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Abstract: One of the key parameters in determining the power conversion efficiency (PCE) of bulk
heterojunction (BHJ) organic solar cells (OSCs) is the open circuit voltage (VOC). The processes
of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are
found to produce two different expressions for VOCs. Using the contributions of electron and hole
quasi-Fermi levels and charge carrier concentrations, the two different VOC expressions are derived
as functions of the energetics of the donor and acceptor materials and the photo-generated charge
carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation
of both the donor and acceptor materials is also considered and the corresponding VOC, which is
different from the above two, is derived. The VOC calculated from the photoexcitation of the donor
is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor
in most combinations of the donor and acceptor materials considered here. It is also found that
the VOC calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also
comparable with the other two VOCs. All three VOCs thus derived produce similar results and agree
reasonably well with the measured values. All three VOCs depend linearly on the concentration of
the photoexcited charge carriers and hence incident light intensity, which agrees with experimental
results. The outcomes of this study are expected to help in finding materials that may produce higher
VOC and hence enhanced PCE in BHJ OSCs.

Keywords: open circuit voltage; power conversion efficiency; photoexcitation; donor material;
acceptor material; bulk heterojunction organic solar cells

1. Introduction

Organic solar cells (OSCs) based on bulk heterojunction (BHJ) structure are promising candidates
for the generation of clean, affordable electricity owing to their low fabrication cost compared to
inorganic solar cells [1,2]. Recent research efforts into the development of new donor-acceptor blends
have led to a significant improvement in the power conversion efficiency (PCE) of OSCs, above
11% [3–6], which is gradually moving OSCs closer to commercialization. However, poor material
properties such as low charge carrier mobilities, low dielectric constants, and poor band offsets
have led to the low PCE of OSCs relative to their silicon counterparts [1]. Hence, optimization of
these parameters is essential for improving the performance of OSCs. Considerable attention has
recently been focused on exploring strategies for the further optimization of the PCE, guided by a
thorough understanding of the fundamental mechanisms that govern the photovoltaic performance
of OSCs [7]. The following four processes distinguish BHJ OSCs from their inorganic counterparts:
(i) photon absorption and exciton formation; (ii) exciton diffusion to the donor-acceptor (D-A) interface;
(iii) exciton dissociation into free charge carriers at the D-A interface; and (iv) charge transport and
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collection at their respective electrodes [8,9]. These processes should be efficient enough to achieve an
enhanced PCE of BHJ OSCs.

One of the important parameters of BHJ OSCs is the open-circuit voltage VOC, which is the
voltage at which the net current flowing through the device is zero. It is established that in BHJ OSCs,
VOC depends on the energetic difference between the lowest unoccupied molecular orbital (LUMO)
of the acceptor material (EA

LUMO) and the highest occupied molecular orbital (HOMO) of the donor
material (ED

HOMO), called the donor-acceptor effective energy gap (EDA) [10–14]. Until now, the most
explored approach to increasing VOC of BHJ OSCs has been to increase the energy of the LUMO of the
fullerene acceptor material or decrease the energy of the HOMO of the donor material, or both [10–15].
Scharber and co-workers [10] empirically defined VOC as:

qVOC = EA
LUMO − ED

HOMO − ∆Eloss (1)

where q is the elementary charge and ∆Eloss is an empirical value denoting the energy losses occurring
in transporting the charge carriers to the electrodes [16–18].

The validity of Equation (1) has been established for a number of donor-acceptor (fullerene)
blends with a voltage loss ∆Eloss ranging from 0.3−0.6 eV [19,20]. The question that may be asked is:
what are the possible causes of the voltage loss ∆Eloss and how can it be reduced? The origin of ∆Eloss
is still being debated, with several possible mechanisms such as bimolecular recombination, coulombic
interactions, energetic disorder, etc., [12,16–18,21,22]. An important loss mechanism in BHJ OSCs is
the bimolecular recombination of free charge carriers with its rate R given by [23,24]:

R = γnp (2)

where γ = γpre
q

εoεr
(µe + µh) is the bimolecular recombination coefficient (m3s−1): γpre is the

dimensionless reduction prefactor, ε0 is the permittivity of free space, εr is the dielectric constant, and
µe(µh) is the electron (hole) mobility (m2/Vs) in the active organic layer.

By minimizing the nonradiative bimolecular recombination in BHJ OSCs [25], one can minimize
the voltage loss and eventually increase VOC. Recent studies [26,27] have shown that VOC can be
determined more accurately by measuring the bimolecular recombination rate. These studies have
also considered the influence of light intensity on VOC by varying the carrier concentration due to
photoexcitation. Lange et al. [28] studied the dependence of VOC on the charge carrier concentration in
polymer:fullerene blends using bias amplified charge extraction (BACE) measurements. In addition,
as stated above, the energy loss also occurs due to the energetic disorder, which reduces the VOC.
A few recent studies have shown the effect of energetic disorder on VOC using a Gaussian density of
states (DOS) [29–31]. Garcia et al. [29] developed a model to predict the VOC values by introducing
DOS distributions of the HOMO in donor and the LUMO in acceptor materials. In their study,
the energetic disorder is modeled by the Gaussian DOS with the mean energy equal to EA

LUMO and
standard deviation σe for the acceptor material and corresponding ED

HOMO and σh for the donor
material. In other studies [16,25,32–36], the role of energetics with respect to charge carrier dynamics
and coulombic interactions have been analyzed. Credgington and Durrant [32] studied the dependence
of VOC on the generation and recombination dynamics; they studied the dependence of VOC on the
charge carrier concentration and carrier recombination lifetime. Vandewal et al. [25,33–35] derived a
relationship between VOC and the energy of the charge transfer (CT) exciton state ECT by incorporating
the energetic disorders. However, other works [16,36] have derived different expressions relating VOC
and ECT in OSCs which exclude the influence of energetic disorder.

Despite numerous attempts to study VOC and the associated energetic loss mechanisms in BHJ
OSCs, there appears to be few attempts being made to understand whether it depends on the
concentration of photoexcited charge carriers in the donor and acceptor materials. This may be
due to the fact that as the two materials, donor and acceptor, are blended together in a BHJ structure,
they cannot be separately excited experimentally. However, in order to understand the contributions
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of photoexcitation of donor and acceptor materials to the performance of a BHJ OSC, one may seek to
assess the performance considering the two cases separately: (1) when absorption and photoexcitation
occur only in the donor and (2) when these occur only in the acceptor. Such a study can only be carried
out theoretically, as presented here. When an exciton is excited in the donor in a BHJ OSC, its electron
can be transferred from the donor LUMO to the acceptor LUMO at the D-A interface because the
acceptor LUMO lies at a lower energy (see Figure 1a). In this process, an exciton becomes a CT exciton
as its electron is transferred to the acceptor and its hole remains in the donor, as shown in Figure 1c.
Likewise, when an exciton is excited in the acceptor, its hole can be transferred from the acceptor
HOMO to the donor HOMO, being at a lower hole energy (see Figure 1b), which also creates a CT
exciton with an electron in the acceptor LUMO and a hole in the donor HOMO, as shown in Figure 1c.
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Figure 1. Schematic representations of (a) the photoexcitation of the donor and the transfer of an
electron to the acceptor at the interface; (b) the photoexcitation of the acceptor and the transfer of a
hole to the donor at the interface; and (c) the formation of charge transfer excitons (CT) through both
(a,b) processes in bulk heterojunction (BHJ) organic solar cells (OSCs).

This has prompted several researchers to investigate the above two processes in more
detail [37–46]. Recently, two different external quantum efficiencies (EQE) due to different donor and
acceptor absorption bands have been reported [37]. The difference in the absorption bands can be
attributed to the difference in the energy levels involved. The times of transfer of electrons from the
donor LUMO to the acceptor LUMO and that of holes from the HOMO of the acceptor to the HOMO
of the donor have been measured [38,39] and have been found to be different; the hole transfer was
found to be faster than the electron transfer. This may be expected to lead to generating different
concentrations n and p of electrons and holes. Different charge generations by exciting the donor and
acceptor individually have also been reported in some donor-acceptor combinations [40], and different
internal quantum efficiencies (IQE) have also been observed [41]. Some studies have demonstrated that
BHJ OSCs based on thienothiophene-substituted diketopyrrolopyrrole (DPP) polymers (PDPP2TT-T)
possess an EQE of 0.63–0.78 within the wavelength range of acceptor-fullerene absorption (400–650 nm),
whereas a lower EQE of 0.35–0.50 is achieved within the range of donor-polymer absorption
(650–900 nm) [41,42]. Such a difference may not be attributed to a difference in absorption of
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photons in the different materials, but may be due to the difference in charge generation. In another
study, Baulin et al. [43] compared the dynamics of CT states generated through electron-transfer and
hole-transfer exciton-dissociation pathways in three BHJ OSCs, and they found that the dynamics
of CT state recombination are very similar for the two charge-generation processes, implying that
the nature of the generated CT states is independent of the pathways of CT formation. They did,
however, observe that the generation of CT states and free charge carriers greatly depends on the
actual LUMO energy offset ∆ELUMO = ED

LUMO − EA
LUMO (electron transfer) and the HOMO energy

offset ∆EHOMO = ED
HOMO − EA

HOMO (hole transfer) of the blended system [44]. These energy offsets
are independent of the pathway of the formation of CT excitons. Singh et al. [45,46] recently studied
the contribution of exciton generation in the donor and acceptor materials and its dissociation to the
performance of BHJ OSCs. They found that the absorption and dissociation rates as well as exciton
diffusion lengths are comparable whether excitons are generated in the donor or acceptor.

In this paper, we investigate in detail the difference in the open circuit voltage
from the photoexcited donor and photoexcited acceptor separately in the following
seven different polymer:fullerene blends: poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-
phenylenevinylene] (MDMO-PPV), regioregular poly(3-hexylthiophene) (P3HT), poly[N-9′-
heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), poly[2-(3,7-
dimethoxyoctyloxy)-5-methoxy-1,4-phenylene vinylene] (OC1C10-PPV), poly[4,8-bis[(2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,
4-b]thiophenediyl] (PTB7), mono-DPP, and bis-DPP blended with different derivatives of
methano-fullerene[6,6]-phenyl C61,-butyric acid methyl ester (PCBM). We derived two different
expressions for VOC in BHJ OSCs. The first expression, which is a result of photoexcitation of the
donor, depends primarily on the energetic difference between the hole quasi-Fermi level (Eh

F) and the
HOMO of the donor material (Eh

F − ED
HOMO) and the electron concentration n. The second expression,

which is a result of photoexcitation of the acceptor, depends primarily on the energetic difference
between the LUMO and the electron quasi-Fermi level (Ee

F) of the acceptor material (EA
LUMO − Ee

F)

and the hole concentration p. Thus, the two open circuit voltages calculated in each selected D-A blend
are presented here and their influences on the performance of BHJ OSCs are discussed. Following this,
the simultaneous photoexcitation of both the donor and acceptor materials is also considered and
the corresponding VOC, which is different from the above two, is derived, and the calculated VOCs
are compared with their corresponding measured values and a reasonably good agreement is found
between them.

2. Theoretical Formalism

Under no illumination condition of equilibrium, assuming the condition of the open circuit
voltage in a BHJ OSC, the electron and hole current densities are assumed to be independently zero,
and under this condition the quasi-Fermi levels in the donor and acceptor materials are iso-energetic at
energy EF throughout the device. Once such a BHJ OSC is illuminated, charge carriers are continuously
generated in the active layer. As the concentration of charge carriers increases, the quasi-Fermi level
EF splits into the hole and electron quasi-Fermi levels located, respectively, at energies Eh

F in the donor
material and at Ee

F in the acceptor, as shown in Figure 2.
Under the condition of illumination, VOC in any BHJ OSC is given by [47]:

qVOC = Ee
F − Eh

F (3)
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Figure 2. Schematic representation of the different energy levels, quasi-Fermi energy levels, and VOC

in a BHJ OSC with a donor-acceptor blend under the open circuit condition.

The Fermi energies Ee
F and Eh

F may be expected to be different for excitations of the donor and
acceptor individually. Although the difference may not be expected to be significant, this may lead to
two different values of VOC according to Equation (3).

2.1. Photoexcitation of the Donor

We consider the photoexcitation of only the donor material here, where an excited exciton at the
D-A interface forms a CT exciton by transferring its electron to the acceptor’s LUMO, being at a lower
energy [48]. The electron concentration (n) in the LUMO of the fullerene-acceptor material and the
hole concentration (p) in the HOMO of the polymer-donor material are, respectively, given by the
Boltzmann distribution as [49]:

n = NC exp[(Ee
F − EA

LUMO)/kBT] (4)

p = NV exp[(ED
HOMO − Eh

F)/kBT] (5)

where NC(NV) (m−3) is the effective density of states for the LUMO (HOMO) of the acceptor (donor)
material, T is the temperature, and kB is the Boltzmann constant.

Under the conditions of VOC and bimolecular recombination, the generation rate of photoexcited
electron and hole pairs G is equal to the bimolecular recombination rate given in Equation (2),
which gives:

G = R = γnp (6)

Assuming a non-optimized BHJ OSC with unbalanced charge carrier mobilities (µe 6= µh),
we assume that n 6= p [39,40], and then divide Equation (6) by n2 to obtain:

p
n
=

G
γn2 (7)
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Dividing Equation (5) by Equation (4) and using it in Equation (7) gives:

G
γn2 =

NV
NC

exp[
1

kBT
(ED

HOMO + EA
LUMO − Eh

F − Ee
F)] (8)

Substituting EA
LUMO = ED

HOMO + EDA into Equation (8) and using Equation (3), we get:

kBT ln
NCG

NVγn2 = (2ED
HOMO − 2Eh

F − qVOC + EDA) (9)

Assuming NC = NV [38,41], and rearranging Equation (9), we obtain VOC related to the excitation
of donor only as:

VD
OC =

1
q
(EDA − A + 2kBT ln n) (10)

where:
A = 2(Eh

F − ED
HOMO) + kBT ln(G/γ) (11)

2.2. Photoexcitation of the Acceptor

Next, we consider the photoexcitation of only the acceptor material, where the excited exciton at
the D-A interface forms a CT exciton by transferring its hole to the donor’s HOMO, being at a lower
energy [48]. This gives a different open circuit voltage, which is derived as follows.

Here, we divide both sides of Equation (6) by p2 to obtain:

n
p
=

G
γp2 (12)

Dividing Equation (4) by Equation (5) and using it in Equation (12) gives:

G
γp2 =

NC
NV

exp[
1

kBT
(Ee

F − ED
HOMO − EA

LUMO + Eh
F)] (13)

Substituting ED
HOMO = EA

LUMO − EDA into Equation (13) and using Equation (3), we get:

kBT ln
NCG

NVγp2 = (2Ee
F − 2EA

LUMO − qVOC + EDA) (14)

Assuming NC = NV [38,41] and rearranging Equation (14), we obtain VOC for this case as:

VA
OC =

1
q
(EDA − B + 2kBT ln p) (15)

where:
B = 2(EA

LUMO − Ee
F) + kBT ln(G/γ) (16)

We have thus derived two different expressions for the VOC; the first one in Equation (10) is
obtained when the donor material is excited and the second in Equation (15) is obtained when the
acceptor is excited.

2.3. Simultaneous Photoexcitation of the Donor and Acceptor

The theoretical developments presented in Sections 2.1 and 2.2, where only the donor or acceptor is
excited, are mostly applicable in layered structures of donor and acceptor organic solar cells. However,
in a BHJ OSC where the donor and acceptor are blended together in the active layer, both the donor
and acceptor may be excited simultaneously. In this case, we obtain a different VOC as follows.
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Multiplying Equations (4) and (5), we obtain:

np = NC NV exp[(Ee
F − Eh

F + ED
HOMO − EA

LUMO)/kBT] (17)

Substituting −EDA = ED
HOMO − EA

LUMO and using Equation (3) in Equation (17) we thus get:

VDA
OC =

1
q
[EDA − C + 2kBT ln

√
(np)] (18)

where:
C = kBT ln NC NV (19)

It may be noted that, unlike VOCs obtained in Equations (10) and (15), which depend on the
electron (n ) and hole (p) concentrations, respectively, Equation (18) depends on both n and p.
The dependence of VOC in Equation (18) on

√
np is presented mainly to compare it with the results

derived in Equations (10) and (15).

3. Results

For calculating the VOC using Equations (10), (15), and (18), we require some material-dependent
input parameters. For this, as stated above, we chose seven donor-acceptor blends with known input
parameters available in the literature, as listed in Table 1.

Table 1. List of input parameters required for calculating VOC from Equations (10), (15), and (18):
EDA/q = (EA

LUMO − ED
HOMO)/q, generation rate of bound polaron pairs (G) and bimolecular

recombination coefficient (γ), electron (hole) mobility µe(µh), and dielectric constant εr of each
donor-acceptor (D-A) blend.

Active Layer Blend EDA
q (V) G

(1027m−3s−1)
γ

(10−17 m3s−1)
µe

(m2V−1s−1)
µh

(m2V−1s−1) εr

MDMO-PPV:PC61BM 1.30 1 2.7 8 5.73 2 × 10−7 8 2 × 10−8 8 3.4 8

P3HT:PC60BM 1.00 2 6.25 2 7.08 1 × 10−7 2 1 × 10−8 2 3.4 2

PCDTBT:PC71BM 1.20 3 1.0 9 0.1 2.9 × 10−7 9 3.0 × 10−9 9 3.4 9

OC1C10-PPV:PC61BM 1.30 4 2.7 10 7.30 2.5 × 10−7 10 3.0 × 10−8 10 3.4 10

PTB7:PC71BM 1.09 5 10 11 5.91 1 × 10−7 11 2.0 × 10−8 11 3.5 11

mono-DPP:PC71BM 1.16 6 4.99 13 5.3 1 × 10−7 12 2.0 × 10−9 12 4.0 12

bis-DPP:PC71BM 1.20 7 4.12 14 2.6 1.5 × 10−7 12 3.4 × 10−8 12 4.0 12

1 [50]; 2 [51]; 3 [52]; 4 [53]; 5 [54]; 6 [55]; 7 [56]; 8 [57]; 9 [58]; 10 [59]; 11 [60]; 12 [61].

The values of γ for PCDTBT:PC71BM [58], mono-DPP:PC71BM [61], and bis-DPP:PC71BM [61] are
taken from the literature, and those of the remaining four blends, MDMO-PPV:PC61BM P3HT:PC60BM,
OC1C10-PPV:PC61BM, and PTB7:PC71BM, are calculated using the bimolecular recombination
coefficient equation described in the text. In addition, we need the values of (Eh

F − ED
HOMO) and

(EA
LUMO − Ee

F), as well as the carrier concentrations n and p in each blend to calculate VOC from
Equations (10), (15), and (18), which are also listed in Tables 2 and 3. However, it may be noted that
both n and p are only available for PTB7:PC71BM [62] as given in Tables 2 and 3. In mono-DPP:PC71BM
and bis-DPP:PC71BM, only the electron concentration n is known in the literature [63]. Consequently,
to find the hole concentration p in these two blends, we used Equation (7) and calculated p; these n
and p thus obtained are listed in Tables 2 and 3. We first used the n and p values determined above for
PTB7:PC71BM, mono-DPP:PC71BM, and bis-DPP:PC71BM in Equations (4) and (5), and calculated their
energetic distances (EA

LUMO − Ee
F) and (Eh

F − ED
HOMO), respectively, at 300 K by assuming the effective

density of states NC = NV = 1 × 1025 m−3 in each blend.
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Table 2. The calculated values of (Eh
F − ED

HOMO)/q and electron concentration n used in calculating the
open circuit voltage VD

OC from Equation (10), the calculated voltage offset (EDA/q−VD
OC) for comparison

with other known results, and the corresponding measured open circuit voltage Vmeas.
OC .

Active Layer Blend (Eh
F − ED

HOMO)/q (V) n (m−3) VD
OC (V) (EDA/q− VD

OC) (V) Vmeas.
OC (V)

MDMO-PPV:PC61BM 0.20 1.80 × 1022 0.95 0.35 0.83 [64]
P3HT:PC60BM 0.26 1.80 × 1022 0.51 0.49 0.63 [51]

PCDTBT:PC71BM 0.22 1.80 × 1022 0.73 0.47 0.85 [65]
OC1C10-PPV:PC61BM 0.20 1.80 × 1022 0.96 0.34 0.85 [59]

PTB7:PC71BM 0.18 1.90 × 1022 0.75 0.34 0.75 [54]
mono-DPP:PC71BM 0.20 2.50 × 1022 0.81 0.35 0.78 [61]

bis-DPP:PC71BM 0.17 1.00 × 1022 0.85 0.35 0.52 [61]

Table 3. The calculated values of (EA
LUMO − Ee

F)/q and hole concentration p used in calculating
open-circuit voltage VA

OC from Equation (15), the calculated voltage offset (EDA/q − VA
OC), and the

corresponding measured open circuit voltage Vmeas.
OC .

Active Layer Blend (EA
LUMO − Ee

F)/q (V) p (m−3) VA
OC (V) (EDA/q− VA

OC) (V) Vmeas.
OC (V)

MDMO-PPV:PCBM 0.18 0.95 × 1022 0.93 0.37 0.83 [64]
P3HT:PC60BM 0.24 0.95 × 1022 0.52 0.48 0.63 [51]

PCDTBT:PC71BM 0.20 0.95 × 1022 0.73 0.47 0.85 [65]
OC1C10-PPV:PC61BM 0.19 0.95 × 1022 0.94 0.36 0.85 [59]

PTB7:PC71BM 0.16 0.89 × 1022 0.75 0.34 0.75 [54]
mono-DPP:PC71BM 0.16 0.38 × 1022 0.79 0.37 0.78 [61]

bis-DPP:PC71BM 0.18 1.58 × 1022 0.85 0.35 0.52 [61]

For the other four blends considered here, MDMO-PPV:PC61BM, P3HT:PC60BM,
PCDTBT:PC71BM, and OC1C10-PPV:PC61BM, the n and p concentrations are not known. As the
n and p concentrations in all the three materials are of the order of 1022 m−3 (see Tables 2 and 3),
we used the average values of n, which is 1.8 × 1022 m−3, and p, which is 0.95 × 1022 m−3,
for PTB7:PC71BM, mono-DPP:PC71BM, and bis-DPP:PC71BM, and calculated the energetic distances
(Eh

F − ED
HOMO) and (EA

LUMO − Ee
F) for the other four blends (see Tables 2 and 3). That is to say, using

Equations (4) and (5) with NC = NV = 2.5 × 1025 m−3 known for MDMO-PPV:PC61BM [17,57],
NC = NV = 2 × 1026 m−3 for P3HT:PC60BM [1], NC = NV = 5 × 1025 m−3 for PCDTBT:PC71BM [52],
and NC = NV = 2.5 × 1025 m−3 for OC1CI0-PPV:PC61BM [1,59], in addition to the corresponding
average charge carrier concentrations n = 1.8 × 1022 m−3 and p = 0.95 × 1022 m−3, we calculated
(EA

LUMO − Ee
F) and (Eh

F − ED
HOMO), respectively, in the other four blends.

Using these parameters in Equations (10) and (15), the VOC is calculated in all seven blends for
the photoexcitation of the donor and acceptor as given in Tables 2 and 3, respectively. The calculated
values of VOC from Equation (10) when the donor is excited in most selected materials are somewhat
comparable with those calculated from Equation (15) when the acceptor is excited, as also shown in
Figure 3. In addition, considering the case of simultaneous photoexcitation of donor and acceptor
materials, the open circuit voltage in each blend is calculated from Equation (18) as given in
Table 4. All the three VOCs obtained from the asynchronous and simultaneous photoexcitations
of donor and acceptor are found to be comparable and agree well with the corresponding measured
values [51,54,59,61,64,65].

The open circuit voltages VOCs calculated from Equations (10) and (15) are plotted as a function
of the effective band gap EDA/q as shown in Figure 3, which illustrates that VOC calculated from
Equation (10) is slightly higher than that from Equation (15).
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Figure 3. Open circuit voltage VOC plotted as a function of effective band gap EDA/q for
non-optimized P3HT:PC60BM with large photocarrier mobility mismatch (µe 6= µh), at energetic
distances (Eh

F − ED
HOMO)/q = 0.26 V with n = 1.80 × 1022 m−3 and (EA

LUMO − Ee
F)/q = 0.24 V with

p = 0.95 × 1022 m−3 in the donor and acceptor materials, respectively.

Table 4. The calculated values of open circuit voltage VDA
OC from Equation (18) using the n and p values

listed in Tables 2 and 3, respectively, voltage offset (EDA/q−VDA
OC ) upon simultaneous excitation of both

the donor and acceptor materials, and the corresponding measured open circuit voltage Vmeas.
OC .

Active Layer Blend VDA
OC (V) (EDA/q− VDA

OC) (V) Vmeas.
OC (V)

MDMO-PPV:PC61BM 0.91 0.39 0.83 [64]
P3HT:PC60BM 0.50 0.50 0.63 [51]

PCDTBT:PC71BM 0.77 0.43 0.85 [65]
OC1C10-PPV:PC61BM 0.91 0.39 0.85 [59]

PTB7:PC71BM 0.74 0.35 0.75 [54]
mono-DPP:PC71BM 0.79 0.37 0.78 [61]

bis-DPP:PC71BM 0.85 0.35 0.52 [61]

Finally, as stated previously, in a BHJ OSC the donor and acceptor materials are blended
together. Consequently, both the donor and acceptor are excited simultaneously, resulting in one
open circuit voltage as derived in Equation (18), which is used to calculate the VDA

OC for simultaneous
photoexcitations of both the donor and acceptor in each of the selected blends, as listed in Table 4.
The measured values of open circuit voltage Vmeas.

OC are also given in Table 4 for comparison.

4. Discussions

A comprehensive study of the open circuit voltage in BHJ OSCs has been carried out.
Three different expressions for VOC are derived; the first in Equation (10) is obtained when the
donor material in a BHJ OSC is excited, the second in Equation (15) is obtained when the acceptor
material is excited, and the third in Equation (18) is obtained when both the donor and acceptor
materials are excited simultaneously. As stated previously, when the photoexcitation occurs in
the donor, an electron is transferred from the LUMO of the donor to the LUMO of the acceptor,
and conversely, when photoexcitation occurs in the acceptor, a hole is transferred from the HOMO
of the acceptor to the HOMO of the donor [48]. The photoexcitation of the donor and acceptor
individually produces comparable VOC values from Equations (10) and (15), as shown in Figure 3.
Moreover, according to Figure 3, the linear correlation between VOC and EDA/q agrees well with
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previous studies [20,30,32,33,64]. The third open circuit voltage VDA
OC calculated in Equation (18) from

the simultaneous excitations of both the donor and acceptor, as given in Table 4, is also comparable
with the other two VOCs. All three VOCs thus derived produce comparable results and agree reasonably
well with the experimental values (see Tables 2–4). However, the calculated VOC values in Tables 2–4
are obtained from slightly different energetic parameters; as a result, we obtained three different
sets of VOCs for the photoexcitation of the donor, photoexcitation of the acceptor, and simultaneous
photoexcitation of both. However, experimentally, there is only one set of measured values of VOC
to compare the theoretical results with. As a result, the calculated range of VOC for the materials
considered here is 0.50–0.96 V, which is slightly different from the range of experimental values
(0.52–0.85 V). Thus, as stated above, this discrepancy may be attributed to the different energies
(Eh

F − ED
HOMO)/q used in the calculation of VOC from Equations (10), (15), and (18).

In addition, the two VOCs in Equations (10) and (15) depend linearly on ln n and ln p, respectively,
and this agrees well with previously measured results [28,63]. This also holds for VOC derived
from Equation (18), which depends on ln(

√
np). By setting n = p in Equations (10), (15),

and (18), we found that all three VOCs increase linearly with ln n and have the same slope equal
to kBT

q / log(exp(1)) ≈ 2.3 × 2kBT/q ≈ 119 mV. This implies that the materials with higher
photo-generated charge carrier concentration will have higher VOC in comparison with materials with
lower carrier concentration.

It is also worth noting that the dependence of VOC on the incident light intensity has been
studied [17,24]. Substituting np = G

γ ∝ Iabs = Io[1− exp(−αt)] into Equation (18), where Iabs is the
absorbed light intensity, I0 is the incident light intensity, α is the absorption coefficient, and t is the
thickness of the active layer, we get:

VDA
OC =

1
q
[EDA + kBT ln I0 + constant] (20)

The VOC in Equation (20) depends linearly on ln I0 with a slope of kBT
q , which agrees perfectly

well with the plotted VOC as a function of ln I0 in [17,24].
Orlowski et al. [66] used the energetics of quasi-Fermi levels to study VOC in a heterojunction

solar cell. They found that for a particular donor (p-type)-acceptor (n-type) heterojunction, the electron
concentration (n) in the conduction band (LUMO) of the acceptor and the hole concentration (p) in
the valence band (HOMO) of the donor, coupled with their respective quasi-Fermi levels, can create
open circuit voltages like two independent cells. This agrees very well with our concept of deriving
two different VOCs in Equations (10) and (15), although both the expressions produce similar results.

Furthermore, we find that the VD
OC lies 0.34–0.49 V below the EDA/q in column 5 of Table 2 when

the donor is excited, comparable to 0.34–0.48 V below the EDA/q in column 5 of Table 3 when the
acceptor is excited. This implies that both the donor and acceptor photoexcitations can contribute to the
achievable open circuit voltage as well as the photovoltaic performance of BHJ OSCs; this agrees with
our earlier results [45]. The voltage offsets (EDA/q−V j

OC) (where j = D, A or DA) of the various blends
listed in Tables 2–4, ranging from 0.34–0.50 V, agree well with the experimental values measured at
room temperature in the range of 0.25–0.48 V for small molecule OSCs [67], 0.32 V for polymer:fullerene
solar cells of indacenoedithiophene (IDT) polymer [68], 0.34–0.44 V for a range of donor-acceptor
blends [69], 0.38 V for OC1C10-PPV:PCBM solar cells [12], and 0.30–0.60 V for BHJ OSCs [20]. Other
low voltage offsets (EDA/q−V j

OC) that have been reported recently are 0.25 V for an evaporated bilayer
OSC [70], 0.23 V and 0.26 V for diketopyrrolopyrrole-thieno[2,3-f]benzofuran (DTD):PC60BM and
DTD:naphthalene diimide acceptor-polymer (N2200) systems, respectively [71], and 0.34–0.40 V for
BHJ OSCs [72], with which our calculated values also somewhat agree in the range.

Overall, it may be deduced from our results that separate and simultaneous photoexcitations
of the donor and acceptor produce comparable VOCs, and the highest loss in VOC is found to be
contributed by the energetics of the donor and acceptor materials. Therefore, to achieve a high VOC,
it is necessary to choose higher efficiency polymer-donor and acceptor materials, as well as control
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the donor and acceptor material energetics, which may lead to improvements in the PCEs of BHJ
OSCs [32].

5. Conclusions

In summary, we have derived two different expressions for the calculation of the VOC in BHJ
OSCs; one is used when the exciton is excited in the donor material and the other is employed when
the exciton is excited in the acceptor material. We have also derived an expression for VOC when both
the donor and acceptor materials are excited simultaneously, and its calculated values agree better
with their measured values. All three VOCs obtained from separate and simultaneous excitations are
found to be comparable, implying that the contributions of both donor and acceptor photoexcitations
are comparable in BHJ OSCs. Also, it is found that materials that generate higher photo-generated
charge carrier concentrations and have lower energetic distances of (Eh

F − ED
HOMO) or (EA

LUMO − Ee
F)

may lead to higher VOC. Invention and application of such materials in the fabrication of BHJ OSCs
may lead to higher VOCs and hence enhanced PCEs.
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