
electronics

Article

Real-Time Road Lane Detection in Urban Areas Using
LiDAR Data

Jiyoung Jung 1 ID and Sung-Ho Bae 2,* ID

1 Department of Software Convergence, Kyung Hee University, Yongin 17104, Korea; jiyoung.jung@khu.ac.kr
2 Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, Korea
* Correspondence: shbae@khu.ac.kr; Tel.: +82-31-201-2593

Received: 6 September 2018; Accepted: 24 October 2018 ; Published: 26 October 2018
����������
�������

Abstract: The generation of digital maps with lane-level resolution is rapidly becoming a necessity,
as semi- or fully-autonomous driving vehicles are now commercially available. In this paper,
we present a practical real-time working prototype for road lane detection using LiDAR data,
which can be further extended to automatic lane-level map generation. Conventional lane detection
methods are limited to simple road conditions and are not suitable for complex urban roads
with various road signs on the ground. Given a 3D point cloud scanned by a 3D LiDAR sensor,
we categorized the points of the drivable region and distinguished the points of the road signs on the
ground. Then, we developed an expectation-maximization method to detect parallel lines and update
the 3D line parameters in real time, as the probe vehicle equipped with the LiDAR sensor moved
forward. The detected and recorded line parameters were integrated to build a lane-level digital map
with the help of a GPS/INS sensor. The proposed system was tested to generate accurate lane-level
maps of two complex urban routes. The experimental results showed that the proposed system was
fast and practical in terms of effectively detecting road lines and generating lane-level maps.

Keywords: road lane detection; map generation; driving assistance; autonomous driving

1. Introduction

Autonomous driving vehicles with various levels of automation from semi-autonomous driving
technologies such as adaptive cruise control (ACC) and lane-keeping assist systems (LKAS) to
fully-autonomous driving vehicles are now commercially available on the market. While conventional
digital maps for car navigation are made for human drivers and have road-level resolution,
map providers are now focusing on generating digital maps with a relatively high resolution.
The presence of lane-level digital maps reduces the burden of capacity and eventually the cost of each
autonomous driving vehicle.

Using conventional digital maps with road-level resolution, an individual autonomous driving
vehicle carries excessive burden to fully understand its surroundings to make a decision. For example,
if the vehicle has to turn right at the next junction, it needs to figure out the total number of lanes on
the road and the lane that the vehicle is currently in in order to move to the rightmost lane safely before
reaching the junction. However, if a lane-level map were provided to the vehicle, the path planning
process would become considerably simpler and safer so that the individual vehicle would be less
obligated to be equipped with very expensive sensors and processors.

Unlike the road-level digital map generation process, a large part of which is automated,
the process of generating a lane-level digital map usually requires manual work at many stages.
Lane detection on an urban road is more difficult because of multiple lanes, diverse road signs on the
ground and complex lane variations at the junctions.
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In the case of road-level map generation, it is important to reflect the direction and the curvature
of the road accurately, as well as the existence of ramps and overpasses. Lane-level map generation
requires more details; therefore, the individual lanes must be correctly acquired via accurate road line
detection followed by appropriate parameterization. If the road is simple and has only a couple of
lanes with no road signs on the ground other than the road lines, the generation of a road-level map
and a lane-level map will not be very different. However, a complex boulevard in an urban area has
multiple lanes and various road signs mixed with road lines. In this case, fast and accurate road line
detection becomes an important issue in lane-level map generation.

Many of the conventional road line detection methods using LiDAR data about a decade ago
focused on detecting only two lines on each side of the vehicle, in order to reduce the unintended lane
departures of an autonomous driving vehicle [1,2]. Kammel and Pitzer [3] proposed a LiDAR-based
lane marker detection method, but the purpose of the algorithm was the robust estimation and
correction of an offset between the provided map and the real lane on which the autonomous vehicle
was traveling. As the road was rather simple, lane markers were assumed to be either the painted
road lines or the curbs with some height. Jordan et al. [4] compared LiDAR-based and camera-based
lane detection methods and summarized that the LiDAR-based methods detect an increase in the
reflectivity of the lane markings when compared to the road surface reflectivity.

More recently, Hata and Wolf [5] detected road markings and curbs by using a 32-channel LiDAR,
but the method was tested on a simple two-lane ring track, while road markings other than lines were
not distinguished because the purpose of the algorithm was the localization of the vehicle. Yan et al. [6]
proposed a mobile mapping system using LiDAR. All road markings including the road lines were
precisely extracted to generate a high-definition point-cloud map; however, the markings were not
categorized, and the lines were not parameterized for use as a lane-level digital map.

In this paper, we present a practical real-time working prototype for road lane detection in an
urban area using LiDAR data. The proposed method is a fully-automated process to detect road lanes
on complex urban roads with multiple lanes and diverse road signs on the ground such as arrows with
different directions and stop signs. The following are the main contributions of this paper:

• Multiple lanes are detected simultaneously including the lane on which the vehicle is currently.
• Road lines are distinguished from other road markings on complex urban roads.
• Road lines are represented as uniformly-distributed 3D points to be easily used for further

applications, such as road curvature calculation and lane-level map generation.
• Lane-level digital map generation by accumulating the detected road lanes is presented as an

application of the proposed method.

The rest of this paper is organized as follows: Related works are introduced in Section 2.
The proposed method is detailed in Section 3. The experimental results are shown in Section 4,
and Section 5 discusses the limitations and the future work of the proposed method and concludes the
paper.

2. Related Work

Several methods for road map generation have been developed thus far. One of the traditional
methods is to use satellite images or aerial images [7–9]. One satellite/aerial image can cover a
large area, and the road map can be generated automatically by using adequate image processing.
However, up-to-date satellite images are not always available to the general public, and aerial images
are expensive to update. Even though the camera resolution is rapidly increasing, it is still too limited
to facilitate the generation of a lane-level map from satellite/aerial images. Moreover, as the images
are two-dimensional, it is not possible to build a 3D map out of satellite/aerial images.

To build a road map without access to the satellite data or an airplane, in many studies, researchers
have installed a GPS sensor on a probe vehicle and recorded its positioning information as the vehicle
moves on the road [10–14]. This is an intuitive method of building a road map, and the accuracy of
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the resulting road map will depend on the accuracy of the GPS sensor. In contrast, as the GPS sensor
records only the position of the vehicle, the vehicle has to pass multiple lanes one by one to generate a
lane-level map. The generation of a lane-level map for a route takes a considerable amount of time and
effort if the route contains many lanes. Moreover, it is difficult for a human driver to drive the vehicle
on the exact center of the lane as the GPS sensor records its positions.

To resolve these shortcomings, map providers nowadays install various perception sensors on the
map-making vehicles. The most popular sensor is a camera [15,16]. The use of cameras can provide the
information of multiple lanes from a single frontal or an all-around view of the vehicle. The vehicle is
no longer forced to be driven on the center of the lane if the GPS sensor and the cameras are calibrated.
A 2D or a 3D LiDAR sensor provides the 3D information of its surroundings in real time. Although 3D
information can be obtained using multiple cameras, the use of a 3D LiDAR sensor is increasing with a
significant decrease in the cost of the sensor [16–20].

After processing the acquired data, various methods can be used to represent the generated
lane-level road maps. Several researchers have studied how to represent road maps efficiently
while maintaining their high usability in practical applications such as autonomous driving. Several
studies have been conducted on the representation of a lane-level road map using polygons [21–24],
clothoids [14,25], splines [26–29] and piecewise polynomials [30].

Instead of a particular representation, we simply represent the detected lines by using densely-
and uniformly-distributed 3D points along the detected road lines. As lane-level maps used for
autonomous driving do not have a global standard to represent the road lines, there are pros and
cons to choosing any of the representations mentioned above, and it is inevitable to need to transform
a certain representation to another to calculate road characteristics such as the curvature or the
tangent of the road. Therefore, because of the computational advantage with little burden for storage,
we represent the detected road lines using densely- and uniformly-distributed 3D points along the
line, which can easily be processed to any other representations for further application.

Finally, it is worth mentioning a few more studies on road detection using LiDAR in recent years.
Clode et al. [31] presented a method for automatic road detection from airborne laser scanner (ALS)
data. The test data were collected from Fairfield in Sydney, Australia, with an approximate point
density of one point per 1.3 m2 in the area of 2 km × 2 km. The method classified road or non-road
using height and intensity information of ALS data. Later, Clode et al. [32] proposed a more mature
method for road/non-road classification using the same dataset, including road vectorization with
appropriate parameters such as centerline, orientation and width.

Zhang [33] presented road and road edge (curb) detection method using a 2D LiDAR sensor,
which was demonstrated in a prototype vehicle in the DARPA Urban Challenge 2007. A forward
down-looking 2D LiDAR sensor was equipped on the front-top of the vehicle, and the elevation
information of the range data was used to detect the lowest smooth surface as the drivable region and
curbs as road edges. Han et al. [34] presented a road boundary and obstacle detection method for the
2010 Autonomous Vehicle Competition in Korea using a downward-looking 2D LiDAR. The method
detected drivable region and obstacles on the road boundary such as curbs, bushes, traffic cones and
vehicles. Both methods [33,34] were successfully demonstrated through competition participation;
however, the road condition in the test fields was limited to two lanes, and the road lanes were not
detected. Yuan et al. [35] presented a road detection and corner extraction method using a 3D LiDAR
for robot navigation on the pavement. The test fields were narrow sidewalks surrounded by bushes or
buildings, which were distinguished by corner extraction from range data.

Fernandes et al. [36] proposed a road detection method using 3D LiDAR data. The authors
projected 3D LiDAR points on a 2D reference image plane and upsampled the points to generate
dense height maps. The method detected road surface, which is the drivable region, from the
dense height maps surrounded by road boundaries with elevation such as curbs or parked vehicles.
Caltagirone et al. [37] proposed a 3D LiDAR-based road detection method using fully-convolutional
neural networks (FCN). The FCN was designed for a pixel-wise semantic segmentation task in the point
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cloud top-view images. The proposed system carried out road segmentation in real time. While both
methods [36,37] were successfully tested using the KITTI road benchmark [38], only the drivable
region was detected, and road lanes were not distinguished.

3. Proposed System

The proposed method detects the drivable region and road lines from LiDAR data in stages.
The LiDAR data are assumed to be scanned from a spinning multi-channel LiDAR sensor installed on
top of a vehicle while driving on the urban road.

3.1. Overview

A spinning multi-channel LiDAR sensor spins 5–20 times in a second to densely scan its
surroundings with the same number of scanlines as the number of channels. Usually, it scans up
to 100 m, which is sufficiently far for a moving vehicle to detect any object in advance and take
appropriate action in time. However, a sensor with less than 16 channels may have limited vertical
resolution to recognize an object located more than 30 m away.

As we aimed to detect road lines on the ground rather than vertical obstacles by using LiDAR
data, we were less obligated to process LiDAR points far away from the sensor. Therefore, it was
reasonable to exclude the LiDAR points scanned far away from the sensor with limited resolution.
The proposed strategy processed the LiDAR points inside a certain perimeter with an appropriate
vertical resolution to be accurately categorized. The detected road lines were later accumulated with
the help of a GPS/INS sensor for digital map generation.

We processed the three stages of LiDAR point categorization for road lane detection as illustrated
in Figure 1. First, we differentiated the LiDAR points of the drivable region on the ground from the
points scanned inside a certain perimeter from the sensor. We assumed that the vehicle was currently
on the road and examined the vertical slope between the LiDAR points of the adjacent channels in the
radial direction. If the slope was smaller than a certain threshold, the point was categorized as the
drivable region until an obstacle was faced. Then, among the points categorized as the drivable region,
we distinguished the points of road marks by their intensity. A LiDAR point carried an intensity value,
as well as its 3D location, which depended on the reflexibility of the scanned surface. The paint used
for the road marks usually had higher reflexibility than the asphalt or cement on the road. Therefore,
the points of the road marks could easily be categorized from the points of the drivable region by using
the intensity.

Figure 1. LiDAR point categorization.

The final stage of distinguishing road lines from the points categorized as road marks was a
difficult problem. Previous works circumvented the issue by detecting the road lines of the simple
roads having at most two lanes with few road signs on the ground. In this case, road line detection
became as simple as categorizing the LiDAR points with a high intensity from the points of the drivable
region. However, diverse road marks such as arrows, stop signs and the names of different destinations
of individual lanes frequently appeared on the urban roads. It was difficult to distinguish them from
the road lines because road marks and road lines usually had the same reflexibility to the LiDAR scan.
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3.2. LiDAR Point Categorization

A multi-channel LiDAR sensor carries multiple laser scanners, as many as the number of its
channels. They are usually installed vertically inside the sensor. Each laser scanner emits and receives
light to measure the distance for each channel. In order to scan the entire surroundings of the sensor,
a mirror inside the sensor spins rapidly to scan 360◦.

We categorized the LiDAR points inside a certain perimeter from the sensor as the drivable region
by calculating the slope between the points in the radial direction from the sensor. When a spinning
multi-channel LiDAR horizontally scanned 360◦ with multiple laser emitters vertically installed on
the sensor, the points of multiple channels scanned at the same instance formed a ray from the sensor.
For example, Velodyne HDL-32E horizontally scanned 360◦ in 0.1 s with 32 lasers. Each channel
scanned approximately 2100 points per spin; therefore, approximately six points were densely
positioned in each degree angle. Furthermore, 32 points scanned at the same time formed a ray
from the sensor. If we considered the point nearest to the sensor as Channel Number 0 and the the
point furthest from the sensor as Channel Number 31, we could calculate the slope between two points
of the adjacent channels from Channels 0–31 as follows:

s =
∆z√

∆x2 + ∆y2
=

zb − za√
(xb − xa)2 + (yb − ya)2

(1)

where a and b indicate the adjacent channels and x, y and z indicate the 3D coordinates of each
LiDAR point in the right, forward and up directions from the sensor, respectively. When the slope
s of the ground became greater than a certain threshold (i.e., we empirically set the value to 0.15),
we assumed that there was a vertical obstacle on the ground and categorized the points on the same
ray beyond this channel as not drivable.

This method effectively detected sudden vertical slope changes on the road such as the curb
between the road and the sidewalk or vertical obstacles such as the median strip, beacons or other
vehicles. The method successfully categorized speed bumps or small potholes as the drivable regions.
An example of drivable region detection is shown in Figure 2. Gray points indicate the given 3D
LiDAR points, whereas blue points indicate the points categorized as the drivable region.

Figure 2. Example of LiDAR point categorization and the road line detection result. Blue points
indicate the drivable region, yellow points the road marks including road lines and the magenta lines
the detected road lines.

Once the points of the drivable region were discriminated, we distinguished the points of road
marks by using the LiDAR point intensity. The signs and lines on the road were usually painted with
conspicuous colors such as white or yellow. The intensity of the points scanned at the road marks was
easily distinguishable from the intensity of the points scanned at the asphalt or cement on the ground.
The LiDAR point intensity of the road marks was usually considerably higher. In Figure 2, the yellow
points indicate the detected road marks on the ground.
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3.3. Road Line Detection

To detect the road lines out of various road marks having similar LiDAR intensities, we searched
for a set of parallel lines separated by the interval of the lane width. The lane width was initially set as
3.4 m, but the value was updated during the detection process.

Given a set of LiDAR points categorized as road marks, we aimed to estimate L sets of line
parameters. We modeled each road line in 3D as:

[x, y, z]T = tu + v0 = t[ux, uy, uz]
T + [x0, y0, z0]

T , (2)

where u is a vector parallel to the line, v0 is a point on the line and t is a real number.
For initialization, we initialized K ≥ 2L− 1 sets of lines with the interval of half of the initial lane

width to separate the road marks from the road lines effectively, where K is the number of candidates
to detect L lines. Assuming that the location of the sensor was the origin and the sensor was facing
front, all the line parameters were initialized as follows:

ux = 0, uy = 1, uz = 0, y0 = 0, z0 = −2.0. (3)

This initialization indicates that all the lines are parallel to the y-axis and lie on the ground two
meters below the sensor. Note that the x, y, and z axes point in the right, forward and up directions,
respectively. The x0 values for the lines were initialized to be separated with intervals of 0.5 w, where
w is the initial lane width set as 3.4.

After initialization, we updated the x0 value of each line with the assumption that the LiDAR
points for the line were stably found when the vehicle moved forward, whereas the points for the other
road marks were discontinued. We designed an iterative expectation-maximization (EM) algorithm
to determine reliable sets of line parameters. For each iteration, we assigned each LiDAR point to its
nearest line by calculating the point-line distance. After the assignment, we updated x0 for each line to
be the average of the x-coordinate values of the assigned points. This process was very simple and fast.
We repeated the process 100 times for each spin of the LiDAR.

Finally, we selected L reliable sets of line parameters out of the K ≥ 2L− 1 updated sets after
the EM-algorithm. For each line k, we calculated the number of assigned points for each line Nk and
the standard deviation σk of the y-coordinate values of the assigned points. σk showed the level of
distribution of the points in the direction of the y-axis. σk of the cluster of a line tended to be larger
than that of the cluster of other road marks. From the cluster having the largest Nk, we selected the
line parameters as a reliable set if σk was larger than a certain threshold. As the line was expected to
be continued from the last spin, we also checked if the current line was continued from one of the
detected lines from the last spin. That is, we calculated the minimum difference between x0k with the
x0 values of the detected lines from the last spin and considered it as the same line when the minimum
difference was below a certain threshold. After selecting L sets of reliable line parameters, we ended
the line selection process.

As a result, the detected L sets of line parameters were updated at every spin of the LiDAR.
The lines were stably detected, while the vehicle changed lanes or went through curved roads.
Algorithm 1 summarizes the proposed road line detection process.

3.4. Lane-Level Digital Map Generation

Nowadays, most of the map-making cars are equipped with a GPS/INS sensor, which provides
the current GPS location of the vehicle, as well as the rotation matrix from the sensor coordinate to the
world coordinate. The world coordinate generally refers to the north-east-down (NED) coordinate.
Provided that the GPS/INS sensor was calibrated with the LiDAR sensor, we transferred the estimated
parameter x0 of the detected road lines to the world coordinates for each spin of the LiDAR.
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We used the current position in terms of the latitude and longitude along with the altitude
provided by the GPS/INS sensor, as well as the rotation matrix that transformed the sensor coordinate
frame to the local NED coordinate in real time. No additional method was used to post-process the
positioning data. The latitude and longitude values were converted to the UTM coordinate to obtain
the position values in meters. As the estimated parameter x0 was the x-coordinate value in the sensor
coordinate frame, it was transformed to a position in the world coordinates by multiplying the rotation
matrix and then adding the current sensor position in UTM.

Algorithm 1: Road line detection.
Data: LiDAR point cloud of a single spin categorized as road marks: P = {xp, yp, zp}
Result: L sets of line parameters {ux, uy, uz, x0, y0, z0}

1 /* Initialization */
2 for k← 1 to K ≥ 2L− 1 do
3 Initialize parallel line parameters as
4 uxk ← 0, uyk ← 1.0, uzk ← 0,
5 x0k ← xle f tmost + 0.5wk, y0k ← 0, z0k ← −2.0
6 where w is the width of the lane
7 end

8 /* EM-like algorithm to estimate line parameters */
9 for i← 1 to 100 do

10 Expectation: Assign each points to the nearest line by calculating point-line distance
11 Maximization: Update x0k for each line as ∑Nk

xp/Nk

12 where Nk is the number of points assigned to line k and
13 ∑Nk

xp is the sum of the x-coordinate of the assigned Nk points.
14 end

15 /* Line selection */
16 for k← 1 to K do
17 Calculate the final cluster size Nk for each line
18 Calculate the standard deviation σk of the y-coordinate of the assigned Nk points as

19 σk =

√
∑Nk

(yp−ȳp)2

Nk−1

20 end
21 Set i = 0
22 for k← in the order of having largest Nk do
23 if σk > 2.5 and ∆x0 < 0.4 then
24 Select k as a reliable set of line parameters
25 i← i + 1
26 end
27 if i == L then
28 break;
29 end
30 end

We filtered out the duplicate dots, which were estimated while the vehicle stopped or moved
very slowly. Then, we simply connected the dots to build the lane-level digital map. For qualitative
evaluation, we overlapped the final lane-level digital map with the satellite images.
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4. Results

4.1. Data Acquisition

The data to evaluate the proposed road lane detection method were collected using a vehicle
equipped with a 32-channel 3D LiDAR (Velodyne HDR-32E). For the lane-level map generation,
we used a GPS/INS sensor (Ekinox-D). Velodyne HDR-32E has 32 laser scanners with a horizontal
field-of-view of 360◦ a vertical field-of-view of 40◦and an angular resolution of 1.33◦. We set the
rotation rate to be 10 Hz and gathered approximately 69,000 points per spin in 0.1 s. Ekinox-D is an
inertial navigation system with an integrated dual antenna GNSS receiver that provides highly accurate
6D vehicle poses. It combines an inertial measurement unit (IMU) and runs an enhanced on-board
extended Kalman filter (EKF) to fuse real-time inertial data with internal GNSS information. The sensor
embeds a GNSS receiver, capable of centimeter-scale accuracy by using an RTK solution [39,40].
The vehicle was driven at a normal speed, from 0–60 km/h, depending on the traffic situation.
All experiments were carried out on a PC with a 3.40-GHz i7-6800K CPU.

The dataset was collected along two different routes in the cities of Seongnam and Incheon,
South Korea, which are the 10th and the third largest cities in the country with a population of nearly
one million and three million, respectively. Route 1 is an expressway with sidewalks in the city of
Seongnam. It is approximately 7 km in round trip and contains junctions, crosswalks, ramps and a
tunnel. The number of lanes changes from one to three on one side of the road. Because of a wide
separation area at the center of the road, we only processed one side of the road of the current driving
direction first and then processed the other side on the way back. Route 2 travels along the major
boulevard in the city of Incheon with a length of approximately 2 km in round trip. The route contains
junctions, crosswalks and various road marks on the ground.

4.2. Qualitative Results

Both Route 1 and Route 2 were modeled using densely- and uniformly-distributed 3D points on
the road lines. Figure 3 shows three different examples of drivable region categorization and road
line detection with two or three lanes on the road in the presence of ramps or junctions. Gray points
indicate the given 3D point cloud scanned by a 3D LiDAR; blue points indicate the drivable region;
yellow points indicate the road marks on the ground; and magenta lines are the final results of the
road line detection at each spin of the LiDAR sensor.

The detected road line was parameterized, and its parameters were recorded as a 3D point on
the line in the NED coordinate with the help of a GPS/INS sensor. Figure 4 shows the result of the
3D lane-level map of Route 1 and Route 2 generated by connecting these 3D points, as well as the
corresponding satellite images for a reference. In Figure 4, pink and magenta lines indicate three-lane
regions in opposite directions. Orange lines indicate two-lane regions, and cyan lines indicate one-lane
regions where the vehicle was driving on the ramp to get off or to get on the main driveway. The red
line is an off-road region with no official road line on the ground. We added the red line manually
just to show the entire route. The disconnected parts indicate junctions with crosswalks and stop lines.
As the road lines were disconnected at the junctions, the resulting map lines were disconnected, as well.

As it was difficult to evaluate the accuracy of the generated lane-level map quantitatively,
we overlaid the resulting lane-level map on the satellite image provided by Naver Map [41] for the
qualitative evaluation. Figures 5 and 6 show the lane-level maps overlapped with the corresponding
satellite images of Route 1 and Route 2 in magnified views, respectively. The left column shows the
satellite images, the middle column the resulting lane-level map overlapped with the satellite images
and the right column the existing road-level map provided by Naver Map [41]. We observed that the
detected road lanes of the generated map were accurately synchronized with the road lanes in the
satellite images.
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Figure 3. Three different examples of drivable region categorization and road line detection with two
or three lanes on the road in the presence of ramps on the right or left (left, middle) and at the junction
(right). The figures below show the satellite images of the same scene for better understanding.

Figure 4. Result of the lane-level digital map and the corresponding satellite images of Route 1 (left)
and Route 2 (right). Magnified views are provided below.



Electronics 2018, 7, 276 10 of 14

Figure 5. Detected road lanes on Route 1 are accumulated to build a lane-level digital map with the
help of a GPS/INS sensor. The left column shows the satellite images, the middle column the resulting
lane-level map overlapped with the satellite images and the right column the existing road-level map
provided by Naver Map [41].

Figure 6. More results of the detected road lanes on Route 2 are accumulated to generate a lane-level
digital map with the help of a GPS/INS sensor. The left column shows the satellite images, the middle
column the resulting lane-level map overlapped with the satellite images and the right column the
existing road-level map provided by Naver Map [41].

A comparison of the overall routes and the corresponding satellite images in Figure 4 revealed
that the lanes were accurately detected and well represented by connecting the 3D points obtained
from the line parameters. Although Route 2 was short and looked simple, it was a challenging route
with heavy traffic and complex road signs on the ground. Moreover, many tall buildings interrupted
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the GPS signals and made it more difficult to generate a lane-level map without the use of perception
sensors. Note that the resulting lanes were accurately overlapped with the road lines in the satellite
images, whereas the existing road-level map roughly represented the wide road in the macroscale,
as shown in Figure 6.

Table 1. Consistency evaluation with the commercial road-level map [41].

Route 1 Mean (m) St.Dev. (m) Route 2 Mean (m) St.Dev. (m)
Line 1 (West) 4.724 1.684 Line 1 (Northwest) 7.621 0.079
Line 2 (West) 1.332 1.692 Line 2 (Northwest) 4.226 0.083
Line 3 (West) 2.089 1.685 Line 3 (Northwest) 0.824 0.078
Line 4 (West) 4.717 1.693 Line 4 (Northwest) 2.572 0.075
Line 1 (East) 6.264 1.676 Line 1 (Southeast) 4.900 0.079
Line 2 (East) 2.868 1.674 Line 2 (Southeast) 1.491 0.084
Line 3 (East) 0.547 1.690 Line 3 (Southeast) 1.899 0.087
Line 4 (East) 3.933 1.683 Line 4 (Southeast) 5.288 0.084

In order to evaluate the consistency of the detected road lines with the existing road-level map,
we extracted the middle line from the road-level map provided by Naver Map [41] and calculated
the point-line distance from our final 3D point representation of the detected road lines. As our
representation existed for multiple lanes and a road-level map provided only one line, the mean
distance varied for each line, but the standard deviation remained small, which showed that our
result was consistent with the road-level map. The standard deviation for Route 1 was relatively
large because the middle line extracted from the road-level map of Route 1 fluctuated from Line 2 to
Line 3. Route 2 was rather straight, so the middle line of the road-level map of Route 2 was relatively
consistent near Line 3 (towards the northwest) and between Line 2 and Line 3 (towards the southeast).
Therefore, the standard deviation remained very small, less than 10 cm. Note that as the reference
(road-level map) did not provide the ground-truth road line position, Table 1 does not show the
absolute performance of the proposed method, but provides some clues of the consistency of our road
line detection results with the existing road-level map.

5. Discussion and Conclusions

5.1. Limitations and Future Work

There are several limitations to our system, which need to be addressed before a full solution
for the given issue can be developed. The proposed method aimed for lane-level map generation by
using the detected road lines rather than immediate lane keeping during autonomous driving as an
application. Therefore, we did not consider heavy weather conditions, which might degrade the 3D
LiDAR sensor input. When the purpose was mapping, we could simply choose a good weather day
to scan the road, whereas this can be a critical limitation when the method is applied for road lane
detection for a lane keeping system. When used for lane keeping in bad weather, the proposed method
might be simplified to detect only two road lines on each side of the current vehicle, and the input
data could be compensated by other perception sensors, such as cameras.

While it is one of the strengths that the proposed method was tested on complex urban roads,
this can also indicate that the method was difficult to apply to unpaved roads. Roads with drastic
slopes and severe curvatures in mountainous areas could be challenging and might require some
different empirical threshold values for the proposed method.

Finally, while vehicles crossing road lines as they changed lanes during driving were never a
critical problem for the proposed algorithm, it was difficult to detect the road lines beneath the parked
cars on the side, completely obscuring the road lines. As the undetected road line was usually the
rightmost line in this case, this issue could be alleviated by knowing the total number of lines to be
detected beforehand. If we have prior knowledge that there should be another line to be detected,
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we can adjust the algorithm to detect the rightmost line using less input data observed between the
parked cars.

Potential future work would depend on a further application of the proposed road lane detection
method. For example, if we aim to extend the proposed method for use in a lane-keeping assist system
for autonomous driving vehicles, we should focus on improving the detection accuracy of the two lines
on each side of the vehicle under various weather and lighting conditions. To extend the proposed
method toward fully-automated lane-level map generation, we should test the method under various
road conditions, such as unpaved roads, mountainous roads with severe slope and curvature, crowded
urban roads and roads with noisy GPS signals.

5.2. Conclusions

In this paper, we presented a simple and practical real-time working prototype for road lane
detection in an urban area by using 3D LiDAR points. The overall system consisted of two
subsystems, including point categorization and road line detection. Given the 3D LiDAR point
cloud, we categorized the points of the drivable region and distinguished the points of the road
signs on the ground. Then, we presented an expectation-maximization process to detect and update
the 3D line parameters in real time. The detected road lines were represented as densely- and
uniformly-distributed 3D points on the lines with the help of a GPS/INS sensor and integrated to
generate a lane-level digital map. The proposed system was tested to generate the lane-level maps of
two complex urban routes in the cities of Seongnam and Incheon, South Korea. The accuracy of the
resulting lane-level map was evaluated by comparing with the corresponding satellite images.
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The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
LiDAR Light detection and ranging
GPS Global positioning system
INS Inertial navigation system
GNSS Global navigation satellite system
RTK Real-time kinematic
UTM Universal Transverse Mercator
PC Personal computer
CPU Central processing unit
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