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Abstract: This paper proposes a synchronous reference frame (SRF) control strategy for a single-phase,
three-level, dual-buck photovoltaic (PV) inverter. The concept of virtual d-q transformation is adapted
to the current control of the inverter, and the repetitive controller is implemented in the SRF. With the
proposed control strategy, the memory allocation quantity for the repetitive controller is decreased
and the capability of the current reference tracking is maximized. Thus, the proposed method
significantly reduces the total harmonic distortion (THD) of the output current in both the continuous
conduction mode (CCM) and the discontinuous conduction mode (DCM). In addition, the distortion
of the output current is mostly composed of odd harmonics. Odd harmonic expressed to the even
harmonic in SRF can be calculated using Park’s transformation. Therefore, a repetitive controller can
improve dynamics by considering only even harmonic components in SRF rather than including
all harmonics. The simulation and the experimental results verify the effectiveness of the proposed
control strategy. The proposed method not only reduces the THD of the output current in both the
CCM operation and the DCM operation, but also improves the dynamics of the current controller.

Keywords: dual buck inverter; synchronous reference frame; repetitive controller; PV inverter

1. Introduction

Greenhouse effects and atmosphere pollution problems caused by conventional power generation
are becoming severe [1,2]. To solve these issues, many studies have been conducted on electric power
generation using renewable energy such as photovoltaic (PV), wind power, and so on. In particular, PV
power generation systems have achieved impressive growth compared with other renewable energy
sources. Hence, installations of PV power systems go on increasing year by year [3].

Grid-connected PV systems account for a large portion of the total PV system installation [4].
Grid-connected PV systems are classified into two types depending on the presence or absence of a
transformer between the PV module and the utility grid. The transformer-less systems are preferred for
low power, single-phase PV applications in practice. This is because they usually improve the power
density and efficiency compared with the PV inverter with transformer [5]. However, the leakage
current can be increased compared with the PV inverters with a decoupling transformer because of the
stray capacitor between the PV module and the utility grid. As the common mode voltage fluctuated,
the stray capacitance charges and discharges repeatedly, resulting in high leakage currents [5,6]. Such a
leakage current can be eliminated or reduced depending on the control strategies or topologies [7–15].

Among various topology solutions, dual-buck inverters (DBI) have been considered as a promising
circuit structure to achieve a high efficiency and low leakage current without significant engineering
efforts [6,16,17]. The switching modulation method of the DBI is characterized by Sp and S1 in positive

Electronics 2018, 7, 226; doi:10.3390/electronics7100226 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8217-9187
http://dx.doi.org/10.3390/electronics7100226
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/10/226?type=check_update&version=2


Electronics 2018, 7, 226 2 of 17

and Sn and S2 in negative depending on the polarity of the grid voltage. A detailed description of
the modulation and current path can be found in the work of [16]. According to the current path,
the voltage on stray capacitor between the PV array and the grid changes with the grid frequency.
Therefore, the voltage of the stray capacitor becomes constant during the half cycle of the grid frequency,
and the leakage current is restrained [18]. The DBI performs a similar operation to the buck converter
at each polarity of the utility grid. The DBI outputs unipolar pole voltage at each grid polarity as
the switches S1 and S2 operate independently. Therefore, the output current under the light load has
severe current distortions as it cannot flow in an opposite direction [16].

The distortion caused by unidirectional and control performance of the current is highly
dependent on the controller structure. Regarding this issue, many control strategies have been
studied including predictive controllers and modulations. The proportional integral (PI) controller,
which is traditionally used in the industry, is easy to implement and simple in structure. For the
system operating at fixed frequencies of 60 Hz or 50 Hz, using a PI controller has poor stability and
control performance. To overcome this disadvantage, a proportional resonant (PR) controller is used to
maximize the performance for a specific frequency. The PR controller is optimized for grid-connected
systems because it has high gain at a certain frequency. As the PR controller optimized in a specific
frequency, the other compensator like a repetitive controller should be added to control other frequency
components. This paper proposes the synchronous reference frame (SRF) PI controller with repetitive
current control strategy for dual-buck PV inverters. Using the proposed method, the current distortion
caused by the discontinuous conduction mode (DCM) operation of the inverter under light load
conditions can be dramatically compensated. Also, by controlling the current in the SRF, the output
current is converted into the DC component and the PI controller works effectively. Because of the
proper operation of the proposed control strategy, the dynamic property of current control is much
faster than the stationary reference frame repetitive controller.

This paper is organized as follows. In Section 2, the topology and the operation of the dual-buck
inverter are described. The investigation of the modeling equation and the transfer function of the
DBI is conducted. Both the stationary reference frame and the SRF will be discussed for the modeling
equations. Furthermore, the loop-gain of the entire control system is evaluated using the derived
transfer function for convincing the proposed and designed controller. Section 3 provides the proposed
control structure including the design of the proposed repetitive controller. The simulation and
experimental results are shown in Section 4. Finally, the conclusion is made in Section 5 to summarize
the results of this work.

2. Circuit Structure and Control Strategy of DBI

Figure 1 shows the circuit structure of the three-level dual-buck PV inverter. In order to reduce
the power stage loss, the dc-link is directly fed by the PV panel with the blocking diode. As the
maximum power point tracking (MPPT) performance is necessary, the dc-link voltage is indirectly
regulated by controlling the output power of the inverter at the given irradiation conditions. The LCL
filter with the damping resistor Rf is composed of the inverter- and grid-side inductors, Lf and Ls,
and the filter capacitor Cf. Unlike traditional full-bridge inverters, the three-level dual-buck inverter
has two switching stages that operate with the low and high frequency. In the figure, the pair of the
switches Sp and Sn operates at grid switching frequency and the other pair of switches S1 and S2

operates at high switching frequency. The main role of low frequency switching side switches is to
determine the polarity of the output voltage. The switches that operate at the high frequency switching
side regulate the magnitude of the grid current. By considering this, the modulation signals of the
three-level dual-buck inverter [16] are represented as illustrated in Figure 2.
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Figure 1. The circuit structure of the three-level dual-buck photovoltaic (PV) inverter.
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Figure 2. The duty reference d and the switching signals for the switching devices.

Compared with traditional full-bridge inverters, the three-level dual-buck inverter achieves very
high efficiency. In addition, it is also attractive that the ground leakage current can be significantly
reduced. Further analysis about the DBI can be found in the literature [16,17].

Similarly to other PV inverters, various current control strategies can be adapted in DBI. One
simple approach is implementing the current controller in the stationary reference frame, where the
control states and variables turn up in ac components at the steady-states. In this approach, the
realization of the current controller is straight-forward, and many single-phase systems employ this
strategy. One trouble of this method is that the steady-state error can exist due to the characteristics
of the stationary current control, where the phase delay is induced in the current control loop-gain.
To mitigate the defects, SRF based current control strategies in single-phase systems have been
studied. The virtual d–q transformation is one of the useful approaches to implement the SRF in
single-phase systems. The fundamental component of the controlled current is shown as a dc value
at steady-states [19,20]. Therefore, the control performance including the reference tracking and the
adjustable phase function can be significantly improved. It can be also considered as a control of a
simple dc–dc converter, because the operating point is fixed at a certain point. In theory, the steady-state
error can be perfectly eliminated due to the infinity loop-gain with a simple proportional-integral (PI)
controller in the SRF [21–24].

2.1. DQ Rotating Frame Concept

In single-phase systems, the adaptation of d–q transformation is not available without a special
technique, because there is no quadrature axis with respect to the original axis that can be considered
as a direct axis. Hence, an additional virtual phase is necessary. This means the virtual phase that is
orthogonal to the original phase should be artificially created. To do this, an all pass filter (APF) whose
critical frequency corresponds to the operating frequency of the original phase has been adapted in this
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paper. By using the APF, the virtual quadrature current whose phase is lagged by π/2 rad compared
with the original one is produced. The transfer function of the APF is defined as follows:

Gap f (s) =
s−ω

s + ω
(1)

where ω is the angular velocity of the utility grid obtained by phase locked loop (PLL) [25]. By
implementing (1) in the time domain and multiplying with the grid current is, the virtual quadrature
current iI is simply obtained. Then, the phase of iI is delayed by π/2 rad. Once is and iI are obtained,
the currents in the SRF, id and iq, are calculated using (2).[

id
iq

]
=

[
cos ωt sin ωt
− sin ωt cos ωt

][
is
iI

]
(2)

It should be noticed that id and iq should be dc components at the steady-states, while is and iI are
ac ones. Accordingly, the control variables are not ac currents, but dc components.

2.2. Average and DQ Models of the Single Phase DBI

Because only one phase is existent in single-phase systems, a virtual quadrature circuit is necessary
to implement dq transformation [25]. Figure 3 represents the fundamental concept of the real and
virtual quadrature circuits. For the virtual quadrature circuit, the circuit structure and all components
including the switching devices, inductors, and capacitors are identical to the original circuit for the
fundamental frequency, except that there are π/2 rad differences between the original and virtual
quadrature voltage and currents. For harmonic components, the parameters of the circuit components
are different.

Electronics 2018, 7, x FOR PEER REVIEW  4 of 17 

 

( )apf

s
G s

s









 (1) 

where ω is the angular velocity of the utility grid obtained by phase locked loop (PLL) [25]. By 

implementing (1) in the time domain and multiplying with the grid current is, the virtual quadrature 

current iI is simply obtained. Then, the phase of iI is delayed by π/2 rad. Once is and iI are obtained, 

the currents in the SRF, id and iq, are calculated using (2). 

cos sin

sin cos

d s

q I

i it t

i it t

 

 

    
    

    
 (2) 

It should be noticed that id and iq should be dc components at the steady-states, while is and iI are 

ac ones. Accordingly, the control variables are not ac currents, but dc components. 

2.2. Average and DQ Models of the Single Phase DBI 

Because only one phase is existent in single-phase systems, a virtual quadrature circuit is 

necessary to implement dq transformation [25]. Figure 3 represents the fundamental concept of the 

real and virtual quadrature circuits. For the virtual quadrature circuit, the circuit structure and all 

components including the switching devices, inductors, and capacitors are identical to the original 

circuit for the fundamental frequency, except that there are π/2 rad differences between the original 

and virtual quadrature voltage and currents. For harmonic components, the parameters of the circuit 

components are different. 

 

Figure 3. Real circuit and imaginary orthogonal circuit. 

Figure 4 shows the average models of the practical and virtual quadrature circuits. The meaning 

of the dR and dI is duty on the real and imaginary orthogonal circuit, respectively. Here, the LCL filters 

are composed by Lf, Rf, Ls, and Cf, and the damping resistance Rd are to filter out the high frequency 

components of the output current. 

1nS

1pS

1S

2S1D

2D
fL

fL fR

fC

sL1Ri

2Ri

Ri

RV
dcCdcV

2nS

2pS

3S

4S
3D

4D fL

fL fR

fC

sL1Ii

2Ii

Ii

IV

Imaginary Circuit

Real Circuit

Figure 3. Real circuit and imaginary orthogonal circuit.

Figure 4 shows the average models of the practical and virtual quadrature circuits. The meaning
of the dR and dI is duty on the real and imaginary orthogonal circuit, respectively. Here, the LCL filters
are composed by Lf, Rf, Ls, and Cf, and the damping resistance Rd are to filter out the high frequency
components of the output current.
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In this configuration, the Cf is small enough to be ignored for modeling the system feature, so that
it can be omitted in the grid current equations below. Consequently, the grid current equations can be
rewritten as follows:

d
dt

iRI =
Vdc
L

dRI −
R
L

iRI (3)

where parameters L, R, and dRI represent Ls + Lf, Rs + Rf, and the duty cycles in the practical and the
virtual reference frame. It should be noticed that the practical variables iR and dR can be represented as
isd and ds

d, while the virtual variables iI and dI are modeled as isq and ds
q in the stationary reference

frame. By considering this, (3) can be written as (4) in the stationary reference frame.

d
dt

[
is
d

is
q

]
=

Vdc
L

[
ds

d
ds

q

]
− R

L

[
is
d

is
q

]
(4)

In order to obtain the equations in SRF, the transformation matrix T as represented in (6) is applied
in (4) as shown in (5).

d
dt

{
T−1

[
id
iq

]}
=

Vdc
L

T−1

[
dd
dq

]
− R

L
T−1

[
id
iq

]
(5)

where T is defined as below:

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (6)

where θ is the phase angle of the utility grid.
By developing (5) using the inverse matrix of T, the d–q current components in the SRF are

obtained as shown in (7).

d
dt

[
id
iq

]
=

Vdc
L

[
dd
dq

]
− R

L

[
id
iq

]
+ ω

[
iq

−id

]
(7)

In (7), the coupled terms iq and id are existent in the d- and q-axis. It has been well-known that
these coupled terms deteriorate transient responses. As the parasitic resistance Rs and Rf of the filter
inductor Ls and Lf are small enough not to affect the plant transfer function [16]. Therefore, Equation (7)
can be expressed simply as follows:

d
dt

[
id
iq

]
=

Vdc
L

[
dd
dq

]
+ ω

[
iq
−id

]
(8)



Electronics 2018, 7, 226 6 of 17

2.3. d–q Current Controller Design

The d–q current control structure of the single DBI is shown in Figure 5. The output duty reference
of the current controller and the feed-forward are added together to control the DBI system. In order
to compensate the disturbance arising from the utility grid voltage, the feed-forward term generate a
duty reference as follows:

d f f =
Vgrid

Vdc
(9)

where Vgrid is utility grid voltage and Vdc is dc-link voltage. With the feed-forward, loop-gain analysis
becomes possible without considering grid disturbance. Consequently, the influence on grid is omitted
in DBI system modeling.

Electronics 2018, 7, x FOR PEER REVIEW  6 of 17 

 

The d–q current control structure of the single DBI is shown in Figure 5. The output duty 

reference of the current controller and the feed-forward are added together to control the DBI system. 

In order to compensate the disturbance arising from the utility grid voltage, the feed-forward term 

generate a duty reference as follows: 

grid

ff

dc

V
d

V
  (9) 

where Vgrid is utility grid voltage and Vdc is dc-link voltage. With the feed-forward, loop-gain analysis 

becomes possible without considering grid disturbance. Consequently, the influence on grid is 

omitted in DBI system modeling. 

 

Figure 5. Single phase dual buck inverter DQ controller. APF—all pass filter; PLL—phase locked 

loop. 

In the stationary reference frame, the proportional resonant (PR) controller is used rather than 

the proportional integral (PI) controller so as to secure a high gain in fundamental frequency 

component. However, as mentioned in the previous section, the PI controller on SRF has a very large 

gain on fundamental frequency. This paper proposes a control scheme that integrates a PI controller 

with a repetitive controller for compensating current distortion and an effective current controller. 

The proposed current control strategy is illustrated in Figure 6. 

 

Figure 6. Current control strategy for the dual-buck inverter. PI—proportional integral. 

Generally, the grid-connected inverters mainly undergo the output current distortion containing 

odd harmonics. In order to compensate the harmonics, the loop-gain of the current controller should 

have extremely high gains at individual harmonic bands. With traditional proportional-integral (PI) 

control approaches, it is very hard to satisfy the conditions above in wide frequency ranges [26]. In 

this view points, the use of repetitive controllers is a very good solution to achieve the output current 

with a very low total harmonic distortions (THD). Repetitive controllers are based on internal model 

principle [27–29]. Hence, if the periodic errors are continuously repeated, the reference tracking 

performance can be excellent with very high accuracy in the closed-loop control system. Because of 

this feature, a repetitive controller is paralleled to the traditional PI controller to reduce the steady-

state error [30]. 

PLL

APF


dq
Current

controller

dq


gridV

Ri
Ri

Ii

di

qi

*

dduty

*

qduty

*

Rduty

*

ffduty

*duty

grid grid

Repetitive

controller

Repetitive

controller

PI

PI

( )s fL L 

( )s fL L 

( )

dc

s f

V

s L L

( )

dc

s f

V

s L L

( )s fL L 

( )s fL L 

*

dI

*

qI

dI

qI

dI

qI

: Decoupling term

: Cross coupling term

Figure 5. Single phase dual buck inverter DQ controller. APF—all pass filter; PLL—phase locked loop.

In the stationary reference frame, the proportional resonant (PR) controller is used rather than the
proportional integral (PI) controller so as to secure a high gain in fundamental frequency component.
However, as mentioned in the previous section, the PI controller on SRF has a very large gain on
fundamental frequency. This paper proposes a control scheme that integrates a PI controller with
a repetitive controller for compensating current distortion and an effective current controller. The
proposed current control strategy is illustrated in Figure 6.

Electronics 2018, 7, x FOR PEER REVIEW  6 of 17 

 

The d–q current control structure of the single DBI is shown in Figure 5. The output duty 

reference of the current controller and the feed-forward are added together to control the DBI system. 

In order to compensate the disturbance arising from the utility grid voltage, the feed-forward term 

generate a duty reference as follows: 

grid

ff

dc

V
d

V
  (9) 

where Vgrid is utility grid voltage and Vdc is dc-link voltage. With the feed-forward, loop-gain analysis 

becomes possible without considering grid disturbance. Consequently, the influence on grid is 

omitted in DBI system modeling. 

 

Figure 5. Single phase dual buck inverter DQ controller. APF—all pass filter; PLL—phase locked 

loop. 

In the stationary reference frame, the proportional resonant (PR) controller is used rather than 

the proportional integral (PI) controller so as to secure a high gain in fundamental frequency 

component. However, as mentioned in the previous section, the PI controller on SRF has a very large 

gain on fundamental frequency. This paper proposes a control scheme that integrates a PI controller 

with a repetitive controller for compensating current distortion and an effective current controller. 

The proposed current control strategy is illustrated in Figure 6. 

 

Figure 6. Current control strategy for the dual-buck inverter. PI—proportional integral. 

Generally, the grid-connected inverters mainly undergo the output current distortion containing 

odd harmonics. In order to compensate the harmonics, the loop-gain of the current controller should 

have extremely high gains at individual harmonic bands. With traditional proportional-integral (PI) 

control approaches, it is very hard to satisfy the conditions above in wide frequency ranges [26]. In 

this view points, the use of repetitive controllers is a very good solution to achieve the output current 

with a very low total harmonic distortions (THD). Repetitive controllers are based on internal model 

principle [27–29]. Hence, if the periodic errors are continuously repeated, the reference tracking 

performance can be excellent with very high accuracy in the closed-loop control system. Because of 

this feature, a repetitive controller is paralleled to the traditional PI controller to reduce the steady-

state error [30]. 

PLL

APF


dq
Current

controller

dq


gridV

Ri
Ri

Ii

di

qi

*

dduty

*

qduty

*

Rduty

*

ffduty

*duty

grid grid

Repetitive

controller

Repetitive

controller

PI

PI

( )s fL L 

( )s fL L 

( )

dc

s f

V

s L L

( )

dc

s f

V

s L L

( )s fL L 

( )s fL L 

*

dI

*

qI

dI

qI

dI

qI

: Decoupling term

: Cross coupling term

Figure 6. Current control strategy for the dual-buck inverter. PI—proportional integral.

Generally, the grid-connected inverters mainly undergo the output current distortion containing
odd harmonics. In order to compensate the harmonics, the loop-gain of the current controller should
have extremely high gains at individual harmonic bands. With traditional proportional-integral (PI)
control approaches, it is very hard to satisfy the conditions above in wide frequency ranges [26].
In this view points, the use of repetitive controllers is a very good solution to achieve the output
current with a very low total harmonic distortions (THD). Repetitive controllers are based on internal
model principle [27–29]. Hence, if the periodic errors are continuously repeated, the reference tracking
performance can be excellent with very high accuracy in the closed-loop control system. Because of
this feature, a repetitive controller is paralleled to the traditional PI controller to reduce the steady-state
error [30].
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In order to keep the DBI control stable, the proposed controller that composed with PI and
repetitive controller must be optimized. The contents of the repetitive controller design are covered in
detail in the next section. The loop-gain considering only the PI controller on SRF is derived as follows:

Gpi(s)Gid(s) =
(

Kp +
Ki
s

)(
Vdc

s(Ls + L f )

)
(10)

where the transfer function of the PI controller is Gpi(s) and Gid(s) is the system transfer
function, respectively.

In addition, the transfer function considering the digital computation is calculated as follows:

Gpi(z)Gid(z) =
(

Kp +
KiTs

z− 1

)(
VdcTs

(L f + Ls)z(z− 1)

)
(11)

Equation (11) also takes into account the unit delay caused by the digital control. The bode plot of
the designed PI controller is shown in Figure 7. From the result of the frequency response curve, the
bandwidth is 1.09 kHz and the phase margin is 56.3 deg. The gain of PI controller, which consisted
with Kp and Ki, had been selected as 0.018 and 2, respectively.
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3. Even Harmonics Repetitive Controller Design

3.1. Even Harmonics Repetitive Controller

As shown in Figure 6, the repetitive controller is paralleled with the traditional PI controller. The
repetitive controller has infinite poles at the harmonic frequencies, so that the steady-state periodic
error can be perfectly compensated. In order to design an optimized repetitive controller in the
SRF, some analyses are performed below. In fact, the grid current mainly contains odd harmonic
components. The odd harmonics in the grid current is converted to corresponding even harmonics
in the SRF. Equation (12) clearly describes this fact. When odd harmonic currents, Iacos((2k + 1)ωt)
and Ibsin((2k + 1)ωt), in the stationary reference frame are converted into SRF, the results are the even
harmonic currents, id(2k) and iq(2k), as can be seen in (12):[

id(2k)
iq(2k)

]
=

[
cos ωt sin ωt
− sin ωt cos ωt

][
Ia cos((2k + 1)ωt)
Ib sin((2k + 1)ωt)

]
=

[
Ia cos(2kωt)
Ib sin(2kωt)

]
(12)



Electronics 2018, 7, 226 8 of 17

where k is the harmonic order index.
According to (12), it is recognized that the repetitive controller in the SRF should mainly

compensate even harmonics. Figure 8 shows the even harmonic repetitive control scheme applied in
this paper [31,32]. The design of the even harmonic repetitive control scheme should not be much
different from that of the original repetitive controller [29]. The proposed repetitive controller is
configured as the repetitive control gain Krp, the number of samples N, the number of samples for
the phase leading L, and the stabilization filter q(z). The number of samples during one period of the
fundamental frequency is defined as follows:

N =
1

f × Ts
(13)

where f and Ts are the fundamental frequency and the sampling period, respectively. When
the fundamental frequency is doubled, the number of samples is obtained as N/2 according to
Equation (13).

Next, the phase leading factor L is chosen by considering the stability improvement and the
propagation delay. The factor L is selected as 2, considering the digital computation and modulation
delays, 1.5 Ts.

The main purpose of the stabilization filter is to reduce the high frequency components, which
cannot be compensated in physical without phase delay. For this purpose, a zero-phase delay low pass
filter shown in (14) is employed [33,34].

q(z) = 0.25z−1 + 0.5 + 0.25z (14)

Using (14), the entire stability of the repetitive control system can be significantly improved.
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Figure 8. Repetitive control block scheme.

3.2. Repetitive Controller Design

If the cross coupling term is decoupled as shown in Figure 6, the general expression of the control
scheme with the proposed repetitive controller can be drawn as in Figure 9. Therefore, the gain of
the dq current controller can be selected equally. From Figure 9, the transfer function of the repetitive
controller Grp(z) defined as (15).

Grp(z) =
drp

ierr
= Krp

zL

zN/2 − q(z)
(15)

The error transfer function Gie(z) is also obtained as follows:

Gie(z) =
ierr

i∗dq
= Gepi(z)Gerp(z) (16)

where Gepi(z) and Gerp(z) are defined as follows:

Gepi(z) =
1

1 +
(

Kp +
KiTs
z−1

)
Gid(z)

=
1

1 + Gpi(z)Gid(z)
(17)
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Gerp(z) =
zN − q(z)
zN − H(z)

(18)

In (18), H(z) is defined as follows:

H(z) = q(z)− KrpzL Gid(z)
1 + Gpi(z)Gid(z)

(19)

To stabilize the loop-gain of the proposed control scheme, both Gepi(z) and Gerp(z) must be stable.
This can be easily analyzed by using the unit circle concept in the discrete time domain. In fact, Gepi(z)
is also affected by Kp and Ki. The PI gains are designed by considering the required bandwidth and
the phase margin as explained in the previous section.
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Figure 9. The proposed even harmonic repetitive current control strategy for dual-buck inverters.

The stability of Gerp(z) is influenced by Krp and L. In the z-domain, all poles of the loop-gain should
be placed in the unit circle for guaranteeing the control stability. According to the small gain theorem,
it is concluded that H(z) is stable when |H(z)| is smaller than the unity [35]. Figure 10 compares the
root loci of H(z) up to the Nyquist frequency at different Krp. It can be confirmed that the stability is
guaranteed when the Krp is 0.026 or less.
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Figure 10. The root loci of H(z) with different Krp.

Figure 11 shows the loop-gain of the proposed controller using the previously designed
parameters. As known from Figure 11, the frequency response of Ge(z) has notches in multiples
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of 120 Hz. This means errors at the even harmonics in the SRF are effectively mitigated with the
proposed control repetitive control scheme.
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Figure 11. Current control loop-gain of Gie(z).

4. Simulation and Experimental Result

4.1. Simulation Results

Figure 12 shows the simulation results of the current control under a light load condition, 300 W.
For simulations, the power electronics simulation package PSIM from Power SIM was utilized. The
parameters used in the simulation are summarized in Table 1. As can be seen in the figure, i f 1 and
i f 2 are operated in DCM. Apparently, using only the PI controllers cannot compensate the current
distortion as shown in Figure 12a. The periodic error caused by the DCM operation not only worsens
the THD, but also deteriorates the power tracking accuracy. The second-order harmonic component
is dominantly detected in the SRF. However, once the proposed repetitive controller is applied, the
current error in the SRF is almost perfectly cancelled out, as can be seen in Figure 12b.
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Table 1. System parameters.

Parameter Value (unit)

Switching frequency ( fsw) 18 kHz
Inverter side inductor (L f ) 0.5 mH

Grid side inductor (Ls) 0.5 mH
Filter capacitor (C f ) 1 µF

Damping Resistor (Rd) 5 Ω
Grid voltage in RMS 220 V/60 Hz
DC link voltage (Vdc) 380 V

Figure 13 compares the transient responses of two repetitive control schemes, the traditional
repetitive controller that compensates all harmonics, and the even harmonic repetitive controller. In
Figure 13a, the original repetitive controller starts at t = 0.1 s. About 0.2 s later, the current errors
in both the SRF become within 0.1 A, except small pulses near the zero crossing points of the grid
current. On the other hand, it takes less than 0.1 s for same amount of error convergence with the even
harmonic repetitive control strategy. As the number of samples to iterate the error signal in the even
harmonic repetitive controller is half the original one, it is reasonable that the convergence time of the
error is shorter. Thus, the proposed control scheme has better transient characteristics.
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4.2. Experimental Results

Experiments were conducted to verify the effectiveness of the designed control strategy. The same
parameters expressed in Table 1 were employed. Figure 14 illustrates the experimental setup of the DBI.
For the DBI’s switching devices, silicon carbide (SiC) MOSFET C3M0065090D manufactured from Cree
(Durham, NC, USA) were employed. Although the conduction loss seems higher than other optimized
devices, the body diode of C3M0065090D was utilized for freewheeling diodes for testing purpose.
For controller implementation, a TMS320F28335 digital signal processor (DSP) manufactured from
Texas Instruments (Dallas, TX, USA) was used. The in-house designed DSP board has the additional
circuits for digital-to-analog converter (DAC) to monitor the internal variables in the DSP. The dc-link
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and the grid voltage and the grid current are measured by using LEM’s (Geneva, Switzerland) LA55-P
and LV25-P.
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in the figure, the third harmonic component in the output current becomes dominant as a result of the
DCM operation with the traditional PI control strategy. The THD of the output current is calculated as
35.75% in this case.
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Figure 17 shows the results of the dynamic response of the conventional repetitive controller and
the even harmonic repetitive controller. The transient response is tested when the current reference is
changed from 300 W to 1 kW. As shown in figure, the dynamic response of the current control using
the even harmonic repetitive controller is better.
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5. Conclusions

This paper presents the even harmonic repetitive control strategy in the SRF for the dual-buck PV
inverter application. The system transfer functions in the SRF were derived by using the concept of
the real and the imaginary orthogonal circuits. By using the transfer functions, the loop-gain of the
proposed control strategy is analyzed. Although the even harmonic repetitive controller is designed in
the SRF, the odd harmonic components are eliminated in the grid current. As the number of iterative
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samples in the proposed method is half the original repetitive control scheme, the error convergence
time is significantly reduced, and the accuracy of the reference tracking performance is improved.
Both the simulation and the experimental results on 2 kW DBI show that the proposed repetitive
controller not only advances the dynamic properties of the current control, but also improves the
THD of the output current. At 15% load condition, where the DBI operates in the DCM, the THD of
the output current was improved from 35.75% to 10.59% using the proposed method. For the full
load condition, the THD was measured as 8.2% with the traditional PI controller, but it dropped to
3.7% with the proposed method. Finally, the current reference was changed from 0.3 kW to 1 kW to
compare the dynamic response of the even harmonic repetitive controller with the conventional one.
The experimental results show that the even harmonic repetitive controller has better performance.
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