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Abstract: This paper addresses the real-time optimization problem of the message-chain structure
to maximize the throughput in data communications based on half-duplex command-response
protocols. This paper proposes a new variant of the particle swarm optimization (PSO) algorithm to
resolve real-time optimization, which is implemented on field programmable gate arrays (FPGA) to
be performed faster in parallel and to avoid the delays caused by other tasks on a central processing
unit. The proposed method was verified by finding the optimal message-chain structure much faster
than the original PSO, as well as reliably with different system and algorithm parameters.
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1. Introduction

Data communications with half-duplex command-response protocols generally consist of a
commander controlling the transmission line and response terminals responding to the commander.
In the MIL-STD-1553B data communication system [1], which is a well-known military communication
platform using a serial data bus, it consists of a bus controller (BC) as the commander and remote
terminals (RTs) as the response terminals. In the physical layer, the properties of the electrical
design inevitably limit the bit rate of the data bus to 1 Mbps. Besides, in the application layer,
since the communication protocol is generally determined based on messages that consist of a set
of words composed of multiple bits [2], it is hard to use the full bandwidth. Therefore, the structure
of message-chains for the BC and the RTs should be carefully determined to maximize the data
throughput with consideration of the limited bit rate and insufficient bandwidth.

Data throughput can be improved by simply increasing the number of messages within a given
transmission duration in the message-chain structure of the BC. However, the excessive increase in the
number of messages with a fixed transmission duration may cause the loss of data in the RTs because
the data in receiving buffers may be rewritten by the currently receiving data before the previously
received data processing is finished. Therefore, to achieve high data throughput without data loss,
the number of messages and the transmission period in the structure of message-chains should be
carefully determined.

Zhang et al. [3] improved the data throughput in MIL-STD-1553B communication systems with a
heuristic algorithm rearranging the components of the command table based on the number of command
or data words. However, they did not consider the processing time in the RT, which affects the reliability
of the data communications. Kim et al. [4] presented and analyzed the whole timing diagram between
the BC and the RT. They found that when multi-message chains and double buffers were used for the
communication system, the data throughput can be improved. However, the message-chain structure
in their approach was empirically determined. One can consider optimization algorithms such as the
least square methods. Recently, sampling-based optimization algorithms, which are particle swarm
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optimization (PSO) [5] and its variants [6–8], have been widely used because of their convenience and
good performance in spite of nonlinear system constraints.

However, optimization algorithms may be faced with much computation time because of a
large number of samples, which means that the computation time should be reduced significantly
to be applied to real-time systems. In this work, the optimization process needs to be conducted
in real-time to find the optimal message-chain structure as fast as possible with different system
parameters. Liu et al. [9] proposed real-time approaches for the PSO applied to identify and cancel the
current harmonics in power systems. However, since their approach was based on the limited number
of particles, it cannot be applied to more complex optimization problems, requiring more number
of particles.

To reduce computation time, the PSO was recently implemented on field-programmable gate
arrays (FPGA) in various fields. Gao et al. [10] proposed an FPGA implementation method of the
PSO to quickly select and update the coefficients of adaptive infinite impulse response (IIR) filters.
In addition, Gupta and Mehra [11] implemented the modified PSO algorithm on an FPGA for fast
unknown system identification, selecting and updating the coefficients of adaptive infinite impulse
response (IIR) filters. Vasumathi and Moorthi [12] developed the hybrid adaptive neural network and
the PSO and implemented it on a Spartan 3E FPGA to accelerate the computation speed for real-time
processing. Morsi et al. [13] implemented the PSO algorithm on an FPGA to quickly compute the
structural similarity (SSIM) index between the target image and the candidate region. They showed
that the results of their implementation, which is a combination of software and hardware, were better
than the results of the software-only implementation. Trimeche et al. [14] implemented the PSO on
FPGA for a multi-input multi-output (MIMO) detection system. Their work was able to reduce the
computational complexity of the maximum likelihood estimation in an MIMO detection system.

This paper proposes a new variant of the PSO for real-time optimization, which is conducted
on FPGA to find the optimal number of messages and the transmission period in the message-chain
structure. The original PSO is modified to be properly implemented on FPGA by synthesizable hardware
description language (HDL) codes. Consequently, the contributions of this paper are as follows.
First, the proposed approach can find the optimal number of messages and the transmission period
without data loss in the structure of message-chains for data communication systems with half-duplex
command-response protocols. Second, the proposed approach can be conducted in real-time, despite
the high computation load of the PSO. To the best of our knowledge, PSO to optimize the message-chain
structure in data communication systems with half-duplex command-response protocols has never
been implemented on FPGA. The main notations used in this paper are summarized in Table 1.

Table 1. The main notations in this paper.

Notation Description

NBC The number of messages in a message chain in the BC
TBC The transmission period of a message chain in the BC
TRT The whole required time in the RT
TW Total writing time for responding messages in the RT
TH Total processing time for the high-priority tasks in the RT

tMG Message gap time in the BC
tP Processing time for the received message in the RT
tI Processing time for an interrupt service routine in the RT

pm
n,i The position of the n-th particle of the m-th group at the i iteration in FRPSO

vm
n,i The velocity of the n-th particle of the m-th group at the i iteration in FRPSO

pgb The global best position throughout all particles in FRPSO
pm

n,pb The personal best position of the n-th particle of the m-th group in FRPSO

This remainder of this paper is organized as follows: Section 2 defines and formulates the
optimization problem of message-chain structures in half-duplex command-response protocols.
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Section 3 describes the proposed approach, which is a real-time PSO algorithm on FPGA. Section 4
gives the evaluation of the performance of the proposed approach with various algorithm parameters
and system conditions. The real-time capability of the proposed approach implemented on FPGA is
then verified by successfully finding the optimal message-chain structure. Finally, Section 5 offers
the conclusions.

2. Optimization Problem of Message-Chain Structures

The formulation of the optimization problem depends on a specific data communication system.
In our previous work [15], for the offline optimization of the MC structure, we analyzed its timing
diagram between the BC and the RT, as shown in Figure 1. At every transmission period (TBC), the BC
transmits an MC, which consists of a certain number of messages, NBC. In each MC, the time assigned
to each message is called the message gap time (tMG), including the inter-message gap time (tIMG),
which separates messages.

The whole required time in the RT (TRT) is analyzed with the following factors: the processing
time for an interrupt service routine (tI) and the received data (tP), the total writing time for responding
to messages (TW), and the total processing time for high-priority tasks (TH). The most important point
in the RT is to design a structure for MC, which can finish the whole processing for the current MC
before receiving the next MC at the same buffer. Since TW is considered to be of two types—tW1 and
tW2, which are the average writing times before and after completing the data reception from the
BC—it can be computed as follows:

TW = NW1tW1NRD + (NBC − NW1)tW2NRD (1)

where NRD is the number of response messages that should be written at the buffers in the RT for each
message from the BC, and NW1 = dtMG(NBC − 1)/ (tP + tW1NRD)e , which is the number of messages
on processing in the RT before completing the data reception from the BC. Then, the total required
time in the RT, TRT, can be obtained as follows:

TRT = NBC(2tI + tP) + 2TH + TW (2)
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To avoid data loss caused by rewriting the buffer containing the current MC by the next MC
transmitted for the same buffer, the relation between TRT and TBC is established as follows:

2TBC > TRT (3)

Additionally, the transmission margin for unexpected situations in the BC, which is the time
margin from the end of the current MC to the beginning of the next MC, is considered as an optimization
constraint because it has been heuristically determined. The additional constraint for the transmission
margin, α, in the BC can be formulated as follows:

NBCtMG ≤ (1− α) TBC (4)

where 0 ≤ α < 1. The larger α means more transmission margin. Finally, the upper limits of TBC and
NBC are determined according to system requirements and applied to the PSO algorithm.

3. Real-Time PSO on FPGA

To resolve the real-time optimization problem, we propose a new FPGA-based real-time PSO
(FRPSO), which is a hardware-friendly variant of the original PSO using the hardware resources
of FPGAs for parallel processing. The main differences between the original PSO and FRPSO are
summarized in Table 2. The main advantage of FRPSO is the parallelizability with look-up tables
(LUTs), which is more flexible and scalable than CPU cores.

3.1. Particle and Swarm Definition

In FRPSO, the particle and swarm are newly defined for efficient FPGA implementation for
fixed-point addition, subtraction, multiplication, and division. In addition, the particle swarm with
NP particles is rearranged with NG groups. The n-th particle of the m-th group at the i-th iteration
is defined as pm

n,i = [xm
n,i, ym

n,i] where n = 1, . . . , NP and m = 1, . . . , NG, and xm
n,i and ym

n,i denote NBC
and TBC, respectively. Each of them consists of two 15-bit fixed-point vectors, as shown in Figure 2.
The first bit is a sign bit. The number of integer bits was determined by the search space for the
optimization problem. As the maximum configuration of the search space was 15, according to system
requirements, we need at least four bits to represent it. The same number of dummy bits as the integer
bits was required for fixed-point multiplication. The number of decimal bits was closely related to the
resolution of the optimization results. In this work, the minimum number of decimals bits to obtain
appropriate results was six.

Table 2. The main differences between the original PSO and FRPSO.

Type PSO FRPSO

Implementation On CPU with C/C++ On FPGA with HDL
Time step Logical (OS-depend.) Real system clock

Num. of states Four Eight
Operation Generally sequential Sequential & Parallel

Parallelizability Depends on CPU cores Depends on LUTs
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The concept of particle swarm definition and grouping for parallel processing on FPGAs in FRPSO
is shown in Figure 3. The particle swarm at the initial step is generally defined as shown in Figure 3a;
the positions of the particles have been sequentially updated as iteration goes, which requires much
computation time. In FRPSO, the particle swarm at the initial step is defined with several groups,
as shown in Figure 3b, and the position update of the particles can be conducted in a partially parallel
manner as iteration goes, which can significantly reduce computation time. FRPSO is different from
the existing multi-swarm-based PSO variants [16]. The particles within a swarm in their work cannot
move into the areas of other swarms while the particles that belong to different groups in FRPSO can
move anywhere in the given search space, as shown in Figure 3c. In addition, FRPSO can be applied to
multi-swarm-based approaches if they need parallelization to reduce computation time.
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3.2. FPGA Structure

The FPGA structure of FRPSO is shown in Figure 4, and the pseudo-code of FRPSO is described
in Table 3. At every rising edge of the clock produced by phase-locked loop (PLL), FRPSO is conducted
with two counters: the clock counter (CC) to control algorithm processes and the particle number
counter (PNC) to differentiate particles in each particle set. In states with dependency among particles,
as both CC and PNC are used, FRPSO is performed partially in parallel. However, in states without
dependency among particles, as only the CC is used, FRPSO is performed entirely in parallel. The states
before decision on termination of iterations are conducted with the NG groups of particles in parallel.
The multiplication and division are conducted by FixedP_Mul and FixedP_Div, respectively. The core
algorithm of FRPSO is conducted in PSO_CORE, which consists of more logic blocks than the original
PSO. This is because FRPSO should be implemented with the consideration of avoiding the data loss
caused by clock sharing for variable updates among logic blocks with data dependency. For example,
if a logic block has variables, which may be rewritten for updates in the same clock, it should be
divided by multiple logic blocks and processed independently.

Table 3. The pseudo-code of FRPSO.

Algorithm: FPGA-based Real-Time Particle Swarm Optimization

Input: Initial vector, clock (clk_i), reset signal (rst_i), PRNG start signal (start_i)
Output: Result vector

1: Start the phase-locked loop block with clk_i and generate clk_p
2: Start the PRNG block with start_i
3: Initialize the FixedP_Mul and the Fixed_Div blocks with clk_p and rst_i
4: Initialize the signals and variables in the PSO_CORE block with clk_p and rst_i
5: Process for the PSO_CORE block
6: Initialize the PSO state, clock counter (CC), particle number counter (PNC)
7: Iterate the loop controlled by CC and PNC
8: Sample particles using the PRNG block from the given search space
9: Truncate the sampled particles for the target format

10: Calculate the constraints by Equations (5) and (6)
11: Calculate the objective function by Equation (7)



Electronics 2018, 7, 274 7 of 15

Table 3. Cont.

12: Calculate the personal best and the global best
13: Update the velocities and positions of particles by Equations (8) and (9)
14: Decide the termination of iterations
15: End loop
16: Acquire the optimal result vector
17: End process
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3.3. Core Algorithm

The core algorithm of FRPSO is conducted as follows. First, NP particles are initialized and
randomly sampled by the pseudo random number generator (PRNG) based on the linear feedback
shift register (LFSR) within the defined search space. As PRNG produces an 8-bit random vector at
every clock, the position of each particle is acquired by combining with multiple vectors and truncated
for the target format. Next, the particle evaluation state is conducted by three separate states to avoid
wrong updates of errors and best particles. The two constraints, (3) and (4), for each pn,i can be
rewritten by:

Φm,time
n,i = 2ym

n,i − [xm
n,i(2(tI + 3σI) + (tP + 3σP)) + 2TH + TW ] (5)

Φm,margin
n,i = (1− α)ym

n,i − xm
n,itMG (6)

where tI and σI are the mean and standard deviation of tI , and tP and σP are the mean and standard
deviation of tP.
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As the variations of tI and tP are not negligible, their mean and three-sigma standard deviations
are used. Then, the objective function is calculated as follows:

Ψm
n,i = ε(Φm,time

n,i )
−1

+ (1− ε)Φm,margin
n,i (7)

where ε is the weighting factor, which was set to 0.5 in this work. Next, pm
n,pb and pgb which are

respectively the personal best and the global best are selected to minimize Ψm
n,i from the history of

the n-th particle of the m-th group and throughout all particles, respectively. Next, the velocity and
position of the n-th particle of the m-th group at the i + 1 iteration are respectively updated as follows:

vm
n,i+1 = κ[vm

n,i + c1υ(pgb − pm
n,i) + c2υ(pm

n,pb − pm
n,i)] (8)

pm
n,i+1 = pm

n,i + vm
n,i+1 (9)

where κ < 1 is a constriction factor which is set to 0.2, and c1 and c2 are control factors for relative
attraction to pgb and pm

n,pb, which are commonly set to 1.9, and υ is an unit random vector. After the
last iteration, the optimal NBC and TBC are finally acquired by pgb at the last iteration.

4. Implementation, Simulations, and Evaluations

4.1. Implementation

FRPSO was implemented on Xilinx FPGA Kintex-7 with synthesizable VHDL codes. The simulations
and evaluations of the implemented FRPSO were conducted by Xilinx Vivado. The synthesis and
implementation with 90 MHz PLL clocks was successfully completed. The utilization and timing
results are summarized in Tables 4 and 5, respectively.

Table 4. The utilization results of the post-implementation of FRPSO with 200 particles and 20 groups.

Resource Available Utilization Utilization (%)

LUT 101,400 57,667 56.87
LUTRAM 35,000 3886 11.10

FF 2,028,000 30,414 15.00
DSP 600 182 30.33
IO 400 49 12.25

BUFG 32 2 6.25
PLL 8 1 12.50

Table 5. The timing results of the post-implementation of FRPSO with 200 particles and 20 groups.

Type Value

Total number of endpoints 93,504
The number of failing endpoints 0

Worst negative slack (WNS) 0.33 ns
Total negative slack (TNS) 0 ns
Worst hold slack (WHS) 0.023 ns
Total hold slack (THS) 0 ns

Worst pulse width slack (WPWS) 4.788 ns
Total pulse width negative slack (TPWS) 0 ns

4.2. Simulation Results

For simulations, we chose 200 particles, because the minimum number of particles that can
consistently show optimal results was 200. It is well known that the more the number of particles,
the better will be the optimization performance of the original PSO and its variant, including FRPSO.
Therefore, we can expect good results from FRPSO with more number of particles. The number of
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groups indicates how FRPSO processes are parallelized. The more groups, the more parallelized
processes and the smaller computation time. In this work, the number of groups was empirically
chosen to properly show that the computation time of FRPSO on FPGAs is much smaller than the
original PSO on CPUs. Obviously, if FRPSO is implemented with groups over 20, the computation
time decreases.

The whole simulation result of FRPSO with 200 particles in 20 groups when the design margin α

= 0 is as shown in Figure 5, Pg1 and Pg2, respectively, indicate NBC and TBC and successfully converge
the optimal configuration of fixed-point binary vectors. px1_psetm and px2_psetm represent the
two-dimensional positions of the particles in the m-th group, respectively. The whole particle positions
according to iterations and the final global best position are shown in Figure 6. The particles were
successfully converged to the final global best.

Electronics 2018, 7, x FOR PEER REVIEW  9 of 15 

 

processes and the smaller computation time. In this work, the number of groups was empirically 
chosen to properly show that the computation time of FRPSO on FPGAs is much smaller than the 
original PSO on CPUs. Obviously, if FRPSO is implemented with groups over 20, the computation 
time decreases. 

The whole simulation result of FRPSO with 200 particles in 20 groups when the design margin 
α = 0 is as shown in Figure 5, Pg1 and Pg2, respectively, indicate NBC and TBC and successfully converge 
the optimal configuration of fixed-point binary vectors. px1_psetm and px2_psetm represent the two-
dimensional positions of the particles in the m-th group, respectively. The whole particle positions 
according to iterations and the final global best position are shown in Figure 6. The particles were 
successfully converged to the final global best. 

 

Figure 5. The simulation result of FRPSO with 200 particles in 20 groups when α = 0. 

The trajectories of the particle positions in different groups are shown in Figure 7. The particles 
in each group were successfully converged to the final global best. The sampled particles represented 
by green dots from the uniform distribution on the given search space have moved to the global best 
position represented by red cross as the iteration goes. FRPSO processed and updated the positions 
of the particles in different groups in parallel. 

Figure 5. The simulation result of FRPSO with 200 particles in 20 groups when α = 0.

The trajectories of the particle positions in different groups are shown in Figure 7. The particles in
each group were successfully converged to the final global best. The sampled particles represented
by green dots from the uniform distribution on the given search space have moved to the global best
position represented by red cross as the iteration goes. FRPSO processed and updated the positions of
the particles in different groups in parallel.
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4.3. Evaluations

The evaluations of FRPSO were also conducted by Xilinx Vivado with 90 MHz PLL clocks.
The results according to the number of particles used in FRPSO are summarized in Table 6,
which indicates that FRPSO can find the optimal NBC and TBC even though the number of particles
varies between 200 and 440. Under 200 particles, the optimization results of FRPSO were not consistent.
Over 440 particles, FRPSO could not be implemented on Xilinx FPGA Kintex-7 due to the lack of LUTs.
If FPGAs with more LUTs are used, FRPSO will be successfully implemented.

Table 6. The optimization results of FRPSO according to the number of particles.

Number of Particles NBC (msg) TBC (ms) Optimal Throughput (msg/ms)

200 10 8 1.25
240 10 8 1.25
280 10 8 1.25
320 10 8 1.25
360 10 8 1.25
400 10 8 1.25
440 10 8 1.25

For a more detailed evaluation, the optimization results of FRPSO with 200 particles according to
α were analyzed, as shown in Figure 8. FRPSO successfully found optimal configurations according to
α, which indicates that it can be applied to different systems with different requirements. Note that the
optimal throughput with optimal configuration decreases as α increases, which indicates that users
should carefully design the BC by considering the trade-off relation between the maximum throughput
and transmission margin.
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Figure 8. Optimization results by FRPSO according to α.

To show how FRPSO reduces computational time, the processing times of FRPSO were compared
with those of the original PSO and its parallelized version with a GPU (Graphics Processing Unit)
according to NP, as shown in Figure 9. The processing time of the original PSO and its parallelized
version with the GPU were acquired by a desktop computer with 2.3 GHz CPU clocks and NVIDIA
GeForce GTX 750. The parallelized PSO with the GPU was implemented with NVIDIA CUDA Toolkit
10.0, which was mainly conducted on CPU. Obviously, the processing time of FRPSO were smaller than
those of both the original PSO and its parallelized version with the GPU with the same optimization
results. The increase amounts of processing time for FRPSO according to NP were also smaller than
those of the original PSO and its parallelized version with the GPU. This is because FRPSO is designed
to be conducted in parallel, using the resources of FPGAs. Moreover, if the number of particles is fixed,
the computation time of FRPSO is consistent because the processing lines on FPGAs are physically
allocated and connected, while the original PSO is affected by other communication tasks on CPU.
Therefore, FRPSO benefits task scheduling in real-time systems because of fast computation time and
independency from other tasks.

The utilization results of FRPSO according to NP are shown in Figure 10. When FRPSO used
440 particles, the utilization result of the LUTs, which are the critical hardware resource in FPGA,
was 93.61%, as described in Figure 10, and the computation time of the proposed method was about
0.6307 ms, as described in Figure 9. This means that FRPSO is fast enough to be conducted in real
time, even though critical hardware resources are considerably utilized. The LUT was the main factor
to affect the implementation availability of FRPSO. The LUTRAM and the FF also increase as NP
increases, but they were not significant to affect the implementation availability of FRPSO. The DSP,
BUFG, IO, and PLL were consistent regardless of NP. The utilization results of FPGA resources can be
affected by variable definitions, algorithm structures, and logics. Note that the variable definitions,
structure, and logic of FRPSO was designed to be parallelized and applied to real-time optimization by
reducing computation time with FPGA resources. Because particle positions in FRPSO were defined
and calculated with 15-bit fix-point vectors, quantization errors occurred between the particle positions
in the original PSO and FRPSO; they were evaluated by mean squared errors according to epochs as
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shown in Figure 11, which was not significant. Besides, in this work, since the final results were used
as rounded values, small quantization errors did not affect FRPSO’s performance.Electronics 2018, 7, x FOR PEER REVIEW  13 of 15 
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In summary, this work is focused on the extension of the original PSO to the real-time optimization
problem in data communications with half-duplex command-response protocols. The contributions of
this work are as follows. First, the original PSO on CPU to find the optimal message-chain structure
was hardware-friendly modified and implemented on FPGA. Second, since the proposed new variant
of the PSO is parallelized with hardware resources on FPGA, its computation time is much smaller
than the original PSO. Third, as the proposed variant is conducted on FPGA, it can avoid conflicts
with other tasks on CPU. In future, we will conduct further research to generalize FRPSO for data
throughput maximization in other platforms such as multi-to-multi serial communication systems and
wireless communication systems [17–21].

5. Conclusions

This paper proposed FRPSO, which is a hardware-friendly variant of the original PSO, to optimize
the message-chain structure in real-time. FRPSO was implemented and conducted on FPGA
with synthesizable HDL codes. The simulation and evaluation results showed that FRPSO can
successfully offer optimal configuration with much smaller computation time than the original PSO.
In addition, its performance was consistent in spite of different system and algorithm parameters.
The implementation availability of FRPSO according to the number of particles was also evaluated
and analyzed with FPGA resources. Consequently, FRPSO is good for real-time optimization of the
message-chain structure in half-duplex command-response data communications.
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