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Abstract: Recently, concurrent error detection enabled through invariant relationships between
different wires in a circuit has been proposed. Because there are many such implications in a circuit,
selection strategies have been developed to select the most valuable implications for inclusion in the
checker hardware such that a sufficiently high probability of error detection (Pdetection) is achieved.
These algorithms, however, due to their heuristic nature cannot guarantee a lossless Pdetection. In this
paper, we develop a new input-aware implication selection algorithm with the help of ATPG which
minimizes loss on Pdetection. In our algorithm, the detectability of errors for each candidate implication
is carefully evaluated using error prone vectors. The evaluation results are then utilized to select the
most efficient candidates for achieving optimal Pdetection. The experimental results on 15 representative
combinatorial benchmark circuits from the MCNC benchmarks suite show that the implications
selected from our algorithm achieve better Pdetection in comparison to the state of the art. The proposed
method also offers better performance, up to 41.10%, in terms of the proposed impact-level metric,
which is the ratio of achieved Pdetection to the implication count.

Keywords: reliability; implications; concurrent error detection; probability of error detection;
implication reduction; fault tolerance

1. Introduction

To achieve lower power and higher frequencies in electronic circuits, the current approach is to
pursue aggressive scaling of semiconductors [1]. However, this approach to reduce the feature size
also introduces a series of reliability related issues such as defects and single event upsets. However,
mission-critical applications in space, automotive and medicine require a high operating reliability [2].
Thus, an error detection approach is required to ensure the correctness of results. Concurrent error
detection (CED) methods can fulfill this requirement by checking for computational errors on run-time
in parallel to the circuit operation. In the case of an error, CED mechanisms warn the user by activating
an error flag or trigger an automatic system repair process.

For CED in the case of memories, usually, error-correcting codes (ECC) are employed [3]. However,
detecting errors concurrently in logic circuits is difficult as they implement complex boolean functions.
Dual Modular Redundancy (DMR) and Triple Modular Redundancy (TMR) are two very well known
error detection/correction approaches [4] for logic circuits. In theory, DMR and TMR provide
100% probability of error detection (Pdetection) at the expense of 100% and 200% area overheads,
respectively. For reducing the huge hardware overheads incurred by TMR, some recent works focus
on approximating the TMR for trading-off circuit reliability with the cost of mitigation [5–7].

Several approaches for efficient concurrent detection of errors in logic circuits have been proposed
in the literature. A self-checking methodology based in using parity for concurrent error detection
was presented by Mohanram et al. [8]. In [9], simulation results comparing various parity-based
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CED schemes based on their area overhead are presented. Pdetection of parity-based error detection
schemes is limited as only an odd number of errors are detectable [10]. Some previous studies have also
proposed Register Transfer (RT) level CED methods [11,12]. However, a problem with this approach is
that the RT-level information may not be available in the case of a third-party design [10].

A new paradigm in online error detection was proposed in Alves et al. [13]. The proposed
method automatically identifies gate-level invariant relationships, called implications, which need to
be satisfied for the circuit to be operating correctly. Invariant relationships are logic value implications
between different wires in a circuit. The random combinational logic is checked with invariant
relationships on runtime. Correct operation is guaranteed as long as these relationships are satisfied
during operation. For example, consider an AND gate; if any of the input is logic-0, logic-0 is also
expected (implied) at the gate output. When an error occurs during normal operation, this implication’s
checker can notify the user.

The parallel error detection using implications is illustrated in Figure 1. Error signals are generated
by the checkers checking these implications whenever implication relationships are violated. Since
thousands of such implication relationships can exist in a circuit, it is not possible to check all
the relationships, as then the additional checker hardwares would lead to huge area and delay
overheads [10]. However, selecting only some valuable implications for checking can help detect
the maximum number of errors. If such a reduced set of implications is identified precisely, it can
become a powerful tool for low cost error detection. Another advantage in using implications for
CED is that no knowledge of high-level behavioral constraints is required to identify these invariant
relationships. Since implication-based CED cannot guarantee 100 % error coverage, it is more useful in
those applications where a perfect operation is desirable but not mandatory. CED using implications is
very flexible, as some previous studies [10,14] describe additional techniques for enhancing Pdetection
through methodological inclusion of more implications.

However, in the selection of a reduced set of valuable implications, the existing works are not
able to consider all of the errors in a circuit, which are observable at the outputs due to considering
only a subset of the total input space of the target circuit. Hence, in this paper, we present an approach
using automatic test patterns to more exactly target those invariant relationships which are considered
valuable for the whole input space. To this end, the article makes the following contributions.

1. We present a method based on Automatic Test Pattern Generation (ATPG) for determining the
number of errors detected by each implication, which enables an improved selection of a reduced
valuable set of implications for achieving maximum Pdetection.

2. We use circuits implemented in Field Programmable Gate Arrays (FPGAs) for experimentation,
which makes the testing more representative of how implications would perform in an
implemented circuit rather than operating on netlists based in simple logic gates.

3. We present a method based in ATPG for fast and judicious estimation of Pdetection.

Figure 1. Parallel error detection with implications.
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2. Preliminaries

This section introduces background on implications and on the selection of valuable implications.
The implications are deemed valuable when they can detect most of the errors which propagate to
the outputs.

2.1. Implications

Implications are invariant relationships between different wires in a logic circuit. Consider an OR
gate for example; if any of the input is logic-1, logic-1 is implied at the output. Such relationships can
also be found among wires at different logic levels or even between wires of unrelated logic cones.

The example combinational circuit in Figure 2 shows that, when N3 is at logic-0, logic-0
is employed at N13, N12 and N11. As a result, N24 is at logic-0 whenever N3 is at logic-0.
This implication is represented as follows.

I1 : N3(0) → N24(0)

Figure 2. An example combinational circuit for implications.

The wire on the left side is called the implicant while that on the right is called the implicand.
An implication is enabled whenever the condition defined for the relationship is valid. Thus, it is
enabled when the implicant wire is at the particular logic value. For instance, when N3 is at logic-0,
logic-0 is implied at N24 and implication I1 is said to be enabled.

Implications can be employed for concurrent error detection when they are enabled. Consider the
following scenario where N3, N8 and N5 are at logic-0, logic-1 and logic-0, respectively. This drives
N11 and N15 to logic-0. Let us assume that a stuck-at-1 fault occurs at N11 changing its state from 0
to 1. This causes an erroneous output to be observed at N24. Implication I1 is violated in this case
and a checker checking I1 can detect this error. Checker circuits which check violations of two-wire
implications are given in [10]. For example, the checker for N3(0) → N24(0) can be implemented as
shown in Figure 3. Checkers are designed to raise violation signal only when the given implication is
enabled and a violation occurs.

Figure 3. Circuit schematic to check N3(0) → N24(0) implication.

2.2. Direction of Implications

An implication is a conditional statement and, according to formal logic, any conditional
proposition has a contrapositive which is formed by contradicting both the hypothesis and the
conclusion and interchanging their positions. Implications can be of two types: backward implications
and forward implications. For ease of understanding, consider the forward implication A(0) → Y(0),
its backward implication according to the definition given above is obtained by interchanging the
positions of the implicant and implicand with each other and negating them both i.e., Y(1) → A(1).
For an implication to detect a violation, a fault must only affect the implicand. If a fault affects both the
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implicant and the implicand, the implication is rendered ineffective. This condition is mostly present
in the case of backward implications when both the implicant and the implicand wires are situated on
the same path to the output. If a fault affects the implicand wire, then it will also affect the implicant
wire since the implicand wire is located at a lower logic level than the implicant wire. Removing
backward implications will also reduce the computational resources and effort required in the valuable
implications selection step [15].

Backward implications are not considered in this work, similar to [10,15], since they are not
helpful in improving Pdetection.

2.3. Probability of Error Detection (Pdetection)

Pdetection is calculated as the ratio of the total number of detected errors to that of the
generated errors.

Pdetection =
Number of Detected Errors

Total Number of Generated Errors
To calculate an exact Pdetection, the input patterns must be applied exhaustively to the given

circuit which is impractical. If all the implications in a circuit are checked, even then a 100% Pdetection
is not possible. Moreover, checking all the implications in a circuit results in very high hardware
overheads [10] which make it impossible to include all the implications in the checker hardware.
Thus, the goal is to select a minimum number of implications such that a sufficiently high Pdetection is
achieved. To this end, one implication per fault which detects the maximum number of errors for the
given fault was targeted in Alves et al. [13]. Whereas essential implications for each fault such that
the maximum number of errors could be detected for each fault were added by Wang and Hsieh [10].
This slightly boosts the achieved Pdetection with an increase in the hardware overheads.

The number of errors that an implication can detect for a given fault is called the detectability
of the implication for that fault. The approach used to estimate the detectability of each implication
in [10,13] is based on simulating the circuits using 32, 000 random test vectors. This approach does not
guarantee a very accurate detectability estimation for each implication since all of the input vectors
are not considered. Hence, it may assign a high detectability to an implication when in fact that
implication could have a low detectability. This is true, especially in the case of circuits with a large
input space. Thus, it is important to consider ideally all the input vectors in the detectability estimation
of implications.

3. Input Vulnerability-Aware Detection

As stated in the previous section, to efficiently select a reduced set of implications, all of the input
space should be considered in the evaluation. This, however, is impractical when there are a large
number of inputs vectors for a target circuit.

It should be noted that the entire input space does not hold equal significance as some portion
of the input space is more vulnerable to errors than the rest [16,17] (i.e., the portion of the input
space which makes the maximum number of errors observable at the primary outputs). During the
process of generating 32,000 random vectors for assigning detectability to each implication, some of
the vectors could be selected from the portion of the input space, which is less vulnerable to errors.
Then, the implication selection will be biased towards those implications which perform better for the
randomly selected 32,000 input vectors. This means that the implication which is being considered as
having the highest detectability for a fault may not be in fact the best choice for that fault.

Thus, instead of using 32,000 randoms vectors in the realization of prime implications, we explore
the use of a specified input space [16] that is most vulnerable to errors. Input-aware vectors in
compressed form can be obtained for each fault using an ATPG like ATALANTA [18] which is a
publicly available ATPG tool based on the fan-out oriented (FAN) algorithm. For bigger circuits,
FAN algorithm limits an ATPG’s search space to reduce its computation time [19]. Using ATALANTA’s
test generation system, we can generate all possible test patterns for each fault, as shown in Figure 4,
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to identify the most susceptible areas of the circuit. The tool generates all the test vectors in a compact
form after performing fault simulations on each node of the circuit which can then also be processed
in their compressed form.

Figure 4. Proposed flow to acquire input-aware vectors.

These vectors that make the errors associated with a fault observable at the primary outputs (POs)
are generated using the ATPG tool. For each possible fault in the circuit, we will then consider these
input patterns for a more accurate selection of implications. This approach thus allows us to emphasize
only those input vectors for each fault that make all the errors due to this fault observable at the POs
which helps in an accurate detectability estimation for each implication.

Table 1 shows how implications are selected using an example case of a three input circuit. The PO
is labeled as O. We must select one implication out of the following two implications, I1 : A(1) → O(0)
and I2 : B(1) → O(0), where A and B are any two wires in the circuit. Let us assume that the stuck-at-1
(s.a.1) fault at some internal wire propagates to the output O at the input vectors 000, 011, 110. Our
goal is to select an implication which has the maximum detectability in this case. Between I1 and I2,
I1 is able to detect the given fault whenever the associated error is observable at the output, whereas
I2 cannot detect the error observable at 110, since I2 is not enabled at this input vector. Clearly, I1 is
preferable for the given s.a.1 fault. The problem lies in only using a random set of vectors in grading
the implications. With a random set of vectors, we might select I2 over I1 which also performs well
but does not have the highest detectability for the fault under consideration given the total input space.
This is because, for circuits with a large input space, the use of random vectors does not guarantee that
a majority of fault-aware vectors are employed in assigning the detectability to an implication.

Table 1. Example: Implication selection in a three input circuit.

A B O
1 1 0
0 0 0
0 1 0
1 1 0
0 0 1
0 0 1
1 0 0
1 1 0

4. Proposed Methodology

The first step in implications based concurrent error detection is to actually discover invariant
relationships between the different wires of a circuit. Since considering all these implications would
result in huge hardware overheads, we must only select the most valuable implications such that
a high Pdetection is achieved at minimum hardware costs. This makes implication selection the most
crucial step in implications enabled CED. Moreover, the purpose of using implications in the first place
is to enable CED at low hardware costs.

The proposed algorithm ensures selection of the most valuable implications accurately through
automatic test pattern generation tools rather than relying on 32,000 random vectors based circuit
simulation. The flow of our algorithm is shown in Figure 5 which includes following steps.

1. Identify implication relationships through good circuit simulation.
2. Remove potentially weak implications.
3. Judiciously select the most valuable implications from the remaining ones such that the maximum

Pdetection achievable is ensured.
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Figure 5. Flow chart for implication generation.

4.1. Implication Identification

First, logic values of all the wires in a circuit are recorded on good circuit simulation over 32,000
random input vectors. The simulation output is then processed to extract all the potential implications.
Since the implications identified until this point are only potential as the good circuit simulation is
not exhaustive, we must separate valid implications from invalid ones. To this end, a formal method
based in Boolean Satisfiability (SAT) is applied to the list of potential implications.

The aim of this SAT based verification is to check for any instance from the input space where the
implication under test is invalid. If no such condition exists, then the implication under test is deemed
valid, i.e., no such input vector exists for which the implication relationship is violated. The circuit is
converted into its conjunctive normal form (CNF) [20] and each implication is tested by constraining
the circuit CNF with is violating condition and checking in the SAT engine whether there exists an
input condition for which this CNF constrained with the given implication’s violating condition
is satisfiable. For example, consider an implication n1(1) → n2(1), the circuit CNF is constrained
with its violating condition n1 = 1 and n2 = 0. If the SAT solver fails to find a satisfying solution,
this implication is non-violable for any input vector and thus is a valid implication.

4.2. Weak Implications Removal

For removal of weak implications, a probability filter is applied to the validated implications for
quickly identifying and removing weak implications. In a weak implication, the implicant wire has a
low probability of being excited with the proper signal value for which the implication relationship
exists. Implications whose implicant node has a probability of less than 5% of having the proper
logic signal according to the simulation results are discarded. This threshold value can be optimized
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for each circuit, however, it is kept constant for all circuits in order to quickly process the list of
verified implications.

4.3. Implication Selection

For a given set of input vectors, it can be checked that whether a fault will propagate to the
output and how many times a certain implication can detect the error at the POs. A bit-flip fault in
FPGA when expressed as an error can behave just like a stuck-at fault. Thus, implication detection is
introduced as a number which reflects how many times an implication under test is violated when the
stuck-at fault is observable at the POs. The basic methodology is the same as Alves et al. [13] which is
to select one implication for each possible stuck-at fault in the circuit. This set of implications is called
prime implications.

Algorithm 1 illustrates the proposed method for a more accurate selection of prime implications.
This algorithm processes all the implications and selects the best implication for each fault based on
their implication detectabilities. In our algorithm, several particular data structures are used, which
are given in Table 2. The implication selection process operates in an iterative manner over each
fault. As outlined in Algorithm 1, for each fault, we enumerate all those vectors which make the
errors associated with the given fault observable at the POs where these vectors are called test_vectors
for the given fault. These vectors can be obtained in compressed wild-card patterns from an ATPG
like ATLANTA [18]. For example, a wild card *11 represents both 011 and 111 vectors. These wild
card entries for each fault are then used in fault simulation of the given fault for computing the
implication detectabilities new_Detectability using HOPE [21]. HOPE can process the test_vectors in
their compressed pattern form. For each fault, it considers all the implications and selects a single
implication that has the highest detectability best_Detectibility for the given fault. This implication
identifier together with its number of detections is saved against the fault identifier as best_imps.

The selected implications are sorted in descending order according to their associated fault detection.
The implications included in this ordered list are called the prime implications. Top-candidates from the
list are more likely to provide better fault coverage than implications located at the bottom of the list.
Finally, with an ordered list, it is now possible to select a subset of these implications starting from the
top that satisfies a given hardware budget to include in the checker logic.

Based on the same methodology, test patterns generated through ATALANTA for each fault
are then used for an accurate evaluation of the selected implications in the calculation of Pdetection.
Algorithm 2 explains in detail our method for Pdetection calculation. Instead of applying 32,000
pseudo-random vectors, only the test_vectors in compressed forms are applied. The implication
checker hardware is added to the netlist and this netlist along with the fault list and the test vectors
for each fault are provided to HOPE in order to calculate Pdetection. In Algorithm 2, TP and TM refer
to True Positive and True Miss, respectively. More details on the calculation of error coverage are
provided in Section 5.3.

Table 2. Data structure to store information.

Name Type Single Entity Size Description(Data Type) (Bytes)

imp_set List 72 List of all candidate implication
faults List 72 List of all stuck-at faults

best_imps Dictionary 288 Best Implications against corresponding faults
test_vectors List 72 List of all the vectors where faults are observable at POs
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Algorithm 1 Algorithm for implication selection.

Input: network, imp_set, faults
Output: best_imps

1: for f ault in f aults: do

2: test_vectors = ATALANTA(network, fault)
3: best_Detectability = 0
4: for imp in imp_set: do

5: new_Detectability = HOPE (network, fault, test_vectors, imp_set)
6: if (new_Detectability > best_Detectability) then

7: best_Detectability = new_Detectability
8: best_imp = imp
9: end if

10: end for
11: best_imps[fault] = (best_imp, best_Detectability)
12: end for
13: return best_imps

Algorithm 2 Algorithm for implication testing.

Input: network , faults, test_vectors, best_imps
Output: Pdetection

1: TP = 0
2: TM = 0
3: for f ault in f aults: do

4: test_vectors = ATALANTA(network, fault)
5: detection = HOPE(network,fault, test_vectors, best_imps)
6: if (detection == True) then

7: TP = TP + 1
8: else

9: TM = TM + 1
10: end if
11: end for
12: Calculate (Pdetection)
13: return Pdetection

5. Experimental Methodology

The techniques described in Section 4 were applied to a set of combinatorial MCNC benchmarks.
Implication based CED can also be applied to sequential circuits [10,13], however, we have restricted
ourselves to only combinational circuits in this work since the purpose is only to compare between
our algorithm with that in Alves et al. [13]. The main concern with regards to implication based CED
in sequential logic is that of its applicability. Then, the next concern is regarding achieving sufficient
Pdetection in sequential circuits. Both issues have already been evaluated in [10,13]. Implication-based
CED can be applied to sequential circuits simply by opening all the feedback registers and turning
them into primary circuit inputs, effectively transforming the sequential circuit into a combinational
circuit for processing purposes Alves et al. [13].

We have used FPGA-based netlists synthesized using the Xilinx Synthesizer Tool (XST) in our
experiments. The FPGA-implemented post-synthesis netlists are used so that the performance of
implication-based CED becomes more representative of implemented circuits unlike netlists based
in simple logic gates, as used in [10,13]. It should be noted that the results achieved by implications
enabled CED vary depending upon the given circuit implementation. In FPGAs alone, there could
be various circuit implementations according to the type of gates in the given library. Therefore, the
Pdetection results would vary even between different FPGA types. However, the expected performance
improvement of our method relative to Alves et al. [13] would remain applicable on any circuit
implementation. The profiles of the circuits used in this work including their primary inputs (PIs),
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primary outputs and the number of look-up tables (LUTs) consumed on a Xilinx Virtex-5 XCVLX100T
device are given in Table 3.

Table 3. Circuit profiles.

Circuit PI PO LUT

in5 24 14 70
in6 33 23 63

sao2 10 4 22
br1 12 8 29
br2 12 8 27
luc 8 27 46

alcom 15 38 38
al2 16 47 47

dk17 10 11 29
dk27 9 9 14
dk48 15 17 33
ibm 48 17 49

signet 39 8 66
t481 16 1 21
x6dn 38 5 93

Here, we explain how the algorithm explained in Section 4 is realized. First, Icarus Verilog [22]
is used in good circuit simulation of the post-synthesis Xilinx verilog format netlist for a length of
32,000 pseudo-random vectors. The logic values at each wire are recorded for this duration of circuit
simulation. A Python program is used to search for potential implications from the good circuit
simulation output files. The potential implications are then verified in a SAT engine. We have used the
PicoSAT [23] solver for implication validation. The output of this step is a list of verified implications.
The implications whose implicant node have a probability of less than 5% of having the appropriate
logic value required for enabling the implication are removed according to the good circuit simulation
output. The output is a list of candidate implications for selecting prime implications from. The netlist
is then converted from a Xilinx verilog format to BENCH format. During conversion, the names
of wires in the original LUT-based netlist are preserved so that only faults on those wires will be
processed in the following steps. Next, for each stuck-at fault in the circuit, ATALANTA is used to
produce the test_vectors in compressed pattern form. The fault simulator HOPE [21] is then given
the fault list, the test_vectors for each fault and the circuit netlist with the checkers for each candidate
implication. HOPE is able to process the test_vectors in their compressed form. The output of this
step is a simulation output for each fault containing information about the detectabilities of all the
candidate implication checkers for that fault. Thus, the best implication for each fault is selected based
on this output from HOPE.

The best implications for each fault are called prime implications. Next, we add the checkers for
all these prime implications to the original circuit netlist and pass the modified netlist along with the
list of all the possible stuck-at faults in the circuit and their test_vectors to HOPE. We then use HOPE’s
fault simulation output to calculate the Pdetection achieved by the prime implications.

We have compared our results with the state-of-the-art implication selection algorithm from
Alves et al. [13]. In our work, the algorithm from Alves et al. [13] was also realized using the same
tools. The model in Alves et al. [13] differs against this work in that the implication selection step uses
32,000 pseudo-random vectors instead of the exact test_vectors for each fault. All the boolean algebra
in this work was performed using the Python pyEDA module [24].

5.1. Execution Time Evaluation

The comparison of total execution time in selection of prime implications for the benchmark
circuits considered is shown in Table 4. The experiments were performed on a linux machine running
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a 3.30 Ghz quad-core with 16 GB DDR3 memory. Systematic generation of compressed input patterns
which are used to test implications makes the execution of the proposed algorithm faster; in fact, our
algorithm takes 0.234 min on average compared to 1.09 min taken by the method in Alves et al. [13].

In Table 4, we also observe that two test circuits ibm and signet specifically have higher execution
times in the proposed algorithm. This is due to an increased number of test vectors generated by the
ATPG. Since there are many faults that do not collapse into other faults, the ATPG takes a longer time
in generating the test vectors for a large number of faults.

Table 4. Execution times for the implication selection step.

Circuit Proposed Alves et al. [13]
Time (min) Time (min)

in5 0.11 1.72
in6 0.07 1.77

sao2 0.01 0.08
br1 0.03 0.4
br2 0.02 0.36
luc 0.04 1.94

alcom 0.06 1.74
al2 0.05 2.25

dk17 0.04 0.52
dk27 0.01 0.2
dk48 0.04 1.43
ibm 1.77 0.59

signet 1.1 0.91
t481 0.04 0.08
x6dn 0.12 2.38

5.2. Compression Rate Evaluation

Table 5 shows the results of implication reduction for the various benchmarks. Column 2 gives the
total number of validated implications after processing the potential implications in the SAT engine.
Column 3 gives our total number of selected prime implications while Column 4 gives the number of
prime implications selected by Alves et al. [13].

The compression rates depend on the benchmark circuit under consideration. At maximum,
the number of selected implications will be equal to the total number of possible stuck-at faults in the
circuit since only a single implication deemed best for a given fault is selected. However, when the
same implication is selected for multiple faults, the selected implications count will be lower than the
maximum possible.

Here, we can observe the difference between operating on a post-synthesis FPGA implemented
netlist. Compared to the basic logic gates-based netlists in Alves et al. [13], where the validated
implications count is usually in thousands, the validated implications count on FPGA circuits is much
lower. This is because there are fewer wires in a LUT-based circuit netlist compared to logic-gate based
netlists. As shown in Figure 6, wires x1 and x2 have been covered by the LUT and implemented in
memory thereby reducing the number of wires available to search candidate implications from.

Figure 6. A set of wires covered in a LUT.
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Table 5. Compression rate for implication count.

Circuit Validated Selected Selected
Implications [Proposed] Implications Alves et al. [13]

in5 617 68 78
in6 472 69 79

sao2 62 8 11
br1 286 38 41
br2 240 35 27
luc 485 53 53

alcom 412 121 100
al2 534 94 83

dk17 356 39 40
dk27 152 11 27
dk48 603 39 49
ibm 86 41 42

signet 232 68 68
t481 86 11 11
x6dn 232 86 98

5.3. Pdetection Evaluation

For each fault, its test_vectors are applied to the circuit under test and the response is classified
into one of the following four cases :

1. No Effect.
2. True Positive (TP): Faults occur at internal node and are detected and visible at PO.
3. False Positive (FP): Faults occur at internal node and are detected but never modified any PO.
4. True Miss (TM): Undetected and modified a PO.

The false positive response is observed either when the checker hardware itself is affected by
a fault or when an error occurs in the circuit under test but gets logically masked and thus is not
observed at the PO. In the computation of Pdetection, we have also used the ratio (i.e., TP/[TP + TM]),
as has been used in Alves et al. [13].

The Pdetection metric for the proposed approach and for the approach in Alves et al. [13] are
compared in Figure 7. When the best implications are selected for each fault using the proposed
method, it does not guarantee that Pdetection will increase drastically, especially in this case of FPGA
circuits where the total validated implications count is already a few hundred in all of the given circuits.
Even though the method based in the selection of implications from random vectors Alves et al. [13]
performs well, since it includes a heuristic step, the achieved Pdetection cannot be claimed lossless.
However, in the proposed method, it is guaranteed based on the efficiency of the ATPG tool which
generates the test_vectors for each fault, that the achieved Pdetection could be optimal. This can be
checked by looking for an instance where the method proposed in Alves et al. [13] selects a number
of prime implications less than our proposed method and achieves a higher Pdetection. By observing
Figure 7 and Table 5, we see that no such instance exists. In fact, in most cases, the Pdetection achieved by
our algorithm is either higher than Alves et al. [13] or it is almost the same for both methods. Moreover,
it was shown with a case study in [10] that even 1% degradation in Pdetection could cause millions of
undetected errors thereby emphasizing the importance of even small gains in Pdetection.

This reflects the increased accurateness of the proposed method. Note that the insignificant
decrease in Pdetection in some cases is due to the accuracy of the yield of the ATPG. For instance, dk27
and dk48 have only 1.2% and 1.1% higher Pdetection for Alves et al. [13], respectively, than the proposed
methodology. In the given algorithm FAN, tests are generated for each testable fault using backtracks.
Due to a limited number of attempts in backtracking, the algorithm stops when a given threshold
is exceeded for a fault. Then, such faults are referred to as aborted faults. For circuits such as in6,
br1, dk27, dk48 and ibm, there are certain untestable faults due to which their exact test vectors
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are unavailable. It was shown by Fujiwara and Shimono [25], that the yield achieved of faults that
are tested using FAN is usually 95.74–99.52%. However, the average (avg) Pdetection of the proposed
methodology is better compared to Alves et al. [13]. Moreover, FAN can be replaced with more efficient
test pattern generation algorithms for further minimizing any loss on Pdetection.

Thus, the proposed methodology is flexible and not only it can achieve a better average Pdetection,
it is guaranteed to be optimal given the accuracy of the ATPG employed.
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Figure 7. Pdetection plots for the proposed method and Alves et al. [13].

5.4. Area and Delay Overheads

All the circuits were synthesized using the Xilinx XST tool for a Virtex-5 FPGA device. In Figure 8,
we show the area overhead for each benchmark we have considered when the checkers for the
implications selected by both methods are included. The area overhead is calculated in terms of
the number of LUTs occupied on the device. On average our method outperforms the method in
Alves et al. [13]. We have achieved a higher average Pdetection while our average area overhead is
also lower than the method in Alves et al. [13]. We must mention here that the focus of this work is
to minimize the loss on Pdetection and the same methodology can also be applied to the selection of
essential implications in [10].
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Figure 8. Area overhead comparison between the proposed method and Alves et al. [13].
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In Figure 9, the delay of the circuits after the inclusion of the checker circuitry is compared.
We observe that in those cases where the method in Alves et al. [13] has achieved a higher circuit delay
such as br1, al2, dk17 and dk48, the difference is very significant. On the other hand, in circuits such
as in6, alcom, ibm and signet, where our method achieves a higher delay, the increase is only very
slight. Thus, we do obtain a lower circuit delay on average. It must however be noted that in this work,
we do not consider circuit delays as a parameter in the implication selection procedure, rather only the
detectabilities of implications are considered. For example, the circuit in6 shows a slightly higher delay
with our method even though the number of implications selected by our algorithm are significantly
lower than that in [13]. This is because, despite a lower implication count, there are more implications
on the critical path of the circuit causing an increase in the circuit delay compared to the method
in [13]. It is possible to include the circuit delay as a parameter in the implication selection step so that
a set of implications optimized with regards to circuit delay is obtained as shown in delay-optimized
implication selection results [13].
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Figure 9. Circuit delays for the proposed method and the method in Alves et al. [13].

5.5. Relationship between Pdetection and Selected Implications

To see the implication selection impact on Pdetection, we propose a new metric called impact-level
(IL). We define IL as the ratio of Pdetection to selected prime implications count. Clearly, a higher
value of IL is desirable and translates into a better implication selection. It can be seen in Figure 10
that the proposed method has a higher impact-level. In fact, in some cases, it is much better than
Alves et al. [13]. For dk27, with a significant decrease in area overhead, we are able to improve IL by
41.10% compared to Alves et al. [13]. On average, IL of the proposed approach is better for the given
benchmark circuits.
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Figure 10. Relationship between Pdetection and implication-count.

6. Conclusions

In this paper, we have investigated the problem of selecting implications for achieving minimal
loss on Pdetection. To select the most valuable implication candidates, we have proposed an algorithm
that operates on an input-aware approach. The proposed methodology provides a better insight for a
judicious grading of implications based on their error detectabilities estimated from ATPG algorithms.
The experimental results have also validated the efficiency of the proposed approach. It achieves a
minimal loss on Pdetection at reduced hardware overheads. We have achieved up to 41.10% improvement
in terms of the proposed impact-level metric compared to state-of-the-art approach. The execution
of our algorithm is also 4.5 times faster on average. Using the same fault-aware test vectors based
approach, we are also able to estimate the Pdetection in a fast and more exact way.
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