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Abstract: With the development of information technology, the degree of intelligence in air
confrontation is increasing, and the demand for automated intelligent decision-making systems is
becoming more intense. Based on the characteristics of over-the-horizon air confrontation, this paper
constructs a super-horizon air confrontation training environment, which includes aircraft model
modeling, air confrontation scene design, enemy aircraft strategy design, and reward and punishment
signal design. In order to improve the efficiency of the reinforcement learning algorithm for the
exploration of strategy space, this paper proposes a heuristic Q-Network method that integrates expert
experience, and uses expert experience as a heuristic signal to guide the search process. At the same
time, heuristic exploration and random exploration are combined. Aiming at the over-the-horizon
air confrontation maneuver decision problem, the heuristic Q-Network method is adopted to train
the neural network model in the over-the-horizon air confrontation training environment. Through
continuous interaction with the environment, self-learning of the air confrontation maneuver strategy
is realized. The efficiency of the heuristic Q-Network method and effectiveness of the air confrontation
maneuver strategy are verified by simulation experiments.

Keywords: over-the-horizon air confrontation; maneuver decision; Q-Network; heuristic exploration;
reinforcement learning

1. Introduction

The intelligent air confrontation decision-making system can be effectively applied to
automatic/autonomous simulated air confrontation, maneuver confrontation, anti-interception and
various auxiliary decision-making systems of manned/unmanned aerial vehicles. The world’s major
military powers are conducting in-depth research in this field. The intelligent decision-making system
will, thus, become an important part of future decision on air confrontation.

In the process of over-the-horizon air confrontation, reasonable maneuver decision-making is the
premise of making weapons attack, sensor use, electronic countermeasures, and other decisions. It is
accompanied by the entire air confrontation process and is an extremely important part. This paper
mainly studies the intelligent maneuver decision-making method in this environment, based on the
single-to-single air confrontation in super-horizon air confrontation.

The current air confrontation decision-making methods can be divided into two main categories:
non-learning strategies and self-learning strategies. Among them, the non-learning strategy mainly
adopts the optimization theory or the game method. There is no data-based training process in
the strategy solving process, and there is no process of updating and optimizing the strategy by
interacting with the environment. The methods adopted by non-learning strategies mainly include:
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differential countermeasure [1,2], matrix game [3], expert system [4], and impact map [5] among others.
The self-learning strategy refers to the information generated by the interaction between the historical
data and the environment; and strategy learning is carried out, and finally a better strategy is solved.
The self-learning strategy has characteristics of offline and online learning training, and has strong
adaptability and can cope with complex and changeable environments. The main methods used in
self-learning strategies include: genetic algorithm [6,7], artificial immune system [8,9], supervised
learning [10], reinforcement learning [11], etc.

Reinforcement learning is a self-learning method which, through constant trial and error, interacts
with the environment, gradually acquires knowledge, and improves action plans to adapt to the
environment. Reinforcement learning has good application in decision-making fields such as robot
control and automatic driving.

2. Air Confrontation Learning Training Environment Design

2.1. Aircraft Modelling

In the decision-making process of over-the-horizon air confrontation, the main focus is on real-time
position and speed information of the two sides, but there is no requirement for the attitude information
of the enemy aircraft. Therefore, the model of the aircraft is modeled by a three-degree-of-freedom model.

In order to facilitate the study, the paper made multiple assumptions [12,13]:

• The aircraft does not have a side-slip motion, that is, the side-slip angle is 0.
• Air speed is not considered when the aircraft is moving.
• The mass of the aircraft is constant, and the acceleration of gravity and atmospheric density do

not change with changes in flight altitude.
• The Earth is regarded as an inertial system, that is, it regards the Earth as stationary, ignoring the

effects of the Earth’s rotation and revolution.

Based on the above assumptions, the force diagram of the aircraft is shown in Figure 1:
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where v is the speed of the aircraft, g represents the acceleration of gravity, nx and n f indicate the
tangential overload and the normal overload, τ, χ and γx respectively indicate the aircraft’s track
inclination angle, track azimuth, and track roll angle. The following formula can be obtained by
analyzing the force of the aircraft.

mgnx −mg sin τ = m
.
v

mgn f cos γx −mg cos τ = mv
.
τ

mgn f sin γx = mv cos τ
.
χx

(1)



Electronics 2018, 7, 279 3 of 19

Transforming the above formula, we can get the dynamic equation of the aircraft as follows:

.
v = g(nx − sin τ)
.
τ = g

v (n f cos γx − cos τ)
.
χ = g

v cos τ n f sin γx

(2)

In this paper, the movement of the aircraft can be controlled by three quantities of nx, n f and γx.
nx can control the speed of flight, n f and γx can control the track tilt angle and track azimuth to control
flight speed direction.

Based on the above symbol representations, the kinematic equation of the aircraft can be
expressed as:

.
x = v cos τ cos χ
.
y = v cos τ sin χ
.
z = −v sin τ

(3)

where x, y, and z represent the coordinates of the aircraft in the ground coordinate system (using the
North East coordinate system).

2.2. Learning Training Scene Design

Over-the-horizon air confrontation, unlike short-range air confrontation, has powerful missiles,
radars, and support for various ground-to-air equipment information, which allows air confrontation
to occur at a greater distance. Both parties can speculate through various information support.
The opponent’s position is then attacked by the precise guidance of the missile. This paper only studies
the maneuvering strategy of over-the-horizon air confrontation, and air confrontation in close range is
not considered.

The airspace in which the over-the-horizon air battle is located is assumed as follows (Table 1):
The initial distance between the two sides is 65~100 km; when the distance between the two sides is
less than 20 km, it is considered to have entered the close range, and the air battle is over. The height
of both sides is 5~7 km.

Table 1. Air confrontation airspace.

Initial Distance/km End Distance/km Height/km

65~100 <20 6

This paper assumes that the local aircraft has a perception of enemy aircraft during the
over-the-horizon air battle. When the enemy aircraft falls within the radar detection range of the
local aircraft, enemy information can be obtained more accurately; when the enemy aircraft is not in
the radar detection area of the local aircraft, it is assumed that the aircraft can obtain enemy aircraft
information through other sources of information in the confrontation system (e.g., ground station
radar, airborne early warning aircraft, etc.), but the information obtained by this method has a large
error. This assumption is also to ensure that both sides have effective decision-making factors in the
one-to-one over-the-horizon air confrontation decision-making process. Otherwise, if the other party’s
information is unknown, it is difficult to obtain an effective strategy through the learning algorithm of
this paper. This is an area of incomplete information game, which is beyond the scope of this paper.

In order to maintain the balance of the two fighters, the performance of both sides is different:
the enemy’s missile attack capability is dominant, and the aircraft is dominant in the radar detection
range. The specific configuration of the fighter parameters of both parties is shown in Tables 2 and 3.
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Table 2. Local aircraft performance.

Parameter Range

Aircraft speed 200 m/s~300 m/s
Radar detection distance 80 km

Radar detection angle −60◦~60◦

Missile off-axis launch angle 30◦

Missile inescapable cone angle 20◦

Missile maximum launch distance 50 km
Missile maximum escape distance 35 km
Missile minimum escape distance 20 km

Table 3. Enemy aircraft performance.

Parameter Range

Aircraft speed 200 m/s~300 m/s
Radar detection distance 70 km

Radar detection angle −60◦~60◦

Missile off-axis launch angle 30◦

Missile inescapable cone angle 20◦

Missile maximum launch distance 55 km
Missile maximum escape distance 40 km
Missile minimum escape distance 25 km

According to the configuration in the table, the radar detection area of the unit and the enemy
aircraft can be represented by the Figure 2:

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 20 

Table 2. Local aircraft performance. 

Parameter Range 
Aircraft speed 200 m/s~300 m/s 

Radar detection distance 80 km 
Radar detection angle −60°~60° 

Missile off-axis launch angle 30° 
Missile inescapable cone angle 20° 

Missile maximum launch distance 50 km 
Missile maximum escape distance 35 km 
Missile minimum escape distance 20 km 

Table 3. Enemy aircraft performance. 

Parameter Range 
Aircraft speed 200 m/s~300 m/s 

Radar detection distance 70 km 
Radar detection angle −60°~60° 

Missile off-axis launch angle 30° 
Missile inescapable cone angle 20° 

Missile maximum launch distance 55 km 
Missile maximum escape distance 40 km 
Missile minimum escape distance 25 km 

According to the configuration in the table, the radar detection area of the unit and the enemy 
aircraft can be represented by the Figure 2: 

 
(a) 

 
(b) 

Figure 2. The radar detection area of both sides. (a) Native radar; (b) Enemy radar. 

The missile attack zone of both fighters can be expressed in Figure 3: 

Figure 2. The radar detection area of both sides. (a) Native radar; (b) Enemy radar.

The missile attack zone of both fighters can be expressed in Figure 3:



Electronics 2018, 7, 279 5 of 19Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 20 

 
(a) 

 
(b) 

Figure 3. The missile attack area of both sides. (a) Native radar; (b) Enemy radar. 

2.3. Enemy Strategy Design 

The enemy aircraft strategy is a very important part of the air combat training environment. It 
determines the fidelity of the over-the-horizon air combat environment and also has a great influence 
on the strategy learned by the algorithm. This paper focuses on the study of air combat maneuver 
strategies with reinforcement learning methods, focusing on the design and improvement of 
methods, and does not put too much energy into the study of enemy aircraft strategy. Because the air 
combat maneuver strategy learning method studied in this paper is a general method, it is also 
applicable to training on change in strategy design of the enemy aircraft. 

Therefore, this paper identifies enemy strategy as a relatively simple one, which is shown in 
Figure 4. First, the battlefield situation of the over-the-horizon air combat is evaluated based on expert 
experience. Then, assume that the other party maintains the current state of motion, adopts a method 
similar to the matrix strategy, and selects the optimal action from the action set as the decision result. 

Action 
enumeration

Air combat 
status

Situation 
assessment

Maneuver 
decision

Expert 
experience

 
Figure 4. Strategy design of enemy aircraft. 

2.4. Reward and Punishment Signal Design 

When using the reinforcement learning algorithm to solve practical problems, it is necessary to 
adjust and optimize the strategy according to the reward and punishment signals fed back by the 
environment. In the process of constructing the over-the-horizon air combat training environment, 
the reward and punishment signals are mainly considered from two aspects: the detection ability of 
the aircraft against the enemy aircraft and the threat of the attack on the enemy aircraft. 

In the process of over-the-horizon air combat, the geometric situation of the battlefield is shown 
in Figure 5.  

Figure 3. The missile attack area of both sides. (a) Native radar; (b) Enemy radar.

2.3. Enemy Strategy Design

The enemy aircraft strategy is a very important part of the air confrontation training environment.
It determines the fidelity of the over-the-horizon air confrontation environment and also has a great
influence on the strategy learned by the algorithm. This paper focuses on the study of air confrontation
maneuver strategies with reinforcement learning methods, focusing on the design and improvement
of methods, and does not put too much energy into the study of enemy aircraft strategy. Because the
air confrontation maneuver strategy learning method studied in this paper is a general method, it is
also applicable to training on change in strategy design of the enemy aircraft.

Therefore, this paper identifies enemy strategy as a relatively simple one, which is shown in
Figure 4. First, the battlefield situation of the over-the-horizon air confrontation is evaluated based on
expert experience. Then, assume that the other party maintains the current state of motion, adopts
a method similar to the matrix strategy, and selects the optimal action from the action set as the
decision result.
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2.4. Reward and Punishment Signal Design

When using the reinforcement learning algorithm to solve practical problems, it is necessary
to adjust and optimize the strategy according to the reward and punishment signals fed back by
the environment. In the process of constructing the over-the-horizon air confrontation training
environment, the reward and punishment signals are mainly considered from two aspects: the
detection ability of the aircraft against the enemy aircraft and the threat of the attack on the
enemy aircraft.

In the process of over-the-horizon air confrontation, the geometric situation of the battlefield is
shown in Figure 5.
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In Figure 5,
→
v r and

→
v b respectively represent the speed vector of the local aircraft and the speed

vector of the enemy aircraft, α indicating the azimuth angle of the enemy aircraft with respect to the
local aircraft, β indicating the enemy’s entry angle with respect to the local aircraft, and d indicates the
distance between the two sides.

2.4.1. Detection Capability

The detection capability of the aircraft to the enemy aircraft is mainly affected by three factors:
azimuth α, entry angle β, and distance d between the two sides.

1. Azimuth factor

When the enemy aircraft is located within the maximum detection angle range of the local radar,
the aircraft has the ability to detect the enemy aircraft, and thus constructs the azimuth detection
advantage:

Tdet_α =

 0, |α| > αFRmax

e−
|α|

αFRmax , |α| ≤ αFRmax

(4)

αFRmax is the maximum detection angle of the local fight radar, and FR is the abbreviation of the
fight radar.

2. Entry angle factor

This paper assumes that the aircraft airborne radar is a pulse Doppler radar. The characteristics of
the radar are: when the target and the local aircraft are head-on, they have strong detection capability,
and when the target is on the positive side, the detection capability is poor. The ability to detect a
trailing target is less than the ability to detect at the head. Based on this, the advantage of entering the
angle detection is constructed as:

Tdet_β =


cos(180− |β|) ∗ e−

π∗(180−|β|)
180

(90◦ ≤ |β| < 180◦)

0.5 cos(|β|) ∗ e−
π∗|β|
180

(0◦ ≤ |β| < 90◦)

(5)

3. Distance factor
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When the enemy aircraft is located within the maximum detection distance of the local radar,
the aircraft has the ability to detect the enemy aircraft. Based on this, build a distance detection
advantage as:

Tdet_d =

 0, d > DFRmax

e−
3∗d

DFRmax , d ≤ DFRmax
(6)

DFRmax is the maximum detection distance of the local radar.

4. Total detection advantage

In an actual air confrontation scenario, the azimuth detection advantage Tdet_β and the entry
angle detection advantage Tdet_d have a certain coupling, and the overall angle detection advantage is
constructed as follows:

Tdet_ag = (Tdet_α)
γ1 ∗

(
Tdet_β

)γ2 (7)

γ1 and γ2 are the two parameters that can control the proportion of Tdet_β and Tdet_d in the total
angular detection advantage. They meet the following conditions: 0 ≤ γ1, γ2 ≤ 1 and γ1 + γ2 = 1.

In addition, considering the distance d and the coupling relationship between these angles,
the overall detection advantages of constructing the local aircraft to the enemy aircraft are:

Tdet =
(
Tdet_ag

)u1 ∗ (Tdet_d)
u2 (8)

The role of u1 and u2 is similar to γ1 and γ2, and they meet the following conditions: 0 ≤ u1, u2 ≤ 1
and u1 + u2 = 1.

2.4.2. Attack Threat

The attack threat of the aircraft to the enemy aircraft is mainly affected by three factors: azimuth
α, energy E and distance d.

1. Azimuth factor

Based on the target azimuth and the performance of the local radar and missile, build an angle
threat factor:

Tthr_α =


0 α > αR

0.3(1− |α|−αM
αR−αM

) αM ≤ |α| ≤ αR

0.8− |α|−αMk
2(αM−αMk)

αMk ≤ |α| < αM

1− |α|
5αMk

0 ≤ |α| < αMk

(9)

αR is the maximum search angle of the local radar, αM is the maximum attack angle of the local
missile, αMk is the maximum angle of the non-escape zone of the local missile.

2. Energy factor

In the air confrontation process, the higher the energy of the fighter, the stronger the attacking
ability of the launched missile, and the greater the threat to the enemy aircraft. The energy here is
mainly composed of kinetic energy, according to the kinetic energy formula, which is simplified as
follows:

E =
v2

2g
(10)

v is the speed of the local aircraft, g is the gravitational acceleration, and weight can be ignored
considering the particle model.
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Based on this, build the native energy threat factor:

Tthr_E =


1, E

ET
≥ 2

0.52− E
ET , 0.5 ≤ E

ET
< 2

E
2ET

, E
ET

< 0.5

(11)

E is the energy of the aircraft and ET is the enemy aircraft’s energy.

3. Distance factor

The distance threat factor is constructed based on the distance between the enemy and the enemy
and the performance of the local radar and missile:

Tthr_d =



0 d ≥ DR

0.5e−
d−DMmax

DR−DMmax DMmax ≤ d < DR

2
− d−DMkmax

DMmax−DMkmax DMkmax ≤ d < DMmax

1 DMkmin ≤ d < DMkmax

2
− d−DMkmin

10−DMkmin 10 ≤ d < DMkmin

0 d < 10

(12)

DR is the maximum search distance of the local radar, DMmax is the maximum attack distance of
the local missile, DMkmax is the maximum inescapable distance of the local missile, and DMkmin is the
minimum inescapable distance of the local missile.

4. Total attack threat

Considering that the distance factor and the angle factor have a certain coupling relationship,
the total attack threat of the aircraft to the enemy aircraft is:

Tthr = k1 ∗ (Tthr_α)
η1 ∗ (Tthr_d)

η2 + k2 ∗ Tthr_E (13)

k1, k2, η1 and η2 are control parameters, and they meet the following conditions:
0 ≤ η1, η2 ≤ 1, η1 + η2 = 1, 0 ≤ k1, k2 ≤ 1 and k1 + k2 = 1.

2.4.3. Reward and Punishment Signal Synthesis

According to the above-mentioned advantages of the detection capability of the enemy aircraft
and the threat of attack, the total threat of constructing the local aircraft is:

T = (Tdet)
γ1 ∗ (Tthr)

γ2 (14)

The two parameters γ1, γ2 are the index of the local aircraft detection capability and the attack
threat, which determine the importance ratio of the two in the reward and punishment function.
These two values can be obtained empirically.

In the same way, the enemy’s threat to the local aircraft can be found, which is defined as Tt,
and the reward and punishment signals are designed accordingly:

R = T − Tt (15)

R is the relative threat value of the enemy aircraft to the enemy aircraft. When the local threat is
greater than the enemy aircraft threat, the reward is positive, otherwise it is negative.
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3. Markov Decision Process Modeling

The Markov decision process [14] can be represented by a six-tuple 〈S, A, P, R, γ, V〉. The aircraft
constructed in this paper is a model; there is no random item. The element P can be omitted here. At the
same time, the reward and punishment function R has also been designed before. Therefore, in this
section, only state space S, action space A, discount factor γ, and objective function V of MDP [15]
need to be determined.

3.1. Air Confrontation State Space

According to the battlefield geometry map, the battlefield situation can be expressed in 9 quantities:
α, β, d, vr, vb, τr, τb, γr, γb. They respectively indicate the azimuth angle of the enemy aircraft relative
to the aircraft, the angle of entry of the enemy aircraft with respect to the aircraft, the distance between
the two sides, the speed of the aircraft, the speed of the enemy aircraft, the inclination angle of the
local aircraft, the inclination angle of the enemy aircraft track, and the present aircraft track roll angle
and enemy aircraft track roll angle. Considering whether the enemy aircraft is located in the local
radar detection range, the accuracy of the enemy aircraft information obtained by the aircraft is not the
same, so a confidence factor c (confidence) is added to indicate the accuracy of the enemy information.
The larger c, the more accurate the information. It meets the conditions: 0 ≤ c ≤ 1.

The air confrontation state can be represented by a 10-dimensional vector:

s = (α, β, d, vr, vb, τr, τb, γr, γb, c) (16)

3.2. Maneuvering Decision Action Space

In the over-the-horizon air confrontation maneuver decision problem, establishing a reasonable
maneuver library is the key to air confrontation intelligent decision-making [16]. Generally, air
confrontation maneuver library design is divided into two types: One is the “25 typical tactical actions”
based on the classic tactics of pilots in air confrontation, including straight-flat, fixed-height, slow-speed
Yo-Yo; The other is a “basic manipulation action library” based on common air confrontation control
methods, including maximum acceleration/deceleration, maximum load climb/deep, maximum load
left/right turn, stable flight, etc.

As shown in Figure 6, the air confrontation maneuver library is built according to the “Basic
Manipulation Action Library”, including nine maneuver directions: left climb, climb, right climb,
horizontal left turn, horizontal forward fly, horizontal right turn, left dive, dive, and right dive. In this
paper, assuming that both sides move on a horizontal plane, there are only three optional actions:
horizontal left turn, horizontal forward fly, and horizontal right turn. In these three directions, it can
be divided according to the change of speed: increase, hold and decrease. Therefore, there are a total
of nine optional maneuvers, that is |A| = 9.
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Figure 6. Maneuver direction schematic.

According to the previous description of the aircraft model, the motion of the aircraft is mainly
controlled by the three quantities of nx, n f and γx, which respectively represent tangential overload,
normal overload, and track roll angle. nx is used to control speed, n f and γx are used to control speed
direction. According to these three quantities, action space A can be defined as follows (Table 4):

Table 4. Action collection.

Action γx, nx, nf Speed Direction Speed Size

a1 (−1, −1, 0) turn left horizontally Decrease
a2 (−1, 0, 0) turn left horizontally Maintain
a3 (−1, 1, 0) turn left horizontally Increase
a4 (0, −1, 0) fly forward horizontally Decrease
a5 (0, 0, 0) fly forward horizontally Maintain
a6 (0, 1, 0) fly forward horizontally Increase
a7 (1, −1, 0) turn right horizontally Decrease
a8 (1, 0, 0) turn right horizontally Maintain
a9 (1, 1, 0) turn right horizontally Increase

3.3. Discount Factor and Objective Function

In the application of reinforcement learning, the discount factor has two main functions: (1) the reward
and punishment signal decays with time, indicating that it is less important in the far-away time;
(2) it can prevent accumulation due to the excessive length of the episode. The reward is too large,
and the cumulative reward value can be bounded by the attenuation factor. It is often set to 0.9, so this
article also follows this setting.

The optimization objective function uses a state limited discount type objective function, in which
it estimates the function V only based on the reward value of the state of the next n moments at the
current moment:

Vπ(st) = Eπ(R(st)) = Eπ(
n−1

∑
k=0

γkrt+k) (17)

4. Heuristic Q-Network

In view of the over-the-horizon air confrontation maneuver decision problem, this paper adopts
an indirect strategy, which is to generate a strategy by obtaining a behavior value function Q(s, a).
For the decision-making of maneuvering, this paper also uses the Q-Network algorithm [17].
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The reinforcement learning algorithm [18] solves the strategy by interacting with the environment,
which is a process of sensing the unknown environment and learning related knowledge. According
to the utilization of current knowledge, the learning process of the algorithm can be divided into
two kinds of behaviors: exploration and exploitation. Exploitation is based on the currently learned
strategy, which enables the agent to obtain many rewards. In addition, exploration is to try new
actions in order to find better strategies to get more rewards in the future. In the process of solving
practical problems, it is necessary to find a suitable compromise between exploitation and exploration,
which will make the algorithm more efficient.

The often-used exploitation strategy is a strategy, which can be expressed as follows (Algorithm 1):

Algorithm 1. ε− greedy strategy.

Input: control parameter ε

Process:
1: if random() < ε

2: action←random from set A
3: else
4: action←argmax

a
Q(s, a)

5: end if

Under the exploration strategy of ε− greedy, the algorithm can converge to an effective strategy
through repeated training, but this way of exploring is very inefficient, because in the process of
exploration, it randomly selects an action from the action set each time. The randomly selected actions
are often useless, which leads to a lot of invalid exploration.

For the over-the-horizon air confrontation maneuver decision problem, we can introduce and
use expert knowledge as a heuristic signal to guide the exploration process. This algorithm is called
Heuristic Q-Network, which is shown as follows(Algorithm 2):

Algorithm 2. The exploration process of heuristic Q-Network.

Input: control parameter ε

Process:
1: if random() < ε

2: action← heuristic_strategy(s)
3: else
4: action←argmax

a
Q(s, a)

5: end if

5. Air Confrontation Strategy Learning

For the two-dimensional over-the-horizon air confrontation problem, according to the previous
MDP model, heuristic Q-Network is used. The Q-Network structure used in this paper is an MLP with
two hidden layers, which is shown in Figure 7. Its input is the air confrontation states, and the output
is the behavior value function Q(s, ai) corresponding to nine maneuvers. The number of hidden layer
nodes can be selected by contrast experiment. The number of nodes in the network hidden layer is
determined by experiments—64 in the first hidden layer and 128 in the second layer.
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The blue curve indicates the exploration strategy of ε− greedy, and the orange curve indicates the
heuristic + random exploration strategy. It can be slightly seen that the heuristic search strategy can
obtain a higher expected score, which further validates the effectiveness of the heuristic Q-Network.

6. Simulation Result Verification

The heuristic Q-Network learning strategy is used in air confrontation simulation, and several
typical air confrontation cases are selected for analysis. According to the initial air confrontation
situation, the initial state of the local aircraft can be divided into: advantage, balance and disadvantages.

• Advantage

Figure 10 records the changes in the relevant data of the aircraft during the above air confrontation
process, including: the threat capability (Figure 10a), detection capability (Figure 10b), speed
(Figure 10c) and relative advantage of the aircraft to the enemy aircraft (Figure 10d).

As can be seen from Figure 10, when the local aircraft is at an advantage, the local aircraft further
increases its advantages from several aspects. In Figure 10a, the local aircraft increases the azimuth
threat advantage of the enemy aircraft by changing its own heading, changing the speed to increase the
energy advantage of the enemy aircraft, and reducing the distance between the two sides to increase
the distance threat advantage. Through these three factors, the overall threat capability of the aircraft to
the enemy aircraft is greatly enhanced. In Figure 10b, by changing the heading to increase the azimuth
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detection advantage and the entry angle detection advantage of the enemy aircraft, by narrowing
the distance between the two sides to increase the distance detection advantage, the three factors
can improve the comprehensive detection capability of the aircraft to the enemy aircraft. As shown
in Figure 10d, the overall relative advantage of the aircraft against the enemy aircraft is on the rise.
The fluctuation is due to the change of the enemy’s entry angle, which causes the oscillation of the
entry angle. This factor is difficult to control for the aircraft. The heading has a greater impact, and the
local aircraft mainly enhances the angle advantage by changing the azimuth.

Figure 9 shows the air confrontation process when the unit is initially in an advantageous position,
where the unit is indicated in red, and the enemy aircraft is shown in blue.
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• Balance

Figure 11 shows the air confrontation process when the unit is initially in balance. The unit is
indicated in red and the enemy aircraft is shown in blue.

Figure 12 shows the data changes of the local aircraft during the above air confrontation.
Figure 12a shows changes in threat capabilities and comprehensive threat capabilities in all aspects,
Figure 12b shows changes in detection capabilities and comprehensive detection capabilities,
and Figure 12c shows changes in local speed. Figure 12d shows the overall advantage of the local
aircraft relative to the enemy aircraft changes; from the figure, it can be seen that the initial relative
advantage is zero, and the local aircraft, through a series of maneuvering decisions, can improve the
relative advantage, so that it is in a higher position.
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• Disadvantage

Figure 13 shows the air confrontation process when the unit is initially at a disadvantage. The unit
is indicated in red and the enemy aircraft is shown in blue.

Figure 14 shows the data changes of the local aircraft during the above air confrontation.
Figure 14a,b respectively show the changes in the threat capability and detection capability of the local
aircraft to the enemy aircraft. Although there are some fluctuations, the overall trend is correct. And
Figure 14c shows changes in local speed. It can also be seen from Figure 14d that the overall advantage
of the local aircraft relative to the enemy aircraft increases from the initial negative value to a positive
value, and there are some oscillations in the middle, but in the end, it can be stably maintained at a
positive value, that is, in an advantageous position.
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• Other cases

In order to further demonstrate the air confrontation maneuver strategy learned through training,
this paper presents a two-dimensional air confrontation simulation process under different initial
conditions. As shown in Figure 15, the local aircraft can make better maneuvering decisions in the
battle between the two sides and gain a greater advantage in confrontation.

 

Figure 15. Other cases of 2D air confrontation.

7. Conclusions

In the process of over-the-horizon air confrontation, automated and reasonable maneuver
decision-making is the premise of independent decision-making such as weapon attack, sensor use,
electronic countermeasures, etc. It is accompanied by the entire air confrontation process and is
an extremely important part of the automated air confrontation system/air confrontation assisted
decision-making. This paper mainly studies the maneuvering decision-making method of intelligent
fighters in this environment based on the single-to-single air confrontation in super-horizon air
confrontation. The maneuvering decision algorithm based on reinforcement learning realizes the
self-learning of the air confrontation maneuver strategy, and finally helps the fighters make reasonable
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maneuver decisions independently under different air confrontation situations. However, due to time
and condition constraints, this work needs further research. For example, height information can be
added to make the air confrontation more realistic, and the air confrontation training environment and
enemy aircraft maneuver strategy need to be further improved.
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