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Abstract: Metamaterial leaky wave antennas (MTM-LWAs), one kind of frequency scanning antennas,
exhibit frequency-space mapping characteristics that can be utilized to obtain a sufficient field
of view (FOV) and reconstruct shapes in both remote sensing and microwave imaging. In this
article, we utilize MTM-LWAs to conduct a spectrally encoded three-dimensional (3D) microwave
tomography and remote sensing that can reconstruct conductive targets with various dimensions.
In this novel imaging technique, we employ the linear sampling method (LSM) as a powerful and fast
reconstruction approach. Unlike the traditional LSM using only one single frequency to illuminate
a fixed direction, the proposed method utilizes a frequency scanning MTM antenna array able to
accomplish frequency-space mapping over the targeted 3D background that includes unknown
objects. In addition, a novel technique based on a frequency and polarization hybrid method is
proposed to improve the shape reconstruction resolution and stability in ill-posed inverse problems.
Both simulation and experimental results demonstrate the unique advantages of the proposed LSM
using MTM-LWAs with frequency and polarization diversity as an efficient 3D remote sensing and
tomography scheme.

Keywords: inverse scattering; leaky wave antenna; linear sampling method; metamaterial;
microwave tomography; polarization; remote sensing

1. Introduction

Imaging and identifying targets based on electromagnetic radiation have a long history, e.g.,
X-ray imaging traces back to the early twentieth century. On the other hand, microwaves have more
penetration depth and a less destructive impact on targets than higher frequency waves like X-ray,
so the great tendency exists towards microwave imaging [1,2]. In general, imaging methods based
on so-called quantitative solutions to an inverse scattering problem are usually categorized into two
classes, i.e., weak scattering approximation and nonlinear optimization. The former exploits low or
high frequency approximations of the scattering phenomenon to linearize the data-to-unknown
relationship, and it is typically capable of providing only a rough description of the target’s
morphology [3–5]. Ill-posedness and non-linearity of inverse scattering problems are the two main
complications in the solving process. As such, different methods were proposed to approximate the
scattering based on certain constrains on the scatterer. For example, Born approximation is used when
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the scatterer has small permittivity and a small size compared to the wavelength. On the other hand,
nonlinear optimization deals with inverse scattering problems in its full nonlinearity to regulate both
morphology and electromagnetic contrasts of the target. In the case of using optimization approaches
based on minimizing an error function, the process starts with an initial guess and is optimized during
iteration stages. Since in each stage the scattering problem must be solved, nonlinear optimization
is slower, but has greater accuracy and quality of imaging than weak scattering approximation [6,7].
Other examples of these two quantitative methods are the modified gradient method [3], the distorted
Born approximation [8,9], the contrast source method [10], the subspace optimization method [11],
and the least square optimization method [12,13].

Other than quantitative approaches, there exist qualitative methods aiming to find only shapes
and locations of targets. The linear sampling method (LSM) is one of the well-developed qualitative
methods in inverse scattering, which was first introduced in 1996 for scalars [14], and later on for
vectors [15]. LSM is a very rapid computational method when compared with other optimization
approaches, as it requires very few priori data and involves only the solutions of linear ill-posed
problems. Detecting unknown objects using LSM has found diverse applications in many areas,
such as target identification, ground penetrating radars (GPR), medical diagnostics for cancer, and
hypothermia [16,17].

The complexity of three-dimensional (3D) imaging has always been an inevitable issue when
it comes from theoretical analysis to physical implementation [18]. Taking advantage of LSM in
reconstructing both two-dimensional (2D) and 3D images from scattered field data, we present
a recently developed novel type spectrally-encoded LSM method using metamaterial leaky wave
antennas (MTM-LWAs) to decrease the intricacy of the system and computation costs. In recent
years, several MTM platforms have demonstrated exotic electromagnetic (EM) properties [19–28].
In particular, it is well known that MTM-LWAs exhibit backfire-to-endfire frequency scanning
characteristics, and thus can be utilized to cover a wide field of view (FOV) for detecting unknown
targets over the operating frequency band [29–31]. As distinct positions of the unknown targets are
encoded with a specific spectral component, microwave tomography as well as remote sensing for the
entire 3D scenario can be carried out immediately by processing spectrally encoded reflected waves
using LSM, thereby increasing the FOV and system sensing speed.

In addition, in order to improve the image quality obtained from LSM, recently, the
hybridization combining LSM and quantitative methods was proposed to solve inverse scattering
problems [32–35]. Here, we present a multi-frequency hybrid technique to reconstruct unknown
object images with enhanced resolution. Although some approaches related to multi-frequency LSM
have been studied [36,37], the hybrid method presented in this paper will provide a more feasible
and efficient way to reconstruct targets with complex geometries than the previous works. On top
of this, polarization diversity is introduced into the hybrid method to improve the reconstruction
stability with respect to variances of regularization parameters. In general, it is a non-trivial task
to choose regularization parameters in order to transform an ill-posed problem into a well-posed
one. With the proposed polarization hybrid method, the regularization parameters have much looser
constraints in a broad range. Additionally, distorted effects caused by noises on the reconstruction
are mitigated significantly by employing the multi-frequency technique, which is another advantage
of the proposed technique. The paper is structured as follows. Section 2 describes the forward and
inverse scattering problem of the MTM based 3D microwave tomography mechanism. The description
and the experiment of microwave tomography are given in Section 3. In Section 4, employing LSM
using frequency scanning MTM-LWAs for remote sensing is presented. Then, a hybrid method to
improve the quality of image reconstruction by presenting a modified far-field equation to collect more
scattering information for the inverse algorithms is represented in Section 5. Finally, Section 6 contains
the conclusions.
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2. Forward and Inverse Scattering Problem

In this section, the mechanism of the proposed MTM based 3D microwave tomography is
presented. The experiment setup is shown in Figure 1. The target is composed of multi-layered
perfect electric conductor (PEC) cylinders with different radiuses, where r1 = 0.8λ, r2 = 1λ and
r3 = 2λ, and λ is the free space wavelength at 1 GHz. Two scenarios of scattering phenomena
underlying MTM-LWAs processing are considered:

• The forward scattering is based on the analytical method including mathematical formulation
and identifies the required data for the inverse scattering.

• The inverse scattering is based on LSM and represents the procedure of using the forward
scattering data.

The procedure of imaging is illustrated in Figure 1, where different elevations of the target are
spectrally encoded with a particular radiation beam from the MTM-LWA array. This results from
the fact that MTM-LWAs exhibit frequency-dependent beam-scanning capability, and the main beam
direction is a function of the frequency [38]:

θMB(ω) = 90◦ − sin−1
[

β(ω)

k0

]
(1)

where β is the propagation constant of the LWA, and k0 is the free space wave number. As β of
MTM-LWAs is able to vary from −k0 to +k0. The main beam can therefore scan continuously from
θ = +180 to 0 degree, as referred to Figure 1. In what follows, we introduce the scattering fields
caused by these conducting cylinders under transvers-magnetic (TM) polarization, and then discuss
the formulation of LSM.

2.1. Forward Scattering Problem Based on Modal Method

Let us assume that a TM plane wave is incident upon a multi-layered PEC cylinder with different
radius, as shown in Figure 1. In this setup, the scattered electrical fields for ρ and z components can be
written as [39]:

Es
ρ = E0 jcosθie+jβcosθi

n=∞

∑
n=−∞

j−nan H(2)′
n (βρsinθi)ejnφ (2)

Es
z = E0 jsinθie+jβcosθi

n=∞

∑
n=−∞

j−nan H(2)
n (βρsinθi)ejnφ (3)

where ρ, φ and z are the cylindrical coordinate components. The θ component of electrical field can
then be obtained as:

Es
θ = cos θ.Es

ρ − sin θ.Es
z (4)

where an = − Jn(βa sin θi)

H(2)
n (βa sin θi)

, Jn and H(2)
n are Bessel function and Hankel function of the second kind,

respectively. In addition, E0 is the amplitude of the incident electric field, and θi is the incidence angle
from the antenna to the target.

2.2. Inverse Scattering Problem Based on LSM

The LSM can be determined from the far field Fredholm Equation [40], as shown below:∫
Ω

Em(φm, φi)g(φi, p)dφi = Φ∞(φi, p) (5)

where Em(φm, φi) is the far-field pattern that is scattered from the targets and is measured at angle
φm, whereas φi is the angle of the incident plane wave. Also, g(φi, p) is our desired solution at each
pixel p in the sampling domain. Φ∞(φi, p) shows the far-field pattern for a current filament along the
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z axis. In order to perform the LSM, Tikhonov regularization is employed at each pixel of the domain.
Equation (5) shows a linear system of the formulation to be investigated, and the goal is to solve for
||g|| at all pixels p in the background, in which ||.|| is the norm operator. The solution to ||g|| can be
expressed as:

||g|| =
(

∞

∑
n=1

ψn
2( f , µn)(

α + ψn
2)2

) 1
2

(6)

where f is the Green’s function of a current line source with TM polarization, {µn, ψn, ϕn} is the singular
value decomposition (SVD) system of the far-field operator, ( f , µn) represents the inner product of f
and µn in Hilbert space, and α is the regularization parameter [13].
Electronics 2017, 6, 85  4 of 14 

 

 

Figure 1. Spectrally-encoded microwave tomography using frequency-mapping metamaterial leaky 
wave antennas at ଵ݂	= 1.8 GHz, 		 ଶ݂	= 2.4 GHz, 	 ଷ݂	= 3 GHz. MTM-LWA: metamaterial leaky wave 
antennas. 

2.2. Inverse Scattering Problem Based on LSM 

The LSM can be determined from the far field Fredholm Equation [40], as shown below: න ,௠(߶௠ܧ ߶௜)ɡ(߶௜, ௜߶݀(݌ = Фஶ(߶௜, Ω(݌  (5) 

where ܧ௠(߶௠, ߶௜)  is the far-field pattern that is scattered from the targets and is measured at 
angle	߶௠, whereas	߶௜ is the angle of the incident plane wave. Also, ɡ(߶௜,  is our desired solution (݌
at each pixel	݌ in the sampling domain. Фஶ(߶௜,  shows the far-field pattern for a current filament	(݌
along the z axis. In order to perform the LSM, Tikhonov regularization is employed at each pixel of 
the domain. Equation (5) shows a linear system of the formulation to be investigated, and the goal is 
to solve for ‖ɡ‖ at all pixels ݌ in the background, in which ‖	. ‖ is the norm operator. The solution 
to ‖ɡ‖ can be expressed as: 

‖ɡ‖ = ൭෍ ߰௡ଶ(݂, ߙ௡)൫ߤ + ߰௡ଶ൯ଶஶ
௡ୀଵ ൱ଵଶ ((6)

where f is the Green’s function of a current line source with TM polarization, {ߤ௡,߰௡,߮௡} is the singular 
value decomposition (SVD) system of the far-field operator, (݂,  .is the regularization parameter [13] ߙ ௡ in Hilbert space, andߤ ௡) represents the inner product of ݂ andߤ

3. Microwave Tomography 

As proof-of-concept, the operating frequencies for MTM-LWAs to reconstruct the object are 
chosen to be 1.8, 2.4, and 3 GHz, which correspond to the backward (θ = 135°), broadside (θ = 90°), 
and forward radiation (θ = 45°) of the MTM-LWAs, respectively, as referred to in Figure 1. Utilizing 
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scattered electric fields at different frequencies carry specific spatial information of the unknown 
target. The spectrally encoded information is then processed with the LSM algorithm to reconstruct 
the 2D cut of the unknown target in the full 3D space. 

Figure 1. Spectrally-encoded microwave tomography using frequency-mapping metamaterial leaky
wave antennas at f1 = 1.8 GHz, f2 = 2.4 GHz, f3 = 3 GHz. MTM-LWA: metamaterial leaky
wave antennas.

3. Microwave Tomography

As proof-of-concept, the operating frequencies for MTM-LWAs to reconstruct the object are
chosen to be 1.8, 2.4, and 3 GHz, which correspond to the backward (θ = 135◦), broadside (θ = 90◦),
and forward radiation (θ = 45◦) of the MTM-LWAs, respectively, as referred to in Figure 1. Utilizing
the scattered electric fields obtained from the theoretical analysis [19], Figure 2 plots the reconstructed
images using these three frequencies that map to the three distinct angular locations. In so doing, the
scattered electric fields at different frequencies carry specific spatial information of the unknown target.
The spectrally encoded information is then processed with the LSM algorithm to reconstruct the 2D
cut of the unknown target in the full 3D space.
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observed that the images are very similar to those computed by the aforementioned theoretical 
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reconstructed images, which may result from the stronger scattered electric fields that are captured 
from the normal incidence. 

Figure 2. Theoretical results of the linear sampling method (LSM) reconstructed profile for the
stacked cylinders with: (a) radius = 0.6λ(0.1m) at 1.8 GHz, θ = 135

◦
; (b) radius = 0.16λ(0.05m)

at 2.4 GHz, θ = 90
◦
; and, (c) radius = 0.2λ(0.02m) at 3 GHz, θ = 45

◦
(the actual target is plotted in

solid line).

The measurement setup is shown in Figure 3a, in which the target is surrounded by microwave
absorbers to reduce the undesired scattering. As shown in Figure 3a, an MTM-LWA serves as the
interrogating spectral transmitter and a broadband Vivaldi antenna (1.5–6 GHz) is utilized as the
receiver. The stacked targets composed of three conductive cylinders with different radius are located at
the turn-table center. The two rotating arms allow for us to change the positions of the transmitter and
the receiver. The measurements are carried out in steps with 20 degrees difference around the target
to obtain an 18 × 18 forward scattering electric field matrix for performing the LSM reconstruction.
Figure 3b–d illustrates the reconstructed images from the measured results. It is observed that the
images are very similar to those computed by the aforementioned theoretical analysis, except that the
actual measurement entails inevitable ambient EM noises. It is worth mentioning that the reconstructed
image at the center frequency 2.4 GHz, corresponding to the broadside radiation of the MTM-LWA, is
more accurate than the other backward and forward reconstructed images, which may result from the
stronger scattered electric fields that are captured from the normal incidence.
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(The actual target is plotted in solid line).

4. Remote Sensing

In the next scenario, we employ LSM using frequency scanning MTM-LWAs for remote sensing
applications. As plotted in Figure 4, the targets are placed in front of the aperture where the antennas
are arranged (P1–P3). The target is also placed outside of the aperture far away from the antenna (P4)
for an additional try. In this example, four PEC spheres as unknown objects are located in different
positions in the Cartesian coordinates, as shown in Figure 4. The background domain Γ has a size
of 12λ ×15λ, where λ (lambda) is the wavelength at the center frequency. In this case, we use 18
MTM-LWAs with three frequencies, in which f1 < f2 < f3, with its main beam of radiation at θ = 135◦,
90◦, and 45◦, respectively. The MTM antenna array is located at −4.5λ ≤ x ≤ 4λ, y = −5λ, with a
spacing between each LWA element equal to λ/2. With the varying frequency components, the main
lobe of the MTM array will change, and then cover the area, which may contain the unknown targets.
Figure 5 depicts the reconstruction of the spherical targets in front of a linear MTM array aperture
(line of sight direction) serving as both transmitters and receivers. The first sphere covered by the
main beam at frequency f1 and located at point P1 = (−2.5, 0,−5) is plotted in Figure 5a in terms of
the cross-range and down-range. Meanwhile, the corresponding reconstructed images of the spheres
located at P2 = (1, 1, 0) and P3 = (2, 3, 5) are plotted in Figure 5b,c, respectively. As one can observe,
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the ability of finding the target locations is reasonably good, with an expected loss of accuracy in the
target shapes. It is worth mentioning that by integrating the frequency scanning MTM-LWA array
and the inverse scattering technique using LSM, it is able to realize instant 3D remote sensing when
multiple frequency components are transmitted and received at the same time. Furthermore, to test
the reconstruction capability of the systems for the targets placed outside of the antenna aperture, we
tried a target at coordinate P4 = (7, 3, 0). The result is shown in Figure 5d, demonstrating the ability of
detecting targets even when they are not aligned to the line of sight of the MTM antenna aperture.
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Figure 5. Reconstructed image of sphere located at (a) P1 = (−2.5, 0,−5) at frequency f1 where θMB
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target is plotted in dotted line).
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5. Hybrid Formulation Using Modified Equation

Image reconstruction based on the LSM highly depends on the forward matrices [41], which is
the forward scattering information obtained from the incident waves illuminated by the transceiving
antennas. In this section, we will improve the image reconstruction quality by presenting a modified
far-field equation to collect more scattering information for the inverse algorithms. Let us assume
a primary scenario illustrated in Figure 6. The unknown object to be reconstructed is located in the
free space and it is homogeneous along the z-axis. Electromagnetic (EM) waves are illuminated and
received by the half-wavelength dipole antennas surrounding the target, which satisfies the far-field
condition. We define two kinds of modified g of geometric and arithmetic average as below:

gMODg = m
√

g1g2g3 . . . gm (7)

gMODa =
g1 + g2 + g3 + . . . + gm

m
(8)

In which the set of gi′s indicates the solutions at a certain frequency with a transverse-electric
(TE) or transverse-magnetic (TM) polarization. The selection of the frequencies must be conducted
and properly to be close to each other for a higher resolution. As a result, since any linear combination
of the solutions contains specific information of the shape boundaries, we can have a distinct contrast
in the reconstructed image when comparing with the one using only a single frequency.

On the other hand, one of the most important procedures in LSM is choosing the correct amount
of α, the Tikhonov regularization parameter [15]. This parameter is a real and positive value altering
the reconstructed shape boundaries. By using hybrid polarization, the sensitivity of choosing the
parameter α can be reduced, which allows us to select α from a much broader range.
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To illustrate, let us consider a more critical frequency for LSM at 3 GHz, and the number of
antennas N is chosen to be 18 as:

N = 2kaγ (9)

where γ is an experimental parameter. For targets whose sizes are comparable with the wavelength,
i.e., in the resonant region, it is appropriate to choose γ ≈ 2, whereas for larger targets, it is preferable
to choose γ ≈ 1 [13]. In Equation (9), a is the radius of the minimum circle containing the target.
First, we illuminate waves at the single frequency of 3 GHz to the PEC target with a drop-shape
cross-section using the TM polarization. The dipole antennas are placed 50 cm away from the target,
as shown in Figure 6. The forward scattering simulation is carried out using the electromagnetic (EM)
software CST (Version 2015, Computer Simulation Technology, Darmstadt, Germany, 1992). Figure 7
shows the reconstructed drop-shape image obtained from the single frequency at 3 GHz. To compare,
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Figure 8a,b are calculated based on the geometric average in Equation (7), utilizing 5 and 11 frequency
components around the 3 GHz band, respectively. It can be seen with more frequencies utilized,
further enhancements on image quality are obtained. Figure 9 plots the results using 11 frequency
components based on the arithmetic average shown in Equation (8), also indicating an improvement
of the image resolution. It is obvious that the image boundaries using multiple frequencies in the
proposed modified method are much clearer than the ones using single frequency. The frequencies
must be selected in an appropriate range near the central frequency because choosing frequencies in a
broad and divergent band will cause distortion in image reconstruction.
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One of the challenges in inverse scattering problems lies in the regularization and the selection
of regularization factor α. To loosen this constraint, the stability of the reconstructed image can be
enhanced by the hybrid polarization containing both TM and TE polarizations. As shown in Figures 10
and 11, when we vary the regularization factor α from 10−1 to 10−14, it is observed that the image
quality deteriorates much less in the hybrid polarization than in the single polarization. This indicates
that there is less distortion when using the proposed polarization hybrid method than when using
only the single TM polarization, when α varies significantly. Such advantage will be particularly
useful in the situations when the selection of regularization parameter significantly impacts the image
reconstruction. Finally, by comparing the reconstruction of the target associated with noise effects
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in the single frequency with that in the multi-frequency technique, the results obtained from the
multi-frequency approach are more realizable than the single frequency approach. An additive white
Gaussian noise (AWGN) with signal to noise ratio (SNR) = 10 dB is used to simulate the noise effect
in a real environment. The reconstruction images obtained from the single frequency (3 GHz) and
multi-frequency with the noise effect at the same frequency, are shown in Figure 12a,b, respectively. It
can be clearly seen that using multi-frequency results in a better reconstruction image.
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Figure 9. LSM reconstructed profile using 11 frequency components from 2.5 to 3.5 GHz, based on the
arithmetic average in Equation (8).
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Figure 10. Reconstructed image in single polarization TM (transvers-magnetic) when α changes:
(a) α = 10−1; (b) α = 10−4; (c) α = 10−14.
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Figure 11. Stability of reconstructed images in polarization TM & TE (transverse-electric) hybrid when
α changes is more than single polarization: (a) α = 10−1; (b) α = 10−4; (c) α = 10−14.
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6. Conclusions

In this paper, we discuss the recent advances in the inverse scattering scheme for microwave
tomography based on LSM using frequency scanning MTM-LWAs. We have shown that with different
spectrally encoded radiation beams enabled by MTM-LWAs, the 2D cuts of unknown shaped targets
in 3D space can be successfully reconstructed using LSM. We also introduce a novel remote sensing
scheme integrating frequency scanning MTM-LWAs with the inverse scattering method using LSM.
The data obtained from forward scattering in this sensing system are transferred to the inverse method
using LSM to detect the locations of unknown objects. Furthermore, in the case that the object is
outside the line of sight of the antenna aperture, the reconstruction still works effectively. The time
spent for measuring the S-parameters is about 35 min, and most of the time is used for manually
locating the antennas around the turn-table. Using an electronic machine to rotate the antennas in
the future research is expected to decrease the measuring time and increase the accuracy. On the
other hand, the time spent for shape reconstruction is less than 4 s using a 64-bit Intel processor with
2 GHz clock and 4 GB Random-access memory (RAM). The proposed sensing scheme is expected to
be utilized in efficient, low complexity, and low-cost sensing schemes. Finally, we presented a simple
and effective version of modified far-field equations in the LSM formulation for image-enhanced
object reconstruction. By using multiple frequencies in the forward scattering model, we can obtain
reconstructed images with higher resolution. In addition, with the polarization hybrid technique,
the stability of the image resolution against regularization parameters can be improved significantly.
This unique combination of MTM-LWAs and the LSM will open up many promising applications in
microwave medical imaging and non-destructive sensing areas with low latency, by reducing system
complexity and increasing the field of view.
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