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Abstract: In this paper, we review recent advances in reverse engineering with an emphasis on
FPGA devices and experimentally verified advantages and limitations of reverse engineering tools.
The paper first introduces essential components for programming Xilinx FPGAs (Xilinx, San Jose,
CA, USA), such as Xilinx Design Language (XDL), XDL Report (XDLRC), and bitstream. Then,
reverse engineering tools (Debit, BIL, and Bit2ncd), which extract the bitstream from the external
memory to the FPGA and utilize it to recover the netlist, are reviewed, and their limitations are
discussed. This paper also covers supplementary tools (Rapidsmith) that can adjust the FPGA design
flow to support reverse engineering. Finally, reverse engineering projects for non-Xilinx products,
such as Lattice FPGAs (Icestorm) and Altera FPGAs (QUIP), are introduced to compare the reverse
engineering capabilities by various commercial FPGA products.
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1. Introduction

Field programmable gate arrays (FPGAs) have been widely used for embedded systems in various
applications, such as consumer electronics, medical devices, security systems, and defense industry
applications. FPGAs allow agile development of the embedded system because their functions can
be continuously updated [1,2]. As FPGAs occupy larger portions of the embedded system market,
their hardware security becomes an increasingly important issue.

Reverse engineering is generally defined as a way to analyze an existing system and to design
and create copies by identifying component and interrelationships [3–10]. The reverse engineering
in the FPGA is a way of re-configurating the netlist inside the FPGA in various ways. The reverse
engineering methods introduced in this paper improve vendor and user awareness of security issues
and also prevent FPGAs from being reversed in advance.

One potential approach for FPGA reverse engineering is to utilize the bitstream from an external
memory to the FPGA [4–6]. Although there are a variety of memory schemes for programming, such as
programmable read only memory (PROM), anti-fuse, static random access memory (SRAM), and Flash,
most FPGAs have used the SRAM because of its low price, re-programmability, and so on. However,
since the SRAM is a volatile memory, the FPGA needs an additional non-volatile memory outside the
FPGA to store the programming codes [2]. Figure 1 shows the block diagram of the Xilinx Virtex FPGA
connected with the external PROM [11]. When the FPGA board is powered up, the bitstream stored in
the PROM is downloaded to the FPGA. Then, the bitstream can be extracted on the downloading path
for reverse engineering. Reverse engineering by extracting bitstream files from the external memory is
a non-invasive approach that does not damage the FPGA. Therefore, this method can be widely used
for criminal investigation, military defense, and security industry that should not damage the target
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hardware. While FPGA companies have supported bitstream encryption for security, there have also
been attempts to extract encryption keys in order to decrypt the bitstream [12]. It should be noted that
these reverse engineering methods assumed that the bitstream is not encrypted.

Several research groups have attempted reverse engineering to recover the netlist from the
extracted bitstream [4–6]. This paper reviews recent advances in FPGA reverse engineering, particularly
those using Xilinx FPGA products that occupy a dominant portion in FPGA markets, and also discusses
their performance and limitations through hands-on experiments. In addition, this paper also reviews
several supplementary tools that can support the reverse engineering [13–15].

The rest of this paper focuses on detailed techniques for FPGA reverse engineering using
the bitstream. Section 2 describes the Xilinx design flow, tools, and related files generated during
compilation. Section 3 reviews several reverse engineering tools, targeting Xilinx products. Section 4
reviews the other reverse engineering projects that aim for Altera and Lattice FPGAs. Section 5
discusses advantages and limitations of reverse engineering tools, followed by concluding remarks in
Section 6.
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Figure 1. Block diagram of the Xilinx Virtex FPGA and its external PROM [11].

2. Xilinx FPGA Design

2.1. ISE Design Flow

Xilinx supports two integrated development software packages, ISE and Vivado, for FPGA design
synthesis, simulation, and configuration. The ISE design suite supports the Spartan-6 and Virtex-6
devices as well as their previous generation families. Recently, Xilinx has recommended the Vivado
design suite for new designs with Virtex-7, Kintex-7, and Artix-7. While Xilinx discontinued support
for the ISE design tool in 2014, the ISE has continued to be widely used for FPGA programming
because the Vivado mainly supports high-performance and high-end devices.

The conceptual diagram of the Xilinx ISE design flow is shown in Figure 2. First, the register-transfer
level (RTL) design (Verilog, HDL file) is converted to the Xilinx internal netlist (NGD file) using -ngd
build. Then, it performs technology mapping of the NGD file to circuit primitives (NCD file) using
-map. The -par command places circuit primitives on the actual FPGA chip and connects each primitive
in order to generate the placed and routed (P&R’d) NCD file. The fully P&R’d primitives (P&R’d NCD
file) are then translated to the bitstream (BIT file) using -bitgen. The BIT file is converted to the MCS
file and saved in the PROM. Finally, the stored bitstream (MCS file) in the PROM is downloaded to the
FPGA for the purpose of programming when the FPGA board is powered up.
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Figure 2. Conceptual diagram of the Xilinx ISE design flow.

The P&R’d NCD file can be also converted to the XDL file using -ncd2xdl. The XDL file is a text
document that displays the netlist in a readable form. This XDL file can be interpreted through the
XDLRC file, which describes all of the FPGA architecture. Both XDL and XDLRC files play important
roles in bitstream-based reverse engineering, the concepts of which will be explained in detail in
Sections 2.2 and 2.3.

2.2. XDLRC

The XDLRC is a text document detailing the Xilinx FPGA chip architecture that can interpret
the XDL file. The XDLRC for each chip can be generated through the -report (chip name) of the XDL
function provided by ISE. Figure 3 shows a graphical representation of the XDLRC structure, which is
divided into tile units. Each site consists of primitives, such as slices. The elements contained within
these primitives are described in detail in the primitive definition [3].
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An example code of the XDLRC text file is shown in Figure 4. The structure consists of four
sections: First, the header section includes information such as the name of each chip, the size of the
tile in the chip, etc. Second, the tile section describes the detailed position information of each tile,
the types of the tiles (e.g., configurable logic block (CLB), interconnect (INT), input/output buffer
(IOB), and digital signal processor (DSP)), the name of the element, and the location of the primitive
present in the element. Third, the primitive definitions section describes the elements in detail. Finally,
the summary section summarizes the information of the tiles and sites. Since the XDLRC file differs
slightly from chip to chip, it must be well understood in order to fully explain the XDL file. Since the
XDLRC can construct a mapping table by correlating with the bitstream, the XDLRC files have been
utilized for various reverse engineering works.
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2.3. XDL

The XDL file is a textual representation of the netlist; it describes the internal state of the FPGA
and is equivalent to the NCD file. While the XDL format is not officially documented, it can be easily
understood by using the XDLRC file [4]. The XDL file can be created from the NCD file with the xdl
-ncd2xdl option, and an XDL file can be reverted back to the NCD file with the -xdl2ncd option.

For example, the slice statement FXMUX:: F in the XDL file means that the F is the output of
the FXMUX logic. In this way, the instance is created by connecting one logic to the other inside a
block, and the point connecting these logics is defined as a programmable logic point (PLP). The wires
connecting created instances to one another are considered to be nets. A user-controllable net is defined
as a program interconnect point (PIP). In general, the PIP in the FPGA is called the switch box.

For example, the PIP statement, pip INT_X0Y74 SR5END2 -> EL5BEG2 in the XDL file, indicates
that the SR5END2 wire in the INT block located in X0Y74 is connected to the EL5BEG2 wire. Since this
XDL file is equivalent to the NCD file, the netlist information on the target FPGA can be obtained by
extracting the XDL file from the bitstream.

2.4. Bitstream Structure

Virtex family devices in Xilinx FPGA chips are divided into top and bottom parts, as shown in
Figure 5. The rows are then further divided into columns and made up of frames, e.g., the highlighted
region in yellow, which are the smallest spatial unit [16]. The bitstream has a unique frame address:
frame (0–6), column (7–14), row (15–19), top/bottom (20), and block (21–23). The different devices have
different frame column widths of each tile, and the bitstream column width of the Virtex-5 family is
summarized in Table 1. There are no separate frame column widths for the INT tile with nets, because it
is not possible to individually address the bitstream for INT tiles. Therefore, INT information for each
tile is included within the tile itself, and the bitstream can be generated by arranging column sets of
the tiles side by side.
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Table 1. Bitstream column width of the Virtex-5 devices [16].

Column Type Width in Frames

CLB 36
DSP 28

Block RAM 30
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The bitstream file consists of headers and packets. The header part contains information such
as the chip name of the target FPGA, the creation date, and the number of bits used. The packet part
contains the command data and the configuration data.

Writing in the FPGA configuration memory starts at the indicated frame of the Frame Address
Register (FAR). The FAR in the actual bitstream is generated only once, as shown in Figure 6 [6].
Once the FAR is set for the first frame, the next FAR is generated by the auto-generate function to
download the data to the correct location.

The configuration data, which depends on the HDL-generated circuit design, constitutes
programmable points, i.e., PIP and PLP, in the FPGA. The bitstream mapping information is not
disclosed in the official documents, but the total number of bits in the generated bitstream is listed in
the Xilinx official documents [2]. Since the command and configuration data in the bitstream include
the mapping information, the bitstream can be used to restore the netlist with reverse engineering
tools, which will be introduced in Section 3.
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3. Reverse Engineering Tool with Xilinx FPGAs

3.1. Debit

Debit was the first reverse engineering attempt targeting the Xilinx FPGA chip [4]. It has
since served as a good example of various reverse engineering tools, since its algorithm reveals
the correlation between the XDL and the bitstream. Figure 7 shows a conceptual diagram of the Debit
flow, with emphasis on the XDL extraction from the bitstream.
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When the power is applied to the FPGA board, the bitstream is downloaded from the external
memory to the FPGA, and the frame of the configuration data is sequentially placed inside the FPGA
according to the FAR. Writing to the FPGA configuration memory begins at the indicated frame
of the FAR. Each frame of the configuration data, except for the first frame in the actual bitstream,
does not include the FAR data, while the corresponding FAR data can be calculated through the
auto-generate function. Therefore, the FAR value should be deduced from the generated bitstream.
Since the FAR data is displayed in front of each frame of the bitstream, the auto-generate function
can be extracted separately via the -framedump option in the Debit tool. Once the FAR data has been
extracted, the configuration data can be separated from the bitstream, and its target site can then be
estimated. It is also possible to dump the site configuration data of each FPGA product group through
the -sitedump function of the Debit tool.
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Configuration data includes three types of configuration bits, which consist of the look-up table
(LUT), other slice components, and switch boxes (i.e., PIP). The LUT and other slice components
configuration occupy only about 10% of the data, the rest of it being used to represent the
PIP configuration.

Using the dumped data, we can collect bits for PIP through the correlation algorithm presented in
the Debit tool [4]. The correlation algorithm introduced in the Debit tool assumes that the layout of the
configuration data is very regular, based on the regular structure of the FPGA. Typically, the FPGA has
a regular structure, as shown in Figure 5, and the PIP bit positions within the site are consistent at each
of the same sites.

The Debit is an open source tool available from Github, and is only supported by the Linux
platform. It supports Virtex-2, Virtex-4, Virtex-5, and Spartan-3 products. In order to examine the
reverse engineering performance of the Debit tool, we created a bitstream file with a Spartan-3 FPGA
and applied it to the Debit tool to generate the XDL file. Then, the reversed XDL file (by Debit) was
compared with the original XDL file (by Xilinx ISE) in order to verify the accuracy of the Debit tool.
Figure 8 shows the original XDL file and the XDL file reverse-engineered from the bitstream by the
Debit tool. Because only part of the pip was restored in the INT tile, Debit was not able to regenerate
the complete XDL code from the bitstream. Moreover, the current ISE tool cannot be used to convert
the reversed XDL file into the netlist file (i.e., NCD) because the XDL format is not compatible.
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Figure 8. Reverse engineering results with debit: (a) Original XDL part, (b) Reversed XDL part: As a
result of reverse engineering using the Debit tool, only some pip of the INT tile was reversed.

3.2. Bitstream Interpretation Library (BIL)

The Debit tool was the interesting first step that introduced the possibility of FPGA reverse
engineering with the bitstream. Later, the BIL was proposed in order to improve the correlation method
of the Debit tool by using the XDLRC, leading to more accurate reverse engineering [5]. The BIL tool
separates the configuration data into tiles, which are the smallest units of the FPGA, when obtaining
the PIP data. Tiles of the same type have identical configurations, so they can be separated safely and
quickly. Since the bitstream mapping table is not officially released, it must be inferred through the
XDLRC in order to separate the configuration data. Using the XDLRC file, which describes the FPGA
architecture, the correlation between tiles can be easily estimated. The Debit tool cannot reverse all the
PIP information of the FPGA by using the XDL file as a reverse source. In contrast, the BIL tool can
completely reverse the PIP information using the XDLRC as a reverse source.

The BIL tool was released to analyze the FPGA and reverse the bitstream. Figure 9 shows the
conceptual diagram of the BIL flow. The analysis tool includes a basic data generation function,
which creates an address layout that processes the configuration memory of a specific device to be
structured and a list that describes the name and ID of the Virtex-5 device. It also provides functions to
compress XDLRC and create a table that points to all tile addresses in compressed XDLRC. The XDLRC
compression function deletes redundant data and compresses large amounts of data without loss by
converting data to the binary format.
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Reverse engineering can be conducted using the data generated by the FPGA analysis tool. The FPGA
Reverse tool additionally allows for the conversion of the bitstream into an assembly code for visualization.

Like the Debit tool, the BIL tool has been released as an open source tool, providing a reverse
engineering function that can be used in the same environments as Debit. We also used the BIL tool to
verify its accuracy in reverse engineering. The XDL file reversed through the BIL was compared with
the original XDL file in Figure 10. It can be observed that the BIL can generate all the PIPs of the INT
tiles, but not the PIP data of the primitive site and other tiles. The results indicate that the correlation
algorithm introduced in the BIL does not provide the mapping information of the primitive sites and
the PIP of other tiles beyond the INT tile.
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3.3. Bit2ncd

The previous Debit and BIL tools were unable to provide the pip mapping information of the
primitive sites and other tiles, resulting in incomplete recovery. In [6], it has been experimentally
verified that PIP and PLP share the same control bit, and neither the Debit nor BIL can reverse the PLP
parts, because they do not consider such redundant data.

Figure 11 shows a conceptual diagram of the Bit2ncd flow. One example of the seed XDL file
is shown in Figure 12a. The circuit must be created with the primitives in the FPGA devices such
as LUTs, Muxes, and FFs, and they must be fixed at specific locations using a UCF file specifying
I/O pins to find the pattern when creating the bitstream. Once the seed XDL has been generated,
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CLB information can be found in XDLRC, and it must be modified for only one PLP (e.g., FFY in
the example), as highlighted in Figure 12b. When the XDL is modified with all possible PLPs of the
FFY, a set of modified XDL is then ready. The generated XDL set, i.e., analysis script group (ASG),
is converted into an NCD file through -xdl2ncd provided by the ISE design suite, and then the NCD
file is converted into the bitstream through -bitgen. This process is very similar to constructing a
mapping table of PLP and PIP, as explained in [6].
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Figure 12. Example codes of the analysis script group (ASG) generation for the FFY option [6]: (a) Seed
XDL, (b) FFY option modified XDL.

In order to efficiently generate a mapping table, a distributed processing system is used. Its design
is introduced in a separate paper on the Bit2ncd software [6]. A server generates the seed XDL and
distributes it to each node. The node then generates the ASG, creates a mapping table, and transmits it
to the server. The server consolidates the mapping tables generated by each node into a single one.
As a result, it takes 50 days to create a mapping table of one FPGA chip with 50 PCs. Also, the mapping
table must be reconfigured for each FPGA chip.

Figure 13a,b show the netlist view by the original NCD and the reversed NCD, respectively.
As shown, the original NCD and the reversed NCD are the same. The simulation results also indicate
that the original XDL and the reversed XDL are identical. In addition, Bit2ncd can be applied to the
xdl2ncd option provided by ISE while keeping ISE XDL format, so it can easily create NCD file.Electronics 2018, 7, x FOR PEER REVIEW  10 of 15 
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3.4. Supplementary Tool Using XDL: Rapidsmith

Commercial FPGAs offer several advantages for programming, but researchers have often found
them inconvenient, due to the restricted functions of FPGA design tools. FPGA databases are typically
proprietary, and the tools generally have rigid design flows, limiting various experiments with FPGAs.
In order to overcome these issues, the Rapidsmith tool was developed for Xilinx FPGAs [13,14].
Even though Rapidsmith is not a tool for reverse engineering, it provides valuable tips and information
using XDL files.

Figure 14 shows how the Rapidsmith works, along with the Xilinx CAD tool. While the
configuration process of the Xilinx FPGA is identical, as explained in Figure 2, Rapidsmith can
support translation, mapping, placing, and routing functions for the XDL file.
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The previously introduced XDL tools use the output files of the FPGA design tool as the input
files and convert them to XDL files. On the other hand, Rapidsmith uses the converted XDL file as an
input and manipulates it as desired by the user. The manipulated XDL file is then fed back into the
XDL tools and converted to files that are compatible with the Xilinx design tools.

From a reverse-engineering perspective, it is paramount to consider hacking attack scenarios to
prevent hacking of the FPGAs. A few papers have introduced ways to utilize Rapidsmith for FPGA
security. Tavaragiri et al. have demonstrated that on-chip antennas can be built by using programmable
interconnects as a pallet [17]. They developed a unique flow to concatenate a large network of unused
routing resources in the FPGA, forming a two-dimensional curve to work as an on-chip antenna built
with the programmable interconnects of the FPGA. The authors used their own tool to manipulate XDL
files, but Rapidsmith can perform the same function to support XDL files. Söll et al. demonstrated that
malicious circuits, such as hardware Trojans, can be detected through side-channel analysis [18]. They used
Rapidsmith to implement the denial-of-service Trojan into an AES block by manipulating P&R’d XDL files.
They then used localized electro-magnetic (EM) measurements to find the Trojan-infiltrated circuit in the
FPGA chip. Figure 15 shows the location of the malicious Trojan circuit (black area) on the FPGA chip and
its EM measurement result in order to detect the Trojan circuit.
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4. Reverse Engineering Tools with Non-Xilinx FPGAs

4.1. Icestorm with Lattice FPGAs

Icestorm is a project related to the reverse engineering that utilizes the bitstream from the Lattice
ice40 FPGA with a custom-designed programming tool [7]. Its FPGA board has a minimal and
regular architecture with limited types of tiles and function units to facilitate reverse engineering [19].
The Icestorm project targets the Ice40 LP/HX 1K/4K/8K chips.

Figure 16 shows conceptual diagrams meant to compare the iCEcube2 design flow officially
supported by the Lattice semiconductor [20] and the custom-designed Icestorm design flow [8].
In Figure 16a, the iCEcube 2 design flow consists of several steps, as follows (1) Add RTL design files
and constraint files; (2) Synthesize the design and make netlists; (3) Perform placement and routing
process using place & route tools in iCEcube2 and generate programming and configuration files;
(4) Program the FPGA with the bitstream.

The design flow of the Icestorm project, shown in Figure 16b, is similar to the iCEcube2 flow,
while the Icestorm uses custom-designed tools. Icestorm is an open source project that provides
three main tools: Yosys, Arachne-pnr, and Icepack. Yosys is a framework that converts Verilog code
to a different format, such as FLIG, EDIF, BTOR, SMT-LIB, and simple RTL Verilog [21]. It has a
Verilog 2005 support and provides a basic synthesis set [9]. Yosys performs functions similar to the
iCEcube2 synthesis. Arachne-pnr supports placement and routing functions using BLIF files, physical
constraints, and place & route scripts, ultimately generating the Icestorm TXT file. It operates in
the same way as the iCEcube2 Place & Route tool. Then, the IcePack converts the TXT file into the
bitstream [21].Electronics 2018, 7, x FOR PEER REVIEW  12 of 15 
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The Icestorm project has reported that the ice40 HX 1K and 8K boards can be reverse-engineered,
especially for Ice40 HK 1K-TQ144 and Ice40 HX8K-CT256 products [7]. For reverse engineering,
the Icestorm utilizes the Icebox_vlog tool, which is an extension software used to reverse the BIN file to
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the Verilog file. Figure 17 shows an example code for bitstream conversion to the Verilog file using the
Icebox_vlog tool. The file “example.v” implements an AND logic module, and the output y is assigned
as a logical result of a AND b. This example uses the Yosys, Arachne-pnr, and Icepack tools to create
the bitstream. The bitstream is then applied to the Icebox_vlog tool, generating the recovered Verilog
code, which includes the conditional operator, assign y = b ? a:0. This means that if b is 1, y becomes a,
and if b is 0, y becomes 0, indicating that y is a logical result of both a AND b. This example verifies
that reverse engineering is possible for specific Lattice FPGA products. Since the Icestorm utilized
custom-designed tools for Verilog-to-bit file conversion, its reverse engineering tool (i.e., Icebox_vlog)
for bit-to-Verilog file conversion was also easily implemented and customized [10].

Electronics 2018, 7, x FOR PEER REVIEW  12 of 15 

 

  
(a) (b) 

Figure 16. Design flow comparison: (a) iCEcube2 design flow, (b) Icestorm design flow. 

The Icestorm project has reported that the ice40 HX 1K and 8K boards can be reverse-engineered, 
especially for Ice40 HK 1K-TQ144 and Ice40 HX8K-CT256 products [7]. For reverse engineering, the 
Icestorm utilizes the Icebox_vlog tool, which is an extension software used to reverse the BIN file to 
the Verilog file. Figure 17 shows an example code for bitstream conversion to the Verilog file using 
the Icebox_vlog tool. The file “example.v” implements an AND logic module, and the output y is 
assigned as a logical result of a AND b. This example uses the Yosys, Arachne-pnr, and Icepack tools 
to create the bitstream. The bitstream is then applied to the Icebox_vlog tool, generating the recovered 
Verilog code, which includes the conditional operator, assign y = b ? a:0. This means that if b is 1, y 
becomes a, and if b is 0, y becomes 0, indicating that y is a logical result of both a AND b. This example 
verifies that reverse engineering is possible for specific Lattice FPGA products. Since the Icestorm 
utilized custom-designed tools for Verilog-to-bit file conversion, its reverse engineering tool (i.e., 
Icebox_vlog) for bit-to-Verilog file conversion was also easily implemented and customized [10]. 

 
Figure 17. Example code of the bitstream conversion to the Verilog file. 

  

// example.v
module top (input a, b, output y);

  assign y = a & b;
endmodule

Yosys
Arachne-pnr

icePack

FPGA 
bitstream

FileTool

Icebox_vlogModule chip (output y, input b, input a);
Wire y, b, a;

assign y =  b ? a : 0;
endmodule

Comparison

Figure 17. Example code of the bitstream conversion to the Verilog file.

4.2. QUIP with Altera FPGA

The Quartus University Interface Program (QUIP) supplied by Altera provides FPGA researchers
with several design capabilities: It can create a netlist of technology specific entities as well as access
the device architecture and key timing information. It can also specify the placement of logic elements
and routing for FPGA design [15]. The QUIP provides documentation about a Verilog Quartus module
(VQM) file format as well as a grammar that researchers can use to create VQM files with a technology
specific listing. Accessing the architecture and key timing information obtained using the QUIP can
support the development of FPGA flow. For example, the intra-cell delay shows time information
about port to port, so that researchers can interpret the timing numbers.

The QUIP can modify the placement and routing information, which can be applied to the
Quartus II FPGA. The QUIP is convenient and flexible because it can change certain parts of placement
and routing while enabling the replacement of parts in the FPGA flow with custom tools. However,
the QUIP does not provide the detailed information file to construct a router, as does the XDL [14].
Moreover, the QUIP only supports the Quartus II FPGA, which significantly limits its usage in reverse
engineering for Altera FPGAs.

5. Discussion

Table 2 summarizes reverse engineering tools for FPGAs. Debit attempts reverse engineering
using the correlation method between XDL and Bitstream files, but it suffers from low accuracy
due to the lack of information in XDL. BIL complements Debit’s correlation method using XDLRC
and completely reverses the PIP information of INT tiles. However, the PLP information cannot be
extracted due to the lack of information in XDLRC.

Debit and BIL were released as an open-source tool, and we directly tried those tools to
experimentally verify their performance and limitations. Reversed XDL files extracted by Debit
and BIL were compared with the original XDL generated by the ISE design flow as shown in Figure 8
(Debit) and 10 (BIL). Both reverse engineering tools show low accuracy as a result of extracting limited
tile resources.
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Bit2ncd is not an open-source tool and has not been tested directly. Bit2ncd compares the ASG
bitstream with the original bitstream as shown in Figure 12 to create a mapping table. Figure 13 shows
a complete reverse engineering result using Bit2ncd. However, it takes a quite long time (50 days) to
create a mapping table for reverse engineering, while requiring huge computational resources (50 PCs),
according to the paper.

Table 2. Performance comparison of the reverse engineering tools for FPGAs.

Tool Input Output Supported Device Pros Cons

Debit BIT file XDL file Virtex-2,3,4,5/Spartan-3 Simple Low accuracy

BIL XDLRC, XDL,
BIT file

XDL file
XML file Virtex-5 Perfect reversing

pip in INT tile Low accuracy

Bit2ncd BIT file XDL file
NCD file Spartan-3,3E/Virtex-2,4,5 Perfect reversing

all tile types Long time

Rapidsmith XDL file,
XDLRC file XDL file All devices Flexible Depending on

other tools

Icestorm BIT file Verilog file Ice40 High accuracy Limited target
devices

Rapidsmith can manipulate the XDL to modify and customize the netlist file, which can be
applicable to all devices. Rapidsmith alone cannot be used for reverse engineering in FPGA, while it
can provide the flexible function for manipulating XDL to assist the other reverse engineering tools.

Icestorm uses a custom-designed programming tool, as shown in Figure 16b, which also leads
to the design of a custom reverse engineering tool. Unlike conventional reverse engineering tools,
Icestorm can accurately extract the Verilog code from the bitstream, as shown in Figure 17. However,
the Icestorm project is only applicable to Lattice FPGA products.

6. Conclusions

Debit is the first attempt to reverse engineer the FPGAs through bitstream extraction, and the
BIL improves the bitstream correlation method by utilizing XDLRC files. As a further improvement,
Bit2ncd reverse engineers all tiles by creating a mapping table while modifying both PLP and PIP
in XDL files. However, the latter requires tremendous computational resources and is not an open
source tool, so it cannot be verified by other users. Further research on FPGA reverse engineering is
still needed, not only for improving the existing tools but also for reverse engineering the other FPGAs,
such as recent Xilinx products using Vivado design flow.

Author Contributions: Conceptualization, Methodology, Data Curation, Validation, Writing Paper, H.Y., H.L.,
and S.L.; Funding Acquisition, H.-M.L.; Investigation, Supervision, Writing-Review & Editing, Project Administration,
Y.K. and H.-M.L.

Funding: This work was supported as part of Military Crypto Research Center (UD170109ED) funded by Defense
Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fong, R.J.; Harper, S.J.; Athanas, P.M. A versatile framework for FPGA field updates: an application of partial
self-reconfiguration. In Proceedings of the IEEE International Workshop on Rapid Systems Prototyping,
San Diego, CA, USA, 9–11 June 2003; pp. 117–123.

2. Virtex-5 FPGA Configuration User Guide, 2017. Available online: https://www.xilinx.com/support/
documentation/user_guides/ug191.pdf (accessed on 18 September 2018).

3. Lee, J.-K.; Jhang, K.-S.; Cho, H.-J. Verilog functional model extraction from FPGA design data. J. KIISE:
Comput. Pract. Lett. 2012, 18, 380–388.

https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf


Electronics 2018, 7, 246 14 of 14

4. Note, J.-B.; Rannaud, É. From the bitstream to the netlist. In Proceedings of the International ACM/SIGDA
Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA, USA, 24–26 February 2008;
Volume 18, p. 264.

5. Benz, F.; Seffrin, A.; Huss, S.A. Bil: A tool-chain for bitstream reverse-engineering. In Proceedings
of the International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway,
29–31 August 2012; pp. 735–738.

6. Ding, Z.; Wu, Q.; Zhang, Y.; Zhu, L. Deriving an NCD file from an FPGA bitstream: Methodology, architecture
and evaluation. Microprocess. Microsyst. 2013, 37, 299–312. [CrossRef]

7. Project IceStorm. Available online: http://www.clifford.at/icestorm (accessed on 18 September 2018).
8. Wolf, C. A free and Open Source Verilog-to-Bitstream Flow for iCE40 FPGAs. Online Presentation, 2015.

Available online: https://media.ccc.de/v/32c3-7139-a_free_and_open_source_verilog-to-bitstream_flow_
for_ice40_fpgas (accessed on 18 September 2018).

9. Yosys Open Synthesis Suite, Online Tutorial. Available online: http://www.clifford.at/yosys (accessed on
18 September 2018).

10. Romanov, A.; Romanov, M.; Kharchenko, A. FPGA-based control system reconfiguration using open source
software. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus), St. Petersburg, Russia, 1–3 February 2017.

11. Yui, C.C.; Swift, G.M.; Carmichael, C.; Koga, R.; George, J.S. SEU mitigation testing of Xilinx Virtex II FPGAs.
In Proceedings of the IEEE Radiation Effects Data Workshop, Monterey, CA, USA, 25–25 July 2003; pp. 92–97.

12. Moradi, A.; Barenghi, A.; Kasper, T.; Paar, C. On the vulnerability of FPGA bitstream encryption against
power analysis attacks. In Proceedings of the ACM Conference on Computer and Communications Security,
Chicago, IL, USA, 17–21 October 2011; pp. 111–124.

13. Lavin, C.; Padilla, M.; Lundrigan, P.; Nelson, B.; Hutchings, B. Rapid prototyping tools for FPGA designs:
Rapidsmith. In Proceedings of the International Conference on Field-Programmable Technology, Beijing,
China, 8–10 December 2010.

14. Lavin, C.; Padilla, M.; Lamprecht, J.; Lundrigan, P.; Nelson, B.; Hutchings, B. Rapidsmith: Do-it-yourself
CAD tools for Xilinx FPGAs. In Proceedings of the International Conference on Field Programmable Logic
and Applications, Chania, Greece, 5–7 September 2011.

15. Malhotra, S.; Borer, T.; Singh, D.; Brown, S. The Quartus University Interface Program: Enabling advanced
FPGA research. In Proceedings of the IEEE International Conference on Field-Programmable Technology,
Brisbane, NSW, Australia, 6–8 December 2004; pp. 225–230.

16. Soni, R.K.; Steiner, N.; French, M. Open-source bitstream generation. In Proceedings of the IEEE International
Symposium on Field-Programmable Custom Computing Machines, Seattle, WA, USA, 28–30 April 2013;
pp. 105–112.

17. Tavaragiri, A.; Couch, J.; Athanas, P. Exploration of FGPA interconnect for the design of unconventional
antennas. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, CA, USA, 27 February–1 March 2011; pp. 219–226.

18. Söll, O.; Korak, T.; Muehlberghuber, M.; Hutter, M. EM-based detection of hardware trojans on FPGAs.
In Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust, Arlington,
VA, USA, 6–7 May 2014.

19. iCE40 LP/HX Family Data Sheet. Available online: http://www.latticesemi.com/en/Products/
FPGAandCPLD/iCE40 (accessed on 18 September 2018).

20. iCEcube 201708 Tutorial. Available online: http://www.latticesemi.com/Products/DesignSoftwareAndIP/
FPGAandLDS/iCEcube2 (accessed on 18 September 2018).

21. Krieg, C.; Wolf, C.; Jantsch, A. Malicious LUT: A stealthy FPGA trojan injected and triggered by the design
flow. In Proceedings of the International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA,
7–10 November 2016.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.micpro.2012.12.003
http://www.clifford.at/icestorm
https://media.ccc.de/v/32c3-7139-a_free_and_open_source_verilog-to-bitstream_flow_for_ice40_fpgas
https://media.ccc.de/v/32c3-7139-a_free_and_open_source_verilog-to-bitstream_flow_for_ice40_fpgas
http://www.clifford.at/yosys
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40
http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2
http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Xilinx FPGA Design 
	ISE Design Flow 
	XDLRC 
	XDL 
	Bitstream Structure 

	Reverse Engineering Tool with Xilinx FPGAs 
	Debit 
	Bitstream Interpretation Library (BIL) 
	Bit2ncd 
	Supplementary Tool Using XDL: Rapidsmith 

	Reverse Engineering Tools with Non-Xilinx FPGAs 
	Icestorm with Lattice FPGAs 
	QUIP with Altera FPGA 

	Discussion 
	Conclusions 
	References

