 

Results 

Outsource 

Submit 

Figure 1. The System Model.

We use a concrete example to further explain our system model as follows. A company (the data
owner) provides a decision service for business by outsourcing a data-driven model to the cloud server.
A customer of the company may be a hospital (the data user), who uses the provided service to make
decisions for patients’ data. To hide the trained model and patients’ sensitive information from the
cloud server, their respective encrypted versions are submitted to the cloud server. The cloud server
performs decisions in a privacy-preserving manner.

3.2. Threat Model

In our threat model, the cloud server is considered as an “honest-but-curious” threat entity,
which has been widely used in cloud based schemes such as secure cloud search [28–31]. Specifically,
the cloud server promises that it honestly obeys the application outsourcing and correctly performs
functionality protocols. However, it may be “curious” to access and analyse the trained model and
the data user’s data to obtain some sensitive information that the user is unwilling to be in public.
Depending on what information the cloud server is available to, we consider the following two
threat models.

• Known Ciphertext Model: In this model, except for the encrypted trained model and the
encrypted data user’s data, the cloud server can know nothing else.

• Known Background Model: In this model, the cloud server bears more knowledge than what can
be accessed in the known ciphertext model, by which it can obtain useful information by analysing
ciphertext. For example, the cloud server may know a few plaintexts and the corresponding
ciphertexts, which can be used to recover the whole plaintexts from the ciphertext space.

Note that, in the above two threat models, the sharing encryption keys between the data owner
and the data user are kept secret from the cloud server.
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3.3. Basic Techniques

3.3.1. k-means

k-means is one of the most popular unsupervised clustering algorithms, which can automatically
partition a collection of objects into k disjoint subsets based on a certain similarity metrics. Normally,
we call k disjoint subsets as clusters and use the Euclidean distance to define the similarity among the
objects. In other words, the closer Euclidean distance between two objects is, the more similar they are,
the higher probability that they are clustered into the same cluster.

3.3.2. Scalar-Product-Preserving Encryption

We adopt the Scalar-product-preserving Encryption SPE proposed in [32] as our foundation.
The encryption scheme allows one to compute the correct inner product of two encrypted vectors
without knowing their actual values. Here, we only provide the main idea about SPE; readers can
refer to [32] to obtain detailed contents. Given two column vectors −→p and −→q with D dimensions,
a D× D invertible matrix M as the symmetric key, −→p and −→q are encrypted as E(−→p ) = MT−→p and
E(−→q ) = M−1−→q , respectively. By computing (E(−→p ))T · E(−→q ) = −→p T MM−1−→q = −→p T−→q , thus the
scalar product of two vectors is preserved.

3.4. The Basic Design

In this section, we further state our design, including the work flow and the framework of
PPK-means, an algorithm overview is given as well lastly.

3.4.1. Work Flow

A data owner trains his/her possessive data by a traditional k-means to build a model with k
central points (i.e., k clusters). To prevent the cloud server from gaining information about the trained
model, all k clusters are encrypted using an encryption function Ekey1() under a specified key key1

by the data owner before outsourcing. On the other hand, a data user with a D-dimension data
x ∈ RD wishes to obtain a decision result for x according to the outsourced encrypted model. Likewise,
for privacy, the data user hides the actual value of x from the cloud server by encrypting Ekey2(x) under
the key key2. In our scheme, since key1 is an invertible matrix and key2 is the invert matrix of key1,
we uniformly denote key1 and key2 as a symmetric key SK in the following. After encrypting the data
x, the data user submits the corresponding ciphertext to the cloud server, who clusters the encrypted
data into the correct cluster based on a privacy-preserving distance comparison. As a result, we claim
that the privacy-preserving distance comparison become the key to solve our encrypted k-Means
problem, which will be achieved in our scheme by skillfully utilizing the scalar-product-preserving
encryption SPE. We present the work flow of our scheme, as shown in Figure 2.

Central Point 1 Central Point 2 Central Point k 

Encrypted 
Central Point 1 

Encrypted 
Central Point 2 

Encrypted 
Central Point k 

scalar-product-
preserving 

Encryption key1 

User’s Data x 

Encrypted 
User’s Data E(key2, x) scalar-product-

preserving Encryption 
key2 

Compare 

Compare 

Compare 

Figure 2. The Work Flow of PPK-means.
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3.4.2. Framework

The PPK-means is composed of the following four probabilistic polynomial-time algorithms:

• Setup: In the initialization, the system generates a symmetric key SK, which is shared between
the data owner and the data user.

• ModelEnc(P, SK): The data owner takes the trained model P with k central points and the
symmetric key SK as input, the algorithm outputs the encrypted trained model E(SK, P).

• DataEnc(x, SK) The data user takes a D-dimensional data vector x ∈ RD and the symmetric key
SK as input, the algorithm outputs the encrypted data vector E(SK, x).

• Decision(E(SK, P), E(SK, x)) The cloud server takes the encrypted model E(SK, P) and the
encrypted data vector E(SK, x), the algorithm outputs a label for x, which means which central
point x is clustered into.

3.4.3. Algorithm Overview

Finally, we give an algorithm overview of our PPK-means, as shown Algorithm 1. In Section 4,
we will design different encryption function E and Dist to achieve different security strength under
different threat models, i.e., Known Ciphertext Model and Known Background Model.

Algorithm 1 PPK-Means Algorithm

Input: A set of data vectors: Q = {x1, x2, ..., xn|xi ∈ RD}; A symmetric key SK.
Output: A set of labels: {C = ca, ..., ck, ..., cb}.
1: Initial an empty set for the label set C.
2: Use k-Means clustering to train data and obtain a set of central points: P = {p1, p2, ..., pk|pj ∈ RD}.
3: Encrypt P by an encryption function E(P) under SK, and obtain a set of encrypted central points:

EP = {E(SK, p1), ..., E(SK, pk)|E(SK, pi) ∈ RD}.
4: Encrypt Q by the encryption function E(Q) under SK, and obtain a set of encrypted data points:

EQ = {E(SK, x1), ..., E(SK, xn)|E(SK, xi) ∈ RD}
5: for i ≤n do

6: for j ≤k do

7: Select an encrypted central point E(SK, pj) ∈ EP.
8: Input an encrypted data point E(SK, xi) ∈ EQ.
9: Compare with E(SK, pj) and E(SK, xi) by a scalar product function cj = Dist(E(SK, pj),

E(SK, xi)).
10: end for
11: Find a cluster cmax which has maximum distance between Dist(E(SK, pj) and E(SK, xi).
12: Insert the label cmax of the cluster into the label set C.
13: end for
14: Return the label set C

In addition, to formally evaluate the distance between two data points, given two multi-dimension
data vectors p, q ∈ RD, we define the distance d(p, q) between p and q according to Equation (1).
We conduct the distance comparison between q, p1 and p2 according to Equation (2).

d(p, q) = ||p||2 − 2 · p · q + ||q||2 (1)

discom((p1, p2), q) = ||p2||2 − ||p1||2 + 2(p1 − p2) · q (2)

where ||p|| denotes euclidean norm of p. Based on Equations (1) and (2), we will construct the
privacy-preserving distance comparison between two encrypted data points. Before giving our
PPK-means construction, we first prove the following important conclusion.
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Theorem 1. Given two center points p1, p2 and a data point x, if discom((p1, p2), q) > 0, then q is nearer to
p1 than p2, where ||x|| denotes euclidean norm of x.

Proof. According to Equation (2), we have

discom((p1, p2), q) = ||p2||2 − ||p1||2 + 2(p1 − p2) · q
= (||p2||2 − 2 · p2 · q)− (||p1||2 − 2 · p1 · q)
= (||p2||2 − 2 · p2 · q + ||q||2)− (||p1||2 − 2 · p1 · q + ||q||2)
Equation (1)

= d(p2, q)− d(p1, q)

Therefore, if discom(p1, p2) > 0, then d(p2, q)− d(p1, q) > 0⇒ d(p2, q) > d(p1, q), this indicates
the distance between p2 and q is farer than that between p1 and q, i.e., q is nearer to p1 than p2.
The theorem is proved.

4. PPK-Means Construction

Intuitively, a distance-recoverable encryption (DRE) [32] can be used to construct our
PPK-means scheme, as the distance between two data points can be recovered according to their
corresponding ciphertexts. For example, if E denotes a DRE, given two data points x and y,
then dist(x, y) = dist(E(x, K), E(y, K)), where K is a key of E. However, it is shown to be not secure in
practice [33]. In this paper, inspired by Wong et al.’s work, we utilize the secure scalar-product-preserving
Encryption to construct the PPK-means against different threat models.

4.1. PPK-Means 1

In this subsection, we construct a basic framework of the PPK-means scheme PPK-means 1,
which is secure against Known Ciphertext Model. Based on the framework, we will improve the
security and propose PPK-means schemes under Known Background Model.

Setup. In the initialization phase, the system generates a (D + 1)× (D + 1) invertible random
matrix M as the symmetric key SK, which is secretly shared by the data owner and the data user.

ModelEnc(P, SK). Let pi, denoted by a column vector with D dimensions, be the i-th central
point in P. The data owner first extends pi to a (D + 1)-dimensional vector p(D+1)

i by setting the last

element to be −0.5||pi||2, as shown in Equation (3), and then vector p(D+1)
i is encrypted under the key

M as the ciphertext of the center point pi, as shown in Equation (4)

p(D+1)
i = (pT

i ,−0.5||pi||2)T (3)

E(M, pi) = p′i = MT · p(D+1)
i (4)

DataEnc(x, SK). x is the data user’s input data denoted by a column vector with D dimensions.
The data user first extends x to a (D + 1)-dimensional vector xD+1 by setting the last element to be 1
and chooses a random number r, and randomizes the extended vector by Equation (5)

x(D+1) = r(xT , 1)T (5)

After generating x(D+1), the data user uses key M to further encrypt the vector as the cihpertext of
input data x, as shown in Equation (6)

E(M−1, x) = x′ = M−1 · x(D+1) (6)

Decision(E(SK, P), E(SK, x)). Upon receiving the encrypted data x′ from the data user, the cloud
server is responsible for performing decision over encrypted trained model without knowing actual
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value about the trained model and user’s input vector. In other words, according to Algorithm 1,
the cloud server determines which center point the encrypted vector x′ should be clustered into
according to a privacy-preserving distance comparison Dist. Specifically, without loss of generality,
let p′i and p′j be two encrypted center points of pi and pj, the cloud server can determine whether x is
nearer to pi than pj by checking whether the condition Dist : (p′i − p′j) · x′ > 0 holds. The fact can be
verified based on Equation (2) and SPE technique as follows.

(p′i − p′j) · x′

= (p′i − p′j)
T · x′

= (MT · p(D+1)
i −MT · p(D+1)

j )T ·M−1 · x(D+1)

= (p(D+1)
i − p(D+1)

j )T ·MM−1 · x(D+1)

= (pi − pj)
T · (rx) + (−0.5||pi||2 + 0.5||pj||2)r

= 0.5r(||pj||2 − ||pi||2 + 2(pi − pj)
T · x)

(7)

Therefore, according to Equation (2) and Theorem 1, (p′i − p′j) · x′ = discom((pi, pj), x),
if (p′i − p′j) · x′ > 0, then discom((pi, pj), x) > 0, therefore x is nearer to pi than pj.

Example. We present a concrete example to help understand the decision processes and
computation details of Equation (7). Assume that there exist two center points with two dimensions
in the trained model pi = (2, 4)T and pj = (1, 2)T , given a data vector x = (3, 4)T , all of them are
denoted by column vector. We first compare their Euclidean distances in the plaintext environment.
Since d(pi, x) = 1 and d(pj, x) =

√
8, d(pi, x) < d(pj, x), such that x is nearer to pi than pj, where d(, )

denote a Euclidean distance. Next, we encrypt pi, pj, x and verify whether (p′i − p′j) · x′ > 0 holds or
not according to Equation (7).

We first choose a key with 3 × 3 invertible matrix M =

 1 1 1
0 1 1
1 0 1

 and its invert matrix

M−1 =

 1 −1 0
1 0 −1
−1 1 1

. Then, we compute ciphertexts of pi and pj according to Equation (4)

as p′i = MT · (2, 4,−0.5 × 20)T = (12, 6, 16)T and p′j = MT · (1, 2,−0.5 × 5)T = (−1.5, 3, 0.5)T ,

where ||pi|| =
√

20 and ||pj|| =
√

5. By Equation (5), we choose a random number r = 2 and
compute the ciphertext of x as x′ = M−1 · (6, 8, 2)T = (−2, 4, 4)T . Finally, we compute (p′i − p′j) · x′ as
follows.

(p′i − p′j) · x′ =


 12

6
16

−
 −1.5

3
0.5




T

·

 −2
4
4


= [10.5, 3, 15.5] ·

 −2
4
4


= 53 > 0

In the above example, since (p′i − p′j) · x′ > 0, x is nearer to pi than pj. The conclusion is consistent
with the distance comparsion over plaintext data. Therefore, our encryption can provide an effective
and privacy-presering distance comparsion.

4.2. PPK-Means 2

Assume that the cloud server has some background knowledge, such as the plaintexts of several
center points or a set of plaintexts of data user’s input as well as their corresponding encrypted values.
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If they are linearly independent, the cloud server can easily recover the key M. For example, there are
m points {p1, ..., pm|pi ∈ RD} and the corresponding encrypted values p′i(1 ≤ i ≤ m), we can set up
equations MT · pi = p′i from i = 1 to m to recover M if pi(1 ≤ i ≤ m) are linearly independent.

To solve the above problem, we propose PPK-means 2 that uses Artificial Dimensions Extension
and Random Asymmetric Splitting to make it very difficult to set up the equations.

Setup. The system generates two (D + 2)× (D + 2) invertible random matrices M1, M2 and a bit
string S of (D + 2), the key SK is a three-tuple denoted by SK = {M1, M2, S}.

ModelEnc(P, SK). The data owner first chooses a random number r′ and extends each center
point pi into a (D + 2) dimensional vector as shown in Equation (8).

pD+2
i = (pi,−0.5||pi||2, r′) (8)

Then pD+2
i is split into two vectors (p′i, p′′i ) according to bit string S. If S[j] = 0, p′i[j] and p′′i [j] are

both equal to pD+2
i [j]; if S[j] = 1, pD+2

i [j] is randomly split such that p′i[j] + p′′i [j] = pD+2
i [j]. Finally,

the data owner encrypts pi as { p̂i
′ = MT

1 p′i, p̂i
′′ = MT

1 p′′i }.
DataEnc(x, SK). The data user first chooses a random number r and extends the data vector x as

shown in Equation (9).
xD+2 = r(xT , 1, 1)T (9)

Then xD+2 is split two vectors (x′, x′′). If S[j] = 0, xD+2[j] is randomly spilt such as x′[j] + x′′[j] =
xD+2[j]; if S[j] = 1, x′[j] and x′′[j] are set to be the same value as xD+2[j]. Finally, the data point x is
encrypted as {x̂′ = M−1

1 x′, x̂′′ = M−1
2 x′′}.

Decision(E(SK, P), E(SK, x)). The cloud server determines whether x is nearer to pi than pj by
checking whether Dist : (p′i − p′j) · x′ + (p′′i − p′′j ) · x′′ > 0. We verify the correctness according to
Equation (2) and SPE technique as follows.

( p̂i
′ − p̂j

′) · x̂′ + ( p̂i
′′ − p̂j

′′) · x̂′′

= ( p̂i
′ − p̂j

′)T · x̂′ + ( p̂i
′′ − p̂j

′′)T · x̂′′

= (MT
1 p′i −MT

1 p′j)
T M−1

1 x′ + (MT
2 p′′i −MT

2 p′′j )
T M−1

2 x′′

= (p(D+2)
i − p(D+2)

j )T · xD+2

= (pi − pj)
T · (rx) + (−0.5||pi||2 + 0.5||pj||2)r + (rr′ − rr′)

= 0.5r(||pj||2 − ||pi||2 + 2(pi − pj)
T · x)

(10)

Therefore, according to Equation (2) and Theorem 1, (p′i − p′j) · x′ + (p′′i − p′′j ) · x′′ =

discom((pi, pj), x), if ((p′i − p′j) · x′ + (p′′i − p′′j ) · x′′ > 0, then discom((pi, pj), x) > 0, therefore x
is nearer to pi than pj.

4.3. PPK-Means 3

Though the random value r′ is introduced to extend the dimensions of the original vector in
PPK-means 2, it is only an unknown constant value for the attacker. To eliminate the deterministic
factor, we propose a security-enhanced scheme PPK-means 3.

PPK-means 3 is similar with PPK-means 2, the only difference is that PPK-means 3 extends
the original center points and a data user’s input data into D + 3 dimensions by introducing new
random numbers. Correspondingly, the key M1 and M2 are (D + 3)× (D + 3) invertible matrices and
S is a bit string of D + 3. Specifically, give a center point pi and user’s data x, they are extended as
pD+3

i = (pT
i ,−0.5||pi||2, 0.5r′′i , 1)T and x(D+3) = r(xT , 1, 1, 0.5r′′′)T , where r′′i and r′′′ are two random

numbers for pi and x, respectively. In the decision phase, the cloud server determines whether x
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is nearer to pi than pj by checking whether Dist : (p′i − p′j) · x′ + (p′′i − p′′j ) · x′′ > 0. We verify the
correctness according to Equation (2) and SPE technique as follows.

( p̂i
′ − p̂j

′) · x̂′ + ( p̂i
′′ − p̂j

′′) · x̂′′

= ( p̂i
′ − p̂j

′)T · x̂′ + ( p̂i
′′ − p̂j

′′)T · x̂′′

= (MT
1 p′i −MT

1 p′j)
T M−1

1 x′ + (MT
2 p′′i −MT

2 p′′j )
T M−1

2 x′′

= (p(D+3)
i − p(D+3)

j )T · xD+3

= (pi − pj)
T · (rx) + (−0.5||pi||2 + 0.5||pj||2)r+

0.5r(r′′i − r′′j ) + 0.5r(r′′′ − r′′′)

= 0.5r(||pj||2 − ||pi||2 + 2(pi − pj)
T · x + (r′′i − r′′j ))

= 0.5r(d(pj, x)− d(pi, x) + (r′′i − r′′j ))

(11)

Obviously, since (r′′i − r′′j ) is introduced as a part of the distance comparison, the final clustering
result may not be as accurate as that of the original k-Means scheme. For the consideration of clustering
accuracy, we let the random number r′′i in pD+3

i follow a normal distribution N(u, σ2), where σ2 as a
flexible trade-off parameter between accuracy and security. Detailed evaluation on accuracy will be
given in Section 6.

5. Privacy Analysis

In our paper, the core technique used to design PPK-means is scalar-product-preserving
encryption, SPE, whose security has been proven in [32]. Our design does not change the encryption
construction of SPE except for introducing a different number of random numbers against different
threat models. Therefore, as long as SPE is semantically secure, our scheme is secure, the an adversary
cannot recover the plaintext from its ciphertext. To avoid duplication, we ignore the security proof of
original SPE and only provide a privacy analysis for our proposed PPK-means under different threat
models.

5.1. PPK-Means 1

The security of PPK-means 1 mainly relies on the symmetric key M. As long as the key M is kept
secret from the cloud server, PPK-means 1 is secure against Known Ciphertext Model, i.e., the cloud
server knows nothing except the encrypted center points and the user’s data.

However, PPK-means 1 is not secure under Known Background Model. The cloud server may
be able to recover the symmetric key M according to some known background knowledge. For example,
if the cloud server knows that there are m points {p1, ..., pm|pi ∈ RD} and the corresponding encrypted
values p′i(1 ≤ i ≤ m), it can set up equations MT · pi = p′i from i = 1 to m to recover M if pi(1 ≤ i ≤ m)

are linearly independent.
For the user’s data x, though introducing a random number r to scale xD+1, the only randomness

does not provide sufficient nondeterminacy in the final distance comparison.

5.2. PPK-Means 2

To prevent the cloud server from correctly setting up equations to solve key M, PPK-means 2
uses Artificial Dimensions Extension and Random Asymmetric Splitting to guarantee the security of
encrypted model and data under Known Background Model. By introducing an extended random
number r′ and a split vector S, both of which are secret values from the view of the cloud server, it is
difficult for the cloud server to obtain the plaintext of the outsourced model and user’s data even
though the cloud server has some useful background knowledge. The fact has been proven in [32,33].
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5.3. PPK-Means 3

In PPK-means 2, though dimension extension with the random number r′ and random splitting
are used to hamper the known background knowledge attack, for given pi, pj, and x, the cloud
server can still obtain the value 0.5r(d(pj, x)− d(pi, x)) during the decision processes, which is only
randomized by r. To improve the privacy guarantee of distance comparison, PPK-means 3 further
extends the dimensions of center points and user’s data from D + 2 to D + 3 and introduce more
random numbers compared with PPK-means 2. According to Equation (11), the ultimate distance
comparison metric 0.5r(d(pj, x)− d(pi, x) + (r′′i − r′′j )) is further obscured by (r′′i − r′′j ), where random

number r′′i and r′′j are in pD+3
i and pD+3

j , respectively. Obviously, the same as PPK-means 2,
PPK-means 3 is secure against Known Background Model.

6. Scheme Evaluation

6.1. Time Complexity Analysis

We analyze the time complexity of our scheme from two aspects: encryption and clustering.
Time complexity of encryption. As for encryption, we perform two kinds of operations:

one is the multiplication between key M (Resp. M−1) and center point p (Resp. the user’s data
x) ((D + 1)-dimension in PPK-means 1, (D + 2)-dimension in PPK-means 2, (D + 3)-dimension
in PPK-means 3), the time complexity is O(D2); the other is the Euclidean distance computation,
the time complexity is O(D). Therefore, the total time complexity of encryption is O(D2) +O(D).

Time complexity of clustering. As for clustering, the main operation is the distance comparison
one-by-one between user’s data and all k center points. The time complexity of the distance comparison
between the data and one central points isO(1), thus, when the data is clustered into the correct cluster,
the time complexity is O(k). If the number of user’s data is n, the total time complexity is O(kn).

6.2. Experimental Evaluation

In this section, we implement a prototype and present several experiments to show security and
efficiency of our scheme.

6.2.1. Setup

We evaluate our scheme in a client–server environment. The client is a Windows 7 desktop system
with 3.20GHz Intel Core (TM) i5-6500 and 8-GB RAM and The server is Windows 7 desktop system
with 3.60-GHz Intel Core (TM) i7-7700 CPU and 8-GB RAM. The client environment is used to evaluate
performances of trained model encryption for the data owner and input data encryption for the data
user. The server environment with more power simulates the cloud server to perform encrypted data
clustering. All programs are developed by Java programming language with JRE 1.8.

6.2.2. Evaluation with Simulation data-set

data-sets. To adequately evaluate the time cost of our proposed scheme, we simulate several
different data-sets to test the time cost with taking different parameters (k, n, D) into consideration,
where k is the number of clusters, n denotes the number of user’s input data, and D specifies the
number of dimensions of the center point and the user’s input data.

Time cost evaluation. Table 1 shows the time cost of our scheme when fixing the parameters
k = 10, n = 10, 000, and D = 10, where T-DO, T-DU, and T-CS denote the time cost on center points
encryption for the data owner, data encryption for the data user, and data clustering for the cloud
server, respectively. From Table 1, we can see that PPK-means 2 and PPK-means 3 need to spend
more time compared to PPK-means 1 to perform data clustering for cloud server due to Random
Splitting, while the time costs of the three schemes on T-DO and T-DU is almost 0 millisecond.
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Table 1. The time costs of the three PPK-means schemes.

Scheme T-DO T-DU T-CS

PPK-means 1 <1 ms <1 ms 53 ms
PPK-means 2 <1 ms <1 ms 87 ms
PPK-means 3 <1 ms <1 ms 87 ms

Next, we perform several group experiments to test the time cost by adjusting parameters (k, n, D).
Due to the highest security strength yet most time-consuming clustering performance, we mainly
consider PPK-means 3 as our evaluation object. The average time cost according to ten times of
experimental results is shown in Figure 3. The six groups of experimental results show that the time
cost is linear to the number of the user’s data (n). By comparing each row of the results, we can observe
that the time cost linearly increases with the number of clusters (k), and by comparing each column of
the results, we can observe that the time cost is also linearly increases with the number of dimensions
(D) in each data.

Figure 3. The time costs in different groups of experiments.

Functionality evaluation. To demonstrate the correctness of our scheme by functionality
evaluation, we check whether the encrypted user’s data are accurately clustered into the correct
clusters as that of plaintext data clustering using k-means. The evaluation result with six-group
experiments is shown in Table 2.

The accuracies of PPK-means 1 and PPK-means 2 show that all of the encrypted data are correctly
clustered. Specifically, for PPK-means 3, the accuracy is almost 100 % when we set the variance σ to
be 1. From Table 2, we can see that the larger the number of dimensions in each data is, the higher the
accuracy of clustering is.
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Table 2. The proportions of the correctly clustered encrypted points.

Group ID Accuracy

PPK-Means 1 PPK-means 2 PPK-Means 3

Group 1. (k = 10, D = 10, n=10,000) 100% 100% 99.96%
Group 2. (k = 20, D = 10, n=10,000) 100% 100% 99.96%
Group 3. (k = 10, D = 50, n=10,000) 100% 100% 99.98%
Group 4. (k = 20, D = 50, n=10,000) 100% 100% 99.98%

Group 5. (k = 10, D = 100, n=10,000) 100% 100% 100%
Group 6. (k = 20, D = 100, n=10,000) 100% 100% 100%

Visualization. To intuitively show the privacy-preserving clustering results over encrypted data,
we simulate a data-set, in which we represent each point as a 3-dimension vector (X, Y, Z) (D = 3).
The data-set contains three clusters (k = 3) and 100 data points (n = 100). By using our PPK-means 1
(PPK-means 2, PPK-means 3) and original k-Means, we cluster the encrypted data points and the
original data points simultaneously. The clustering cases of three schemes are shown in Figures 4–6,
respectively. In these figures, blue points represent encrypted points and red points represent original
data points found by traditional k-means. The results demonstrate that, by PPK-means, the encrypted
data points can be correctly clustered in different position spaces with original data. On the other
hand, we can see that the relations between encrypted data and corresponding unencrypted data
are more undistinguishable for PPK-means 2 and PPK-means 3, compared with PPK-means 1,
as they introduce Random Asymmetric Splitting and more random numbers. PPK-means 3 in particular,
we hardly label the relation between an original data cluster and its corresponding encrypted data
clusters manually, when the original data are adequately randomized.

Figure 4. The examples of the clustered original points (red ’*’) and the encrypted points (blue ’+’) by
using PPK-means 1.
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Figure 5. The examples of the clustered original points (red ’*’) and the encrypted points (blue ’+’) by
using PPK-means 2.

Figure 6. The examples of the clustered original points (red ’*’) and the encrypted points (blue ’+’) by
using PPK-means 3.

6.2.3. Evaluation with Real-Life data-set

data-sets. To evaluate the practicability of our scheme, we use several different real-life data-sets
from the Kaggle website [34] to run our prototype, which are used for heart disease expectations,
cell classification, and airport locations. The details of these data-sets are shown in Table 3.

In our experiments, we split each data-set into two parts, one is used to train and the other is for
detection. Each part contains half of the points (randomly selected) in the data-set. For the training
data-sets, we use k-means to cluster data and generate k central points. For the detection data-sets,
we use PPK-means to cluster the encrypted data.
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Table 3. The real-life data-sets.

data-set Number of Records Number of Dimensions

heart disease 383 14
cells 15,608 6

airport locations 1435 2

Time cost evaluation. Table 4 shows the time cost of PPK-means 3 on T-DO, T-DU, T-CS in these
three real data-sets. The results show that our scheme is efficient and practical. For example, when the
size of data-set achieves 15608 (cells data-set), the time of data clustering is only 47 milliseconds,
while the time cost of model encryption and data encryption is almost 0. It is acceptable in the
real application.

Table 4. The time cost evaluation of the real data-sets.

data-set T-DO T-DU T-CS

heart disease <1 ms <1 ms 12 ms
cells <1 ms <1 ms 41 ms

airport locations <1 ms <1 ms 11 ms

Functionality evaluation. We evaluate the effectiveness of three schemes in real data-sets,
as shown in Table 5, where the accuracy means the proportion of the encrypted data which is clustered
into the correct clusters as that of plaintext data clustering using k-means. we can obverse that,
although PPK-means 3 sacrifices a bit accuracy (less than 0.1%), it is still effective enough.

Table 5. The proportions of the correctly clustered encrypted points.

data-set Accuracy

PPK-Means 1 PPK-Means 2 PPK-Means 3

heart disease 100% 100% 100%
cells 100% 100% 99.97%

airport locations 100% 100% 99.86%

Visualization. Since the numbers of dimensions of heart disease and cell data-sets are bigger than
3, we only print the original points and the encrypted points by PPK-means 3 in the airport location
data-set with dimension number 2, as shown in Figure 7. We can see that plaintext data and encrypted
data are clustered in different position spaces, respectively. Moreover, it is very difficult to determine
which one encrypted data corresponds to which one plaintext data in the whole clustering space.
The result demonstrates that the original airport location data are protected well by our encryption
scheme while achieving accurate data clustering.
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Figure 7. The examples of the clustered original points (red ’*’) and the encrypted points (blue ’+’) of
the airport location.

7. Limitation and Conclusions

In this section, we state the limitations of our proposed scheme and conclude this paper.

7.1. Limitation

Although our scheme can achieve efficient clustering over encrypted data, there is one major
limitation: in our system model, the data user does not send data to the data owner, so that the
data owner cannot update the trained model by re-training with the data from the data user on the
cloud server.

7.2. Conclusions

In this paper, we propose a privacy-preserving k-Means clustering scheme over encrypted
multi-dimensional cloud data, called PPK-Means. The basic idea of PPK-Means is to employ
scalar-product-preserving encryption to construct a privacy-preserving distance comparison between
an encrypted trained model and encrypted user data, by which the cloud server is able to cluster the
user’s data into correct clusters without knowing any useful information about the model and user
data. As for the different attack model, we propose three PPK-Means schemes to guarantee the security
of data under the different attack model. Detailed Security analyses and extensive experimental
evaluations in simulation data-set and demonstrate using a real-life data-set, that our scheme is secure,
correct, and practical. Finally, we give the limitations of our scheme. For the future, we will design
a mechanism for privacy-preserving active re-training so that the PPK-Means can be continuously
updated with the encrypted user’s data.
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