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Abstract: In this paper, a novel direct torque control (DTC) scheme based on composite active vectors
modulation (CVM) is proposed for permanent magnet synchronous motor (PMSM). The precondition
of the accurate compensations of torque error and flux linkage error is that the errors can be
compensated fully during the entire control period. Therefore, the compensational effects of torque
error and flux linkage error in different operating conditions of the PMSM are analyzed firstly,
and then, the operating conditions of the PMSM are divided into three cases according to the error
compensational effects. To bring the novel composite active vectors modulation strategy smoothly,
the effect factors are used to represent the error compensational effects provided by the applied active
vectors. The error compensational effects supplied by single active vector or synthetic voltage vector
are analyzed while the PMSM is operated in three different operating conditions. The effectiveness of
the proposed CVM-DTC is verified through the experimental results on a 100-W PMSM drive system.

Keywords: direct torque control (DTC); composite active vectors modulation (CVM); permanent
magnet synchronous motor (PMSM); effect factors

1. Introduction

Permanent magnet synchronous motors (PMSM) have a lot of merits such as high reliability,
high efficiency, simple construction, and good control performance, and thus, it has been applied
in various control systems including electrical drives, industrial applications, and medical devices
in recent years [1–7]. Direct torque control (DTC) and field-oriented control (FOC) are two widely
applied high-performance control strategies for the PMSM. Different from the decoupled-analyzing
method in FOC, torque and flux linkage are controlled directly in DTC, and therefore, the quickest
dynamic response can be obtained in the PMSM driven by DTC. However, as only six active vectors
can be selected to compensate the errors of flux linkage and torque in conventional DTC (CDTC),
the PMSM suffers from some drawbacks, such as large torque and flux linkage ripples. To improve the
steady-state performance of the PMSM, many researchers have attempted to reduce these ripples by
adding the amount of the active vectors through different methods.

With more appropriate active vectors selected in each control period, a novel DTC-fed PMSM
system is proposed on the basis of a three-level inverter [8,9], and thus, the ripples of torque and flux
linkage in PMSM can be suppressed effectively. In References [10,11], a novel DTC strategy using
a matrix converter is proposed. Four enhanced switching tables are designed for the selection of
switching states, and therefore, the ripples of the PMSM can be reduced effectively. Despite the fact
that multiple active vectors can be supplied by three-level inverter or matrix converter, the cost of the
DTC system is inevitably increased.

In fact, torque error and flux linkage error are tiny in most cases, and therefore, these errors will
be over-compensated if the selected vector is applied over the whole control period. To solve these
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problems, duty ratio modulation strategy is introduced into the DTC-fed PMSM. Different duty ratio
modulation methods for DTC (DDTC) are studied in References [12–16], and the ripples of torque
and flux linkage can be reduced effectively without degrading the fast dynamic response in CDTC.
In Reference [17], a new suboptimal control algorithm applying dynamic programming and a ramp
trajectory method is proposed to DB-DTFC. In DB-DTFC, the maximum torque changes in one inverter
switching period are used to determine the number of quantized stages for the minimum-time ramp
trajectory method. It can be found that, the error compensational effects are considered in DB-DTFC,
and therefore, torque and flux linkage command trajectories can be developed in different shapes
according to the desired objectives, and fast dynamic responses can be achieved easily.

The stator flux linkage currents are decoupled in d-q axes and controlled independently in
FOC, and thus, the outstanding operating performance of the PMSM can be obtained easily.
The decoupled-analysis method is adopted in the novel DTC based on a space vector modulation
(SVM) strategy with simple proportional-integral (PI) regulator or sliding mode observer [18–25].
With the independent control of torque and flux linkage in SVM-DTC, the amplitude and the phase
of the wanted active vector can be determined accurately, and the errors of torque and flux linkage
can be compensated precisely. However, the introduced PI regulator or sliding mode observer will
degrade the dynamic response of the system.

To improve the operation performance of PMSM effectively, a novel DTC scheme utilizing
composite active vectors modulation (CVM) strategy is presented in this paper. The compensational
effects of torque error and flux linkage error in the PMSM driven by different control strategies are
analyzed. Subsequently, the precondition of the accurate error compensation is obtained, and then,
the precondition is adopted to determine the applied control strategy for the PMSM in different
operation conditions, which is ignored in SVM-DTC and CDTC.

It should be noted that the most complicated control process is the transient-state. The large
error component should be compensated fully, and the low error component should not be
over-compensated; therefore, the duty ratio direct torque control strategy which, considering the active
angles and the impact angles in Reference [1], can be used. The effectiveness of the proposed CVM-DTC
scheme is validated through the experimental results. It should be noted that the steady-state
performance and the dynamic response of the PMSM driven by CDTC, DDTC, and SVM-DTC are also
studied in this paper.

The rest of this paper comprises the following sections. The principles of the conventional DTC
are analyzed in Section 2. The compensational effects of torque error and flux linkage error in the
SVM-DTC system are also illustrated in Section 2. The dividing process of the PMSM operation
conditions and the error compensational effect supplied by different vectors in different operation
conditions are described in Section 3 and the precondition of the accurate error compensations are also
analyzed in Section 3. The description of experimental setup and discussions on experimental results
are given in Section 4. The conclusion is analyzed in Section 5.

2. Principle of the Conventional DTC and SVM-DTC

2.1. Principle of the Conventional DTC

In the PMSM DTC system driven by a two-level voltage source inverter, eight voltage vectors
can be applied to compensate the errors of torque and flux linkage, including six active vectors Vn

(n = 1, 2, 3, 4, 5, 6) and two null vectors (V0 and V7). The spatial placements of the six active vectors in
αβ-reference frames are shown in Figure 1. The whole rotation space of stator flux linkage ϕs can be
divided into six sectors through the section boundary lines li (i = 1, 2, 3, 4, 5, 6), as shown in Figure 1.
The six sectors are represented with number “N”, and the sector vector vs. represents the active vector
in every sector which the stator flux linkage ϕs is located in.
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Figure 1. Active vectors in DTC system.

The torque error eT is obtained by the comparison between the reference value Tref and the
real-time value T. The hysteresis comparator is used to determine the property εT of torque error eT.
The property εT value is 1 or−1, which indicates torque T needs to be increased if the value of property
εT is 1, while the torque needs to be decreased if the value of property εT is −1. The determination
methods of another parameter flux linkage ϕ is in the same way. The active vector selection rules in
the SV-CDTC system are described in Table 1.

Table 1. Conventional switching table.

Sector number N
Torque (εT)

1 −1

Stator flux linkage (εF) 1 VN+1 VN−1
−1 VN+2 VN−2

2.2. Compensations of Torque Error and Flux Linkage Error in SVM-DTC System

The number and the direction of the active vectors are fixed in CDTC, and therefore, the errors of
torque and flux linkage are difficult to be compensated effectively, leading to large ripples. To improve
the steady-state performance of the PMSM, the decoupling control strategy adopted in FOC is
introduced into DTC. The PI controllers are used to obtain the amplitude of the torque vector and flux
linkage vector on the basis of torque error and flux linkage error; then, the space vector modulation
(SVM) is used to determine the precise vectors. The schematic diagram of SVM-DTC is shown in
Figure 2.
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Figure 2 shows the error compensations provided by a synthesis voltage vector. It can be found
that torque error ∆T and flux linkage error ∆ϕ can be compensated through vectors uqs and uds,
respectively. Consequently, the synthesis voltage vector us can be obtained on the basis of the rotor
position θs. As shown in Figure 3, the voltage vectors usα and usβ will be obtained through coordinate
transformation based on us.
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From the aforementioned analyses, it can be observed that the switching table in CDTC is replaced
by the PI controllers in SVM-DTC. Therefore, the active vectors used to compensate the errors of torque
and flux linkage are not limited to the six basic active vectors. Additionally, the ideal steady-state
performance of the PMSM can be obtained easily. Despite the fact that the precision of the wanted
synthetic vector can be ensured with the using of SVM strategy in SVM-DTC, the dynamic response of
the PMSM is affected inevitably.

3. Analysis of Error Compensations

The ripples of torque and flux linkage in the PMSM driven by SVM-DTC are relatively minor while
the PMSM is operated in the steady-state condition. On the other hand, the dynamic performance will
be affected by the complicated calculations of the synthesis voltage vector and the over-modulation
process while the PMSM is operated in the dynamic response condition. This is the main reason
that the fast dynamic performance of permanent magnet synchronous motor driven by SVM-DTC
is degraded.

To improve the steady-state performance of PMSM, and maintain the fast dynamic response at
the same time, appropriate control strategy should be selected and applied to the system according to
the operation conditions, including CDTC, DDTC, and SVM-DTC. Therefore, the differences of the
error compensational effects provided by the synthesis voltage vector and single active vector under
different operation conditions should be analyzed firstly.

3.1. Operation Conditions

The stator flux linkage ϕs changes from ϕs1 to ϕs2 during one control period and the variation of
the stator flux linkage ϕs is ∆ϕs, which can be decoupled into ∆ϕsd and ∆ϕsq in the d-q axis. In this
control period, the errors of torque and flux linkage are ∆T and ∆ϕ, respectively. Hence, the torque
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component variation of the stator flux linkage is ∆ϕsq, and the amplitude component variation of the
stator flux linkage is ∆ϕsd, as shown in Figure 4.

The torque component variation and the amplitude component variation of the stator flux linkage
can be expressed as

∆ϕsq =
2Ls

3p
· 1

ϕ f
· ∆T (1)

∆ϕsd = ∆ϕ (2)

where Ls is the stator inductance, p is the number of pole pairs, and ϕf is the permanent magnet flux
linkage.
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The compensational effect of the stator flux linkage supplied by single active vector VN and
synthesis voltage vector us are ∆ϕ′s1 and ∆ϕ′s, respectively, as shown in Figure 5.
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Figure 5. Analysis of error compensational effects.

The torque component compensation of the stator flux linkage supplied by synthesis voltage
vector us is ∆ϕ′sq, and the amplitude component compensation of the stator flux linkage provided
by synthesis voltage vector us is ∆ϕ′sd. It is obvious that the parameters of ∆ϕ′s, ∆ϕ′sq, and ∆ϕ′sd are
fixed during each control period in the system. While the torque error ∆T and the flux linkage error
∆ϕ will vary with the variation of the stator flux linkage location in different control period. Therefore,
the real values of ∆ϕsq and ∆ϕsd are also different.
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The relationships between the real error compensations of the stator flux linkage and the errors
can be described in the following way.

First item, the actual compensations are greater than the errors:(
∆ϕ′sd > ∆ϕsd
∆ϕ′sq > ∆ϕsq

(3)

Second item, the actual compensations are less than the errors:(
∆ϕ′sd < ∆ϕsd
∆ϕ′sq < ∆ϕsq

(4)

Third item, the actual compensation of the amplitude component is less than the error while the
actual compensation of torque component is greater than the error:(

∆ϕ′sd < ∆ϕsd
∆ϕ′sq > ∆ϕsq

(5)

Fourth item, the actual compensation of the amplitude component is greater than the error while
the actual compensation of torque component is less than the error:(

∆ϕ′sd > ∆ϕsd
∆ϕ′sq < ∆ϕsq

(6)

The operation conditions of the PMSM can be divided into three items in accordance with the
errors and the actual compensations, as shown in Table 2.

Table 2. Operation conditions

Operation Conditions Reference Equation

Steady-state (3)
Transient-state (5) and (6)
Dynamic-state (4)

3.2. Error Compensation Analysis in Steady-State Case

The values of torque error ∆T and flux linkage error ∆ϕs are relatively low in steady-state case [6].
The angle between the stator flux linkage ϕs and the active vector VN is θ1, as shown in Figure 6.
It is also shown in Figure 6 that both the compensations of ∆T and ∆ϕs are bigger than the errors.
Consequently, the errors will be over-compensated if the active vector or the synthesized voltage
vector is applied during the entire control period.
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In DDTC-fed PMSM, the applied time of the active vector is modulated by duty ratio modulation
strategy. As a result, the over-compensation of the errors can be avoided; nevertheless, the fixed active
vectors limit the compensational effects.

In the PMSM driven by SVM-DTC, the adjacent active vectors VN and VN+1 are selected as the
benchmark vectors to obtain the synthesized voltage vector us. Furthermore, the applied time of VN
and VN+1 are T1 and T2, respectively. The error compensations can be evaluated by

∆ϕs1 = VN · T1 (7)

∆ϕs2 = VN+1 · T2 (8)

The modulation process of the active vectors can be expressed as

∆ϕs1 + ∆ϕs2 · cos
π

3
= ∆ϕsα = ∆ϕs · cos θ1 (9)

∆ϕs2 · sin
π

3
= ∆ϕsβ = ∆ϕs · sin θ1 (10)

T1 + T2 + T0 = Ts (11)

where T0 is the zero voltage vector applied time.
From the aforementioned analyses, it can be found that the errors of torque and flux linkage can

be compensated accurately through SVM strategy while the PMSM is operated in steady-state.

3.3. Error Compensation Analysis in Dynamic-State Case

The errors of torque or flux linkage may become greater in the dynamic-state while the speed or
the torque changes. As shown in Figure 7, the stator flux linkage error is ∆ϕs; the angle between the
stator flux linkage error ∆ϕs and the active vector VN is θ2. It can be found that the torque error and
the flux linkage error are greater than the error compensations.

It can be found that the torque error ∆T and the flux linkage error ∆ϕ cannot be compensated fully
by any single active vector or the synthesized voltage vector in the next control period. The differences
of the error compensation effect supplied by the single active vector or the synthesized voltage vector
are described in following parts.
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3.3.1. Synthetic Voltage Vector

The adjacent active vectors VN and VN+1 are selected as the benchmark vectors. The applied time
of VN and VN+1 are T1 and T2, respectively. Therefore, the error compensations can be calculated as

∆ϕ′s1 = VN · T1 (12)

∆ϕ′s2 = VN+1 · T2 (13)

∆ϕ′s1 + ∆ϕ′s2 · cos
π

3
= ∆ϕsα = ∆ϕs · cos θ2 (14)

∆ϕ′s2 · sin
π

3
= ∆ϕsβ = ∆ϕs · sin θ2 (15)

Since the actual compensations are smaller than the errors, therefore

T1 + T2 > Ts (16)

The applied time of the applied active vectors can be over-modulated as

T′1 =
T1

T1 + T2
· Ts (17)

T′2 =
T2

T1 + T2
· Ts (18)

The applied time of the applied active vectors can be rewritten as

T1 = k1 · Ts (19)

T2 = k2 · Ts (20)

where k1 and k2 are the duty ratio values of applied time of VN and VN+1, respectively.
Therefore, the actual compensation of the stator flux linkage in one control period is

∆ϕ′sα = VN ·
k1

k1 + k2
· Ts + VN+1 · cos

π

3
· k2

k1 + k2
· Ts (21)

∆ϕ′sβ = VN+1 · sin
π

3
· k2

k1 + k2
· Ts (22)

which can be simplified as  ∆ϕ′sα = VN · Ts ·
(

k1
k1+k2

+ 1
2 ·

k2
k1+k2

)
∆ϕ′sβ = VN · Ts ·

√
3

2 ·
k2

k1+k2

(23)

Therefore, the compensation of the stator flux linkage supplied by synthesized voltage vector us

can be given as

∣∣∆ϕ′s
∣∣ = √(∆ϕ′sα)

2 +
(

∆ϕ′sβ

)2
= VN · Ts ·

√
k2

1 + k1k2 + k2
2

(k1 + k2)
2 < VN · Ts (24)

3.3.2. Single Active Vector

The compensations of the stator flux linkage supplied by adjacent vectors VN and VN+1 during
the whole control period are

∆ϕ′′ s1 = VN · Ts (25)
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∆ϕ′′ s2 = VN+1 · Ts (26)

Therefore, the compensations of the stator flux linkage provided by the single active vector can be
expressed as

∆ϕ′′ s = ∆ϕ′′ s1 = ∆ϕ′′ s2 = VN · Ts (27)

The comparison result of the stator flux linkage compensations supplied by the different vectors
can be described as

∆ϕ′s < ∆ϕ′′ s (28)

From the aforementioned analyses, it can be observed that the compensational effects of the
stator flux linkage supplied by the synthesized voltage vector is weaker than the single active vector.
Therefore, the SVM strategy is not required to compensate the errors of torque and flux linkage while
the PMSM is operated in the dynamic state. To simplify the calculations of the system, the appropriate
active vector can be selected from a conventional switching table and be used in the system over the
entire control period.

In short, CDTC strategy should be used to reduce the ripples of torque and flux linkage in the
PMSM when the PMSM is operated in a dynamic state. Hence, the delayed dynamic response caused
by the PI controller can be eliminated, and the ripples’ depressing effects of the PMSM driven by
CDTC are the same as that driven by SVM-DTC.

3.4. Error Compensation Analysis in Transient-State Case

The operation condition of the PMSM may deviate the steady-state due to external disturbance.
Therefore, the PMSM may operate in a transient-state if one parameter of torque error and flux linkage
error is large while another parameter is relatively low.

The torque error ∆T is high and the flux linkage error ∆ϕ is relatively low as shown in Figure 8.
The variation of the stator flux linkage is ∆ϕs.
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The differences of the error compensation effect supplied by single active vector or synthesized
voltage vector are described in the following section.

3.4.1. Synthetic Voltage Vector

Figure 9 shows the error compensational effects provided by different active vectors.
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As shown in Figure 9, the adjacent active vectors VN+1 and VN+2 are selected as the benchmark
vectors. The applied time of VN+1 and VN+2 are T1 and T2, respectively. Therefore, the error
compensations can be evaluated by

∆ϕ′s2q · T1 + ∆ϕ′s3q · T2 = ∆ϕsq · Ts (29)

∆ϕ′s2d · T1 − ∆ϕ′s3d · T2 = ∆ϕsq · Ts ≈ 0 (30)

3.4.2. Single Active Vector Vn

The stator flux linkage error ∆ϕs is located in the middle of error compensations ∆ϕ′s2 and ∆ϕ′s3,
as shown in Figure 9. To compensate the error ∆ϕsq effectively and avoid the over-compensation of
the error ∆ϕsd at the same time, the adjacent vectors VN+1 and VN+2 can be selected and applied to
half of the control period.

From the above analysis, it can be found that the torque error can be compensated fully supplied
by a single active vector while the PMSM is operated in the transient-state; however, the flux linkage
error cannot be compensated fully. Despite the fact that the torque error and the flux linkage error
can be compensated fully by synthetic voltage vector, the calculations of the system are inevitably
increased. It should be noted that the novel DDTC strategy based on the active angle in Reference [1]
has solved the problem while one parameter is large and another parameter is relatively small.
Therefore, the DDTC strategy can be used to improve the performance of the system while the PMSM
is operated in a transient-state.

3.5. Novel Composite Active Vectors Modulation Strategy

To improve the operation performance of the PMSM effectively, a novel composite active
vectors modulation DTC (CVM-DTC) strategy considering the precondition of the accurate errors
compensations is presented in this section. The schematic diagram of the presented CVM-DTC system
is shown in Figure 10. The parameters in CVM-DTC are defined by:

uabc: Stator voltage;
iabc: Stator currents;
UDC: DC bus voltage;
n: Actual rotor speed;



Electronics 2018, 7, 263 11 of 16

nref: Reference rotor speed;
σ: Rotor position;
Tref: Reference torque;
ϕref: Reference flux linkage;
∆T: *Reference torque compensation;
∆ϕ: *Reference flux linkage compensation;
Vn: Single active vector;
d: Duty ratio value of applied time;
us: Synthetic voltage vector.
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In order to maintain the fast dynamic response in CDTC and obtain the minimum ripples of the
system, the applied control strategy should adjust according to the operation conditions of the PMSM.

The precondition of the accurate compensations of torque error and flux linkage error is that the
torque error and the flux linkage error can be compensated and fully supplied by the applied active
vector in the whole control period. However, this precondition is ignored in the SVM-DTC system.
Therefore, the torque error and the flux linkage error will be analyzed through decoupled calculations
through PI controllers, while the compensational effects of the stator flux linkage in SVM-DTC and
CDTC when the PMSM is operated in non-steady-state are nearly the same. As a result, the error
compensational effects are not satisfied and the dynamic response will be affected without considering
the operation conditions of the PMSM.

3.6. Determining of the Operation Condition through Effect Factors

The relationship between the active vector Vn and the stator flux linkage variation ∆ϕs in each
control period is

∆ϕs = Vn · Ts (31)

During the whole control period, the max compensations of ∆ϕsq and ∆ϕsd can be expressed as

∆ϕsq−max = ∆ϕs = Vn · Ts (32)
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∆ϕsd−max = ∆ϕs = Vn · Ts (33)

The max compensation of the torque is

∆Tmax =
3p
2Ls
· ϕ f ·Vn · Ts (34)

And the max compensation of the flux linkage is

∆ϕdmax = Vn · Ts (35)

Defining the reference values of torque variation and flux linkage variation are ∆T* and ∆ϕ*,
respectively, which can be expressed as

∆T∗ = ∆Tmax =
3p
2Ls
· ϕ f ·Vn · Ts (36)

∆ϕ∗ = ∆ϕdmax = Vn · Ts (37)

The effect factors of torque and flux linkage are kT and kϕ, respectively, which can be given as

kT =
∆T
∆T∗

(38)

kϕ =
∆ϕ

∆ϕ∗
(39)

The introduced effect factors can be obtained through the errors and the reference values of the
variation in any control period. The operation conditions of the PMSM can be classified into three
cases: steady-state, transient-state, and dynamic-state. The relationships between the effect factors and
the operation conditions are shown in Table 3.

Table 3. Effect factors for different operation conditions.

Effect Factors
Operation Conditions

kT kϕ

(−∞, −1)
(−∞, −1) Dynamic-state

(−1, 1) Transient-state
(1, +∞) Dynamic-state

(−1, 1)
(−∞, −1) Transient-state

(−1, 1) Steady-state
(1, +∞) Transient-state

(1, +∞)
(−∞, −1) Dynamic-state

(−1, 1) Transient-state
(1, +∞) Dynamic-state

4. Experimental Analysis

4.1. Experimental System Setup

Experimental studies are carried out on a 100-W PMSM drive system to validate the feasibility
and effectiveness of the proposed CVM-DTC strategy. The experimental hardware setup is illustrated
in Figure 11. The parameters of the PMSM are given as follows: Rs = 0.76 Ω; Ls = 0.00182 H; the number
of pole pairs p = 4. The DC voltage is 36 V. This study compares the steady-state and the dynamic
response performance of CDTC, DDTC, SVM-DTC, and CVM-DTC. The experiments are implemented
in a TMS320F28335 DSP control system with a sampling period of 100 µs.
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4.2. Steady-State Performance

The steady-state performances of CDTC, DDTC, SVM-DTC, and CVM-DTC are compared under
the same operating conditions. The PMSM is operated at 500 rpm and the reference values of torque
and flux linkage are 0.8 N·m and 0.3 Wb, respectively. The torque and flux linkage waveforms of the
PMSM are driven by different control strategies as shown in Figure 12.

From these experimental results, it can be found that the torque ripples of CDTC, SV-DDTC,
SVM-DTC, and CVM-DTC are 0.56, 0.4, 0.32, and 0.34 N·m, respectively, and the flux linkage ripples of
the four control system are 0.08, 0.06, 0.04, and 0.038 Wb, respectively. Therefore, compared with CDTC,
DDTC and SVM-DTC can reduce the torque ripple by at least 28% and 42%, respectively, and reduce
the flux linkage ripple at least 25% and 50%, respectively. While the steady-state performances of the
PMSM driven by CVM-DTC in the setting operation conditions are nearly the same as SVM-DTC.
The experimental results show that the errors of torque and flux should be compensated through
SVM-DTC strategy, which indicates that the applied control strategy in CVM-DTC in the steady-state
condition is appropriate.
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4.3. Dynamic Performance

To validate the fast dynamic response of the proposed novel CVM-DTC, the speed responses of
the PMSM driven by the four control strategies are tested when the torque is set as 0.5 N·m. In these
tests, a step change from 200 to 400 rpm is applied on the speed reference, as shown in Figure 13.
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Figure 13. The speed trajectory from 200 rpm to 400 rpm when using: (a) CDTC; (b) DDTC; (c)
SVM-DTC; (d) CVM-DTC.

It can be seen that the ripple of the rotor speed is 35 rpm when using CDTC, while the speed ripples
of the PMSM can be reduced to 30, 25, and 24 rpm with the use of DDTC, SVM-DTC, and CVM-DTC.
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Moreover, the settling times of the rotor speed using the four different control strategies are 0.013,
0.012, 0.019, and 0.012 s.

Therefore, the main advantage of CDTC, i.e., the fast dynamic response, is maintained in
CVM-DTC. The experimental results show that dynamic response has a higher priority than ripples
in dynamic-state condition, hence, DDTC or SVM-DTC should be abandoned. In short, the applied
control strategy in CVM-DTC in the dynamic-state condition is appropriate.

5. Conclusions

The precondition of the accurate compensations of torque error and flux linkage error is considered
in the proposed novel CVM-DTC scheme in this paper, which is ignored in CDTC and SVM-DTC.
Therefore, the compensational effects of torque error and flux linkage error provided by the single
active vector or synthetic voltage vector in different operation conditions are analyzed firstly, and then,
the operating conditions of the PMSM are divided into three cases according to the compensational
effects (effect factors). To improve the performance of the PMSM effectively, the applied control strategy
for the PMSM in different sampling periods will vary on the basis of the introduced effect factors.

Experimental results clearly indicate that the novel CVM-DTC scheme exhibits excellent control of
torque and flux linkage with lower steady-state ripples when compared to CDTC and DDTC, and faster
transient response performances when compared to SVM-DTC.
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