

  Full-Diversity QO-STBC Technique for Large-Antenna MIMO Systems 




Full-Diversity QO-STBC Technique for Large-Antenna MIMO Systems 







Electronics 2017, 6(2), 37; doi:10.3390/electronics6020037




Article



Full-Diversity QO-STBC Technique for Large-Antenna MIMO Systems †



Kelvin Anoh 1,*, Godfrey Okorafor 2, Bamidele Adebisi 1, Ali Alabdullah 3, Steve Jones 3 and Raed Abd-Alhameed 3





1



Electrical and Electronic Engineering Department, Manchester Metropolitan University, Manchester M1 5GD, UK






2



Maths and Computer Science Department, Novena University, Delta State, Nigeria






3



Electrical and Computer Science Department, University of Bradford, Bradford BD7 1DP, UK









*



Correspondence: Tel.: +44-(0)-161-247-1647






†



This paper is an extended version of our paper published in 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015.







Academic Editors: Hamid Bahrami, Xu Zhu and Nicholas J. Kirsch



Received: 20 February 2017 / Accepted: 5 May 2017 / Published: 11 May 2017



Abstract:



The need to achieve high data rates in modern telecommunication systems, such as 5G standard, motivates the study and development of large antenna and multiple-input multiple-output (MIMO) systems. This study introduces a large antenna-order design of MIMO quasi-orthogonal space-time block code (QO-STBC) system that achieves better signal-to-noise ratio (SNR) and bit-error ratio (BER) performances than the conventional QO-STBCs with the potential for massive MIMO (mMIMO) configurations. Although some earlier MIMO standards were built on orthogonal space-time block codes (O-STBCs), which are limited to two transmit antennas and data rates, the need for higher data rates motivates the exploration of higher antenna configurations using different QO-STBC schemes. The standard QO-STBC offers a higher number of antennas than the O-STBC with the full spatial rate. Unfortunately, also, the standard QO-STBCs are not able to achieve full diversity due to self-interference within their detection matrices; this diminishes the BER performance of the QO-STBC scheme. The detection also involves nonlinear processing, which further complicates the system. To solve these problems, we propose a linear processing design technique (which eliminates the system complexity) for constructing interference-free QO-STBCs and that also achieves full diversity using Hadamard modal matrices with the potential for mMIMO design. Since the modal matrices that orthogonalize QO-STBC are not sparse, our proposal also supports O-STBCs with a well-behaved peak-to-average power ratio (PAPR) and better BER. The results of the proposed QO-STBC outperform other full diversity techniques including Givens-rotation and the eigenvalue decomposition (EVD) techniques by 15 dB for both MIMO and multiple-input single-output (MISO) antenna configurations at [image: there is no content] BER. The proposed interference-free QO-STBC is also implemented for [image: there is no content] and [image: there is no content] MIMO systems, where [image: there is no content]. We demonstrate 8, 16 and 32 transmit antenna-enabled MIMO systems with the potential for mMIMO design applications with attractive BER and PAPR performance characteristics.
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1. Introduction


The need for higher data rates at the user end is the major motivation for new multiple-input multiple output (MIMO) schemes in modern communication systems. These modern techniques dispensing with the large number of antennas also enable spectral efficiency and increased transmit-energy efficiency, although all antennas do not contribute equally [1,2,3,4]. This is laudable in the study of massive MIMO (mMIMO) systems that are being pursued by researchers and industrialists alike for coping with the growing demand for higher data rates in modern telecommunication services. In the 5G standard, for example, the mmWavebands have been selected due to the abundance of unused spectrum resources [5]. However, while the high data rate problem can be overcome easily by deploying large bandwidths, the scarcity of the electromagnetic spectrum subtends some efficiency limitations in using large bandwidths to satisfy the high data rate demand. One of the ways of realizing such data rates (on which the mMIMO can rely), for example in wireless communication systems, is by enabling higher antenna configurations or by optimizing the available/known configuration techniques. In this study, we explore the methods of both optimizing the present MIMO design methods and exploring higher order antenna configurations with potentials for mMIMO.



Space-time block coding (STBC) [6,7], for example, is a MIMO technique that exploits time and antenna dimensions to achieve high data rates with minimum error probability. In [8], it was shown that under similar spectral efficiencies, STBCs outperform spatial modulation in terms of bit error ratio (BER) metrics. STBCs can be combined with beamforming to minimize the error probability of MIMO systems [9,10,11] and presently studied for systems supporting mMIMO schemes [3]. Other methods include the use of large antennas at the transmitting base stations [3].



Although STBCs combined with beamforming are good hybrids when minimum BER is desired, the conventional orthogonal STBC (STBC) [6] is limited to only two transmit antennas ([image: there is no content] = 2) as higher order antenna configurations do not achieve orthogonality [12]. These limitations are overcome by specially combining the O-STBCs to increase the spatial diversity capability of the scheme [13]. Such codes are referred to as QO-STBCs [11,14]. The standard QO-STBC scheme provides [image: there is no content] over similar spectral conditions as the O-STBC with better performance and also dispenses with the full spatial rate, but not full diversity. Unfortunately, also, QO-STBC complicates the receiver design due to the lack of orthogonality among the codes. Such a limitation also leads to ISI in the decoding matrix of the QO-STBC receiver and diminishes the BER performance.



In terms of the detection matrix, these off-diagonal (ISI) terms are described also as self-interference terms [15]. Usually, it is difficult to decouple transmitted symbols using linear processing at the receiver of a standard QO-STBC system. Consequently, several solutions have been offered by researchers to eliminate the ISI, namely using Givens-rotation [16], eigenvalue decomposition (EVD) [17,18] and Hadamard matrices [1,17]. Although both the Givens-rotation technique and the EVDs approach yielded similar results [19], the EVD method is less complex to implement. The Hadamard matrices are equivalent modal matrices of the EVD with non-zero entries to enhance full-diversity realization of the ISI-free QO-STBCs. In [17], the authors proposed a QO-STBC code structure of with no off-diagonal terms in its detection matrix. Unfortunately, however, the output ISI-free matrix is complex, and it will be demonstrated later in this study to have a poor BER performance (compared to the Givens-rotations and EVD methods). This is due to the degradation of the true gain by the power of the ISI terms (removed from the rest off-diagonal points), which are greater than the ISIs of the Givens-rotation and EVD methods.



Initially, this present work was first introduced in [1] for multiple input single output (MISO) systems; we extend our results to include large-antenna ([image: there is no content]), MIMO, receivers up to [image: there is no content] receiving antennas and spectrally-efficient modulation schemes (e.g., 16 quadrature amplitude modulation (QAM) and 128 QAM). Large antenna systems provide three advantages, namely: the effect of small-scale fading is averaged out; the random channel between [image: there is no content] and [image: there is no content] become pairwise orthogonal as the elements grow; and lastly, it allows for transmit power efficiency in massive MIMO [20]. We apply modal matrices from the eigenvalues of the QO-STBCs provided by the Hadamard matrices to orthogonalize the detection matrix and enable linear processing. This is achieved by deriving an equivalent virtual channel matrix (EVCM) first, which can be used to reduce the complexity of decoupling the space-time transmitted messages at the receiver. With the EVCM approach, the design and study of QO-STBC become attractive since there exist only the estimates of the originally [image: there is no content]-transmitted messages received at the receiver. Using the EVCM approach also, the receiver complexity is thus transferred to the transmitters such as the base stations, which have the flexibility of supporting very-large/mMIMO antennas (as in [21]) and also complex algorithms better than the receivers [14], such as mobile phones. This is attractive for massive MIMO as linear processing does not require the complex detection process required as well in dirty paper coding [22]. In mMIMO, the capacities when [image: there is no content] can be verified using a left-truncated Gaussian distribution [23]. Furthermore, given that the conventional STBC has found applications in multi-directional MIMO designs [9], the proposed QO-STBC can also impact mMIMO multi-directional QO-STBCs being explored in [24,25]. Our results, in future studies, can enhance the performance of large antenna wireless sensor networks (WSNs) design [20] in mMIMO systems since the total power consumption decays by [image: there is no content] as [image: there is no content] becomes very large [26], satisfying the power efficiency criteria of large antennas [20]. In addition, the linear process of our proposed technique will be useful for low-complexity implementations at the decision fusion centres (DFCs) over inhomogeneous large-scale fading between the sensors and the DFC as in [27], although, massive MIMO trade antennas at the FDCs for energy efficiency at the sensors of WSNs [28].



QO-STBCs with non-sparse matrices enable a well-performing peak-to-average power ratio (PAPR) [29,30]. Thus, since the modal matrices of our system do not have zero entries, then we present among other properties a QO-STBC design scheme with well-performing PAPR. In addition, our system exhibits full diversity, increased SNR performance that minimizes the BER and supports linear decoding. The standard QO-STBC is combined with the modal matrices of the Hadamard matrices motivated by EVD to construct new QO-STBC with no ISI and achieves full diversity. Furthermore, we have also shown in the literature that the true gain is significantly reduced by the eliminated ISI terms for [image: there is no content] receiving antennas in [8] and also that realistic receivers may not support more than [image: there is no content] without severe mutual coupling degradation.



In Section 2, the system model is described for specific QO-STBC characteristics. An introduction to full-diversity QO-STBC including the proposed full-diversity QO-STBC is presented in Section 3. We presented the pairwise error probability in Section 4 and our simulation results in Section 5 with the conclusions following in Section 6.




2. System Model


Given a standard STBC code with a full rate ([image: there is no content]) (e.g., [6]), the ratio of the space (number of antennas) and time (number of timeslots) can be expressed as [image: there is no content]. Then, for an orthogonal-STBC (O-STBC) system (e.g., [6]) with two transmit antennas ([image: there is no content]) and one receiver ([image: there is no content]), the received signal at the receiver can be represented as:


[image: there is no content]



(1)




where [image: there is no content], x=x1x2T, H¯∈CNT×NT=h1h2 is a multipath Rayleigh fading channel with [image: there is no content], [image: there is no content] and z=z1z2T represent the additive white Gaussian noise (AWGN) and [image: there is no content] and [image: there is no content] represent the channel coefficients from Rayleigh fading and [image: there is no content] in the above example. Note that [image: there is no content] represents the transpose of [image: there is no content], and [image: there is no content] represents the complex conjugate.



Although the STBC code described in [6] achieves full rate criteria and full diversity, its major disadvantage is that the design does not support [image: there is no content]. This problem can be solved by deploying QO-STBC, which can be formed from the STBCs. The QO-STBC can dispense with [image: there is no content] and complex entries. It achieves full spatial rate [12,13,31], but it does not attain full diversity; QO-STBCs exhibit full spatial rate ([image: there is no content]) when, for example [image: there is no content]. Meanwhile, consider a QO-STBC code with [image: there is no content] as follows [18,31]:


[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content] follow the standard Alamouti STBC of [6]. Unfortunately, (2) does not satisfy the [image: there is no content] condition [image: there is no content]. This property has also motivated the proposal for the QO-STBC design discussed in [32].



The QO-STBC signal, [image: there is no content], can be a phase-shift keying (PSK) or quadrature amplitude modulation (QAM) modulated signal, b∈C1×N, of length N. Unlike the case of [image: there is no content] where there are [image: there is no content], the QO-STBC (e.g., (2)) involves [image: there is no content] antenna spaces. Assuming that there are [image: there is no content] antenna spaces over which the QO-STBC symbols of (2) can be transmitted at different timeslots with one receiver ([image: there is no content]), then combining the QO-STBC of (2) with the channel [image: there is no content], the receiver obtains:


[image: there is no content]



(3)







The result in (3) follows from combining (2) and the channel vector [image: there is no content] so that the received symbols can be expressed as:


[image: there is no content]



(4)




where [image: there is no content]. The design in (3) complicates the receiver since the received signals cannot be linearly processed without difficulty. For instance, it is difficult to decouple the transmitted messages at the receiver using linear processing. Thus, an EVCM is derived to enable the linear processing, simplifying the decoding of only [image: there is no content] and also the decoupling of received symbols into the estimates of [image: there is no content] (namely [image: there is no content]). As an example, computing the conjugates of the second and fourth rows of (3) and rearranging the results,


[image: there is no content]



(5)







A major advantage of the (5) architecture is that if [image: there is no content] but [image: there is no content] and [image: there is no content], then it is therefore impossible for an eavesdropper to compromise [image: there is no content] over a time varying condition, hence making the scheme secure. The result realized in (5) enables that the channel [image: there is no content] given in (1) can be expressed as:


[image: there is no content]



(6)




where (6) represents the EVCM, [image: there is no content]. In the literature, an EVCM can be described as a matrix with ones on its leading diagonal and at least [image: there is no content] zeros at its off-diagonal positions and its remaining (self-interference) entries being bounded in magnitude by 1 [33]. Representatively,


HvHvH=∑i=1NT∣hi∣2D



(7)




where [image: there is no content] is a sparse matrix. To reduce the system complexity, we apply the EVCM, which simplifies decoding at the receiver. If there exists an optimum detector of a maximal ratio combining (MRC) output, namely using zero-forcing (ZF), GoptH=G1,⋯,GNT=HvH, such that [image: there is no content], then [image: there is no content]. For instance, let the received signal estimate be:


s^=HvHHvs+HvHz=D4×s+HvHz



(8)




where [image: there is no content] is the conjugate transpose of [image: there is no content]. It can be verified that [image: there is no content] is the detection matrix that implements a QO-STBC systems with [image: there is no content] and [image: there is no content]. In relation to (7), we define:


[image: there is no content]



(9)




where [image: there is no content] and [image: there is no content]. The mutual interference terms outside the leading diagonal can be expressed as [image: there is no content] and [image: there is no content]. Of course, the interference term diminishes the performance of this style of QO-STBC, for example the signal-to-noise ratio (SNR) and consequently the BER. Our interest is to minimize the impact of [image: there is no content] so that the SNR can be maximized and then the BER minimized. An example is in constructing a suitable channel matrix whose decoding matrix is devoid of the ISI of (9).




3. Full-Diversity QO-STBC Using EVD and the Proposed


In [34], a zero-forcing detection was discussed for the QO-STBC design; this is similar to the eigenvalue method proposed in [18]. Since the matrices that orthogonalize the detection of symbols are non-singular, the received noise estimate is non-Gaussian. Similarly, also, the pre-whitening process of the noise further amplifies the noise, so that the BER statistics are impacted to reduction. In [32], the author explored the method of the analytical derivation of the closed-form expression of the pairwise error probability (PEP). The models described in [32,34] sacrifice the data rates and would require switching off the first two antennas or the last two antennas at the RF-chain during each timeslot; this can be expensive.



Meanwhile, QO-STBCs that exhibit no-ISI in the detection matrices are said to achieve full diversity. For example, the ISI-free QO-STBC is achieved through the rotation of one-half of the symbol constellation set [35,36,37], multidimensional rotation [38,39,40], Givens-rotations [16], EVD [17,18] and Hadamard matrices [1,17]. Although the EVD approach is less complex and will be followed, the results can be enhanced if an equivalent modal matrix can be derived without zeros terms.



Definition 1.

[1]: If [image: there is no content] is a square matrix and [image: there is no content] is a column matrix ([image: there is no content]), let [image: there is no content], where v is a scalar, then [image: there is no content] is an eigenvalue and [image: there is no content] an eigenvector. The vector [image: there is no content] can be formed into a square matrix [image: there is no content], usually called a modal matrix. If the eigenvalue of [image: there is no content] is the leading diagonal of a matrix [image: there is no content], then [image: there is no content]; both [image: there is no content] and [image: there is no content] share the same eigenvalues; [image: there is no content] is an identity matrix. It follows that [image: there is no content].





Here, we use Definition 1 to demonstrate our proposal using a handy [image: there is no content] and show also that this can easily be extended to other higher antenna configurations, namely [image: there is no content]. Substituting for [image: there is no content] using [image: there is no content] in Definition 1, it can be observed that:


[image: there is no content]



(10)







We formulate the modal matrices depending on the number of transmitting antennas to eliminate the interfering terms in the detection matrix; this results in different modal matrix sizes. By applying (10), namely [image: there is no content] to (9), the QO-STBC scheme can attain full diversity; this is the principle of diagonalizing a matrix [41]. The matrix [image: there is no content] therefore achieves the required interference-free detection. By (9), the resulting modal matrix of the QO-STBC system under study with [image: there is no content] and T = 4 can be expressed as:


[image: there is no content]



(11)







A new EVCM can be formed by post-multiplying [image: there is no content] by [image: there is no content], such as:


H=Hv×MHv=h1+h3h2+h4h3−h1h4−h2h2∗+h4∗−h1∗−h3∗h4∗−h2∗h1∗−h3∗h1+h3h2+h4h1−h3h2−h4h2∗+h4∗−h1∗−h3∗h2∗−h4∗h3∗−h1∗



(12)







Note that if the channel is defined as (12), the linear model will be expressed as (1). On the other hand, if the system has channel coefficients given by [image: there is no content], then the system can be described (in linear form) as (4).



Definition 2.

(see Theorem 5.5.1 of [12]): A [image: there is no content] complex generalized linear processing orthogonal design [image: there is no content] in variables 0, [image: there is no content][image: there is no content][image: there is no content], [image: there is no content][image: there is no content][image: there is no content], [image: there is no content] exists if and only if there exists a complex generalized linear processing orthogonal design [image: there is no content] in the same variables and of the same size, such that [image: there is no content].





Notably, only the Alamouti STBC achieves this condition without other post- (or pre-) processing. Now, rewrite (4) in the following form,


[image: there is no content]








then the receiver receives:


s^=HHx=HHHs+HHz



(13)







From (13), the encoding matrix [image: there is no content] of (2) simplifies to [image: there is no content] only. On the other hand, the term [image: there is no content] in (13) also permits linear decoding and eliminates the off-diagonal [image: there is no content] interfering terms, such as:


[image: there is no content]



(14)







Observe that [image: there is no content] provides:


[image: there is no content]








as the new detection matrix with no ISI. Furthermore, observe that the eliminated ISI impacts the true power gain. For a large number of antenna configurations, some antenna branches contribute more than others [2]. In (14) for example, the energy of the last two antenna branches are reduced by the eliminated off-diagonal ISI terms so that the resulting gains are more on the first two antenna branches. This can be useful with RF-chain switching and also when using directional communications to concentrate power including the antenna selection technique.



For the 4 × 1 configuration, [image: there is no content], while for the 3 × 1 configuration [image: there is no content] but within the QO-STBC design. The [image: there is no content] configuration is achieved by setting [image: there is no content]; for example, using the method of (12), it is possible to construct an EVCM suitable for [image: there is no content] with [image: there is no content] such as:


[image: there is no content]











On the other hand, formulating the equivalent symbol matrix involves eliminating the fourth column of the matrix [16] since only three antenna spaces are required, for example:


[image: there is no content]



(15)







With a receiver dispensing with a maximum likelihood (ML) detection, the receiver finds [image: there is no content] signals that have the closest Euclidean distance nearest to the original transmitted QO-STBC signals as follows s^1,⋯,s^NT. In this case, the error matrix can be expressed as Δs=s¯1−s^1,⋯,s¯NT−s^NT. We assume that the channel is quasi-static for [image: there is no content] consecutive timeslots.



3.1. Combined Standard QO-STBC and Hadamard Matrices for QO-STBC Design


Although one can easily verify that [image: there is no content], the limitations of (11) include poor PAPR performance due to the sparsity of the EVD modal matrix [30] and poor BER resulting from the zero terms [8]. Since QO-STBC matrices can be diagonalized using modal matrices ([image: there is no content]), then Hadamard matrices can also be used to diagonalize QO-STBC systems. For an [image: there is no content] matrix, Hadamard matrices have [image: there is no content] entries with the columns (and rows) being pairwise orthogonal [42,43], for example:


[image: there is no content]



(16)




where [image: there is no content] is an identity matrix. Considering the system example under study, the Hadamard matrix of [image: there is no content] order can be expressed as:


[image: there is no content]



(17)




where:


[image: there is no content]











It can be observed in (17) that there exist no zero (0) entries as there are in (11). These zero entries limit the BER performance as they null-out the channel gains. From (16), it can be observed that use of the Hadamard matrix as the modal matrix gives the advantage of the [image: there is no content] multiple of the diagonalized matrix.



In Section 3, we discussed that modal matrices are applied to QO-STBC systems in order to eliminate the off-diagonal (ISI) terms. This phenomenon also led to the proposal of applying Hadamard matrices to ensure that QO-STBC systems attain full diversity by eliminating the off-diagonal terms. Since the 0’s null-out the channel gains, the modal matrix in (11) diminishes the SNR and consequently worsens the BER performance of the QO-STBC systems. For instance, the channel gains are eliminated when combined with a zero. Second, the presence of these zeros leads to poorer PAPR performance (see [29,30] and the references therein). The modal matrices subtended by the Hadamard matrices do not have these limitations, consequently QO-STBC codes constructed from it would exhibit better BER and better PAPR advantages. Meanwhile, our interest in this study is in minimizing the error probability (BER). Thus, we combine (6) and (17) so that the channel matrix can be expressed as:


[image: there is no content]











At the receiver, linear processing can be applied as follows:


[image: there is no content]



(18)




where:


[image: there is no content]



(19)







The result in (18) can be discussed in terms of the advantages it provides. As an example, it eliminates the nonlinear decoding that existed in standard QO-STBC. Additionally, comparing (19) with (14), using the proposed modal matrix technique improves the gain by [image: there is no content]-times the power gain. Consequently, the received SNR is thus improved by [image: there is no content]-times. With [image: there is no content], the channel term namely [image: there is no content] is set to zero (0) [16,17]. As an example, we express:


Hnew3=Hv3×M4=h1h2h30h2∗−h1∗0h3∗h30h1h20−h3∗h2∗−h1∗×11111−11−111−1−11−1−11=h1+h2+h3h1−h2+h3h1+h2−h3h1−h2−h3h2∗−h1∗−h3∗h1∗+h2∗+h3∗h2∗−h1∗+h3∗h1∗+h2∗−h3∗h1+h2+h3h1−h2+h3h3−h2−h1h2−h1+h3h2∗−h1∗−h3∗h1∗+h2∗+h3∗h1∗−h2∗−h3∗h3∗−h2∗−h1∗



(20)







If [image: there is no content], where [image: there is no content] were sent in (18), then [image: there is no content] where [image: there is no content] are required in the case of [image: there is no content]. Thus, the fourth column of (20) is ignored so that the EVCM for [image: there is no content] becomes:


[image: there is no content]



(21)







This phenomenon (as in (21)) can be extended to designing QO-STBC systems with [image: there is no content] = 5, 6, 7, 9, 10, 11, etc. for higher order antenna configurations.



In terms of complexity in comparison to the EVD method, the number of terms is exactly the same except that when the standard QO-STBC matrix terms are multiplied by the null terms from the sparse eigenvalues of the EVD matrix, it nulls-out the channel gains so that the resulting EVCM matrix is reduced in the number of terms; this is pronounced in the analysis results discussed in Section 3 of this paper (see (12)).



Theorem 1.

The standard QO-STBCs can achieve full diversity if the detection matrix exhibits no off-diagonal terms and its modal matrix has non-zero entries.





In [30], it was shown that full-diversity Toeplitz STBC codes exhibit well-reduced PAPR if the codes have non-zero entries. Meanwhile, the PAPR can be calculated as:


[image: there is no content]



(22)




where [image: there is no content] is the time domain orthogonal frequency division multiplexing (OFDM) symbol vector of [image: there is no content] with length K. Since the scheme involves multiple [image: there is no content] transmit branches, the OFDM driver is performed along each of the transmit branches, and the PAPR is measured using the complementary cumulative distribution function (CCDF), namely [image: there is no content] where [image: there is no content][image: there is no content]. [image: there is no content] and [image: there is no content] are the probability of [image: there is no content] and the target symbol amplitude threshold, respectively. The indicative PAPR is therefore an average of the PAPRs over each transmitting branch.



Corollary 1.

As a corollary of Theorem 1, it can be established that modal matrices with no zero entries yield better PAPR performing QO-STBCs.





Similar to the foregoing discussion, when the antenna configuration is increased to [image: there is no content], the method of realizing (6) can be used. However, the process can be simplified by formulating two EVCMs from [image: there is no content] as follows; define the EVCM for antenna Indices 5 to 8 as:


[image: there is no content]



(23)







Then, combining (23) and (6) in the regime of (2) and then multiplying by the necessary modal matrix,


[image: there is no content]



(24)







Using the method that subtends (24), other higher antenna configurations (namely, [image: there is no content]) can be explored. For other base stations equipped with [image: there is no content], the process that subtended (21) can be used.




3.2. Diagonalized Hadamard STBC


Other methods of constructing new codes from the standard QO-STBC have been reported [17,30]. The method described in [30] does not adopt the use of the Hadamard matrix and does not achieve the full rate. However, [17] combined cyclic matrices with Hadamard matrices to form new codes. The cyclic matrix does not achieve orthogonality, hence its combination with the Hadamard matrix. In [17], the authors introduced a new QO-STBC design from cyclic matrices called diagonalized Hadamard STBC (DHSTBC). For instance, the DHSTBC can be expressed as [17]:


[image: there is no content]



(25)







Given the knowledge of modal matrices proposed in this study, the equivalent symbol matrix is discussed. As the modal matrix of [image: there is no content] from [image: there is no content] was used to form an EVCM in (12), similarly from [image: there is no content], the equivalent symbol matrix can be discussed knowing that [image: there is no content] is the modal matrix of [image: there is no content]. Considering (25), the equivalent symbol matrix can be derived as [image: there is no content]; this is realized by combining a cyclic matrix of (25) and a Hadamard matrix to obtain the DHSTBC code, which was defined as [17]:


[image: there is no content]











Recall a system model of (4). Similar to the (4) model, if the symbols matrix is defined from the cyclic matrix of (25), then the channel matrix can also be expressed as:


[image: there is no content]











Then, constructing an EVCM for linear decoding involves combining the EVCM and the Hadamard-based modal matrix (17), as:


H4=Hc×M4=h1h2h3h4h2h1h4h3h3h4h1h2h4h3h2h1×11111−11−111−1−11−1−11



(26)







Similar to (18), the receiver receives:


[image: there is no content]








where [image: there is no content]. The detection matrix is fat in terms of elements, for example:


[image: there is no content]



(27)




where:


a1=h1+h2+h3+h4,b1=h1∗+h2∗+h3∗+h4∗a2=h1∗−h2∗+h3∗−h4∗,b2=h1−h2+h3−h4a3=h1∗+h2∗−h3∗−h4∗,b3=h1+h2−h3−h4a4=h1∗−h2∗−h3∗+h4∗,b4=h1−h2−h3+h4








where [image: there is no content]. Furthermore, if [image: there is no content] is formed as [image: there is no content] instead of [image: there is no content], then [image: there is no content] (where [image: there is no content]) as the sequel to the Hadamard criteria. The resulting matrix is huge and complex; these have their respective implications that will be enumerated shortly. For instance, since there are additional interfering terms in (27) after expanding [image: there is no content]∀i=1,⋯,NT, then, when compared to the results of the ISI-free QO-STBC in (37), the terms aibi∀i=1,⋯,NT further diminish the BER performance, so that the DHSTBC scheme performs poorly.



Comparing the proposed QO-STBC result (18) with the earlier Hadamard algorithm of DHSTBC in (27), the proposed QO-STBC has well-reduced computational complexity. For instance, expanding aibj∀i=1,⋯,NT, it can be observed that there are 16 terms involved in the earlier DHSTBC, while there are only eight terms involved in the proposed one; there exist [image: there is no content] ISI terms. In terms of performance, the earlier Hadamard QO-STBC (DHSTBC) involves eight additional interfering terms (apart from [image: there is no content]) that would degrade its BER performance.




3.3. MIMO QO-STBC


In the earlier discussions, we have supposed that there are [image: there is no content] receiver antennas; here, we consider the case of [image: there is no content]. Thus, each of the channel terms from the [image: there is no content] can be treated respectively as a vector of the form:


[image: there is no content]








where:


[image: there is no content]










[image: there is no content]










[image: there is no content]











If the equivalent channel can be derived, then the MRC when there are [image: there is no content] maximum receiving elements can be described. Assuming perfect channel state information (CSI) (i.e., the channel coefficients are perfectly available at the receiver), the detector attains the optimal maximum likelihood (ML) rule as [44]:


s^=argmaxs∏j=1NRPxj∣Hj,s=argminsℜ∑j=1NR∑HjHxjsH−12∑j=1NR∣Hj∣2∣sj∣2



(28)




where [image: there is no content]. The term [image: there is no content] is the Euclidean distance metric for an ML decoding. If an equivalent channel is known (e.g., the EVCM), the maximal ratio combining (MRC) rule from [33,44] provides that:


[image: there is no content]



(29)




where [image: there is no content], [image: there is no content] and [image: there is no content] for each receiver antenna branch. In the case of [1], we only studied the QO-STBC scheme for a multiple-input and single-output (MISO) system; thus, [image: there is no content], but in this version, we have extended the study to include [image: there is no content].



Considering the MIMO scheme in (29), both [image: there is no content] and the gain [image: there is no content] influence the amplitude of the received signal. Then, the noise part is amplified by the [image: there is no content][image: there is no content]. This is because the EVCM is unitary (see (37)), except that they are scaled by the gains. Notice that [image: there is no content], [image: there is no content] represents an identity matrix impacted (as in the case [image: there is no content]) by the channel gains, such as [image: there is no content]. The noise term is rather amplified by [image: there is no content], [image: there is no content]. The degree of impact of [image: there is no content] on the noise term impacts the Euclidean distance metric at the receiver; this depends on the fading of the channel. The complexity in the decoupling of the transmitted message in the receiver reduces to finding only [image: there is no content] for all of the receiving branches. STBCs that support linear transceiver systems incur a loss in capacity over channels with multiple receive antennas [45]. This is even more noticeable in the case of conventional QO-STBCs due to ISI and worst when DHSTBC is used to enable transmitter diversity because the ISI terms ([image: there is no content]) will grow as the [image: there is no content] increases, in fact up to the point of no more diversity gain.





4. Pairwise Error Probability of the QO-STBCs


Usually, the channel is considered quasi-static throughout each symbol block so that the Chernoff bound is averaged over a Rayleigh fading channel as [9]:


[image: there is no content]



(30)




where [image: there is no content] is the pairwise error probability (PEP), which responds to the received SNR and [image: there is no content] is the expectation value over each symbol block. The conditional PEP, for a given channel say [image: there is no content], is described using the well-discussed Chernoff bound of the form:


[image: there is no content]



(31)




where [image: there is no content] is from the circularly-symmetric additive white Gaussian noise with zero mean and variance [image: there is no content]; this is the case when [image: there is no content]. Indeed, the Gaussian Q-function is the complementary error function expressed as:


Qx=1π∫0π2exp−x22sin2θdθ≤12exp−x22,x≥0



(32)







In terms of (32), the conditional PEP is summarized as:


[image: there is no content]








where [image: there is no content] is the SNR at the maximal ratio combining (MRC) receiver output. The performance bound then follows as [9]:


[image: there is no content]



(33)




where [image: there is no content] and [image: there is no content] is from the detection matrix. Meanwhile, from the Cauchy–Schwartz inequality,


[image: there is no content]










[image: there is no content]











Furthermore, define [image: there is no content] as an [image: there is no content] matrix, then its Frobenius norm [image: there is no content] then ∥B∥F2=∑im∑jm∣bi,j∣2. Rewrite [image: there is no content] as [image: there is no content], such that:


γx=H¯▵s224N0=H¯▵sF24N0=H¯F2▵sF24N0



(34)




where [image: there is no content] [46]. If [image: there is no content] estimates the error detection metrics, then [image: there is no content]. Furthermore, [image: there is no content]. The likelihood of erroneously decoding the transmitted signals can be used to discuss the diversity product of the scheme [47]. However, for any ISI-free QO-STBC, [image: there is no content] where [image: there is no content] and [image: there is no content] is the gain power.



4.1. The SNR Performance of EVD and DHSTBC


The conventional O-STBC achieves full diversity, and there exists only [image: there is no content]. For [image: there is no content], one can express the SNR at the receiver of the ISI-free QO-STBC (14) from EVD as:


γ=E∣HHHs∣2E∣HHz∣2=E∣HHH∣2EHHHEsσZ2=E∣MHv−1HvHHvMHv∣EsσZ2



(35)




where [image: there is no content] and [image: there is no content]. For an ISI-free QO-STBC, although the results in (35) and (27) are similar, the impacts of the channel matrix are different. When the detection matrix is a diagonal matrix, for instance, [image: there is no content] when [image: there is no content] = 2, while [image: there is no content] when [image: there is no content] = 4, and so on, the Euclidean distance metrics are also different both for different QAM constellations and different [image: there is no content]. Now, the probability that [image: there is no content] was detected can be expressed as:


[image: there is no content]



(36)




where [image: there is no content]. In [9], [image: there is no content] for [image: there is no content]. Then, for [image: there is no content], [image: there is no content] and [image: there is no content]. Notice that when [image: there is no content], then [image: there is no content], which can be described further in terms of [image: there is no content] being the Euclidean distance metric at the receiver. Sometimes, the Chernoff bound of the Gaussian function can be used to approximate the Q-function, such as in [8]. The method of DHSTBC does not perform any better. For example, the ISI is greater in the DHSTBC (see (27)) than using either the EVD (14) or the proposed technique (19). The effects of the ISI on diminishing the true-power gain of the DHSTBC will be reduced as evidently shown in the BER results discussed in Section 5.




4.2. The SNR Performance of Proposed Full-Diversity QO-STBC


Although one can easily verify that [image: there is no content], the limitations of (11) include poor PAPR performance due to the sparsity of the modal matrix [30] and poor BER resulting from the zero terms of [image: there is no content] [1] because the SNR and the BER performance depend on the power gain contributed by [image: there is no content]. The proposed modal matrix is [image: there is no content] and the proposed channel matrix is [image: there is no content]. Thus, the SNR at the receiver can be described as:


[image: there is no content]



(37)







One can also verify that:


[image: there is no content]











Equation (37) provides the SNR statistics at the MRC output of the receiver and provides information of the BER performance of the EVD ISI-free QO-STBC from the Hadamard modal matrix. Notice that [image: there is no content] provides [image: there is no content] with an extra factor, [image: there is no content] impacting the power gain, which will further minimize the BER statistics; similarly, [image: there is no content]. Consequently, the SNR can be well described as:


γpropsed=E∣HnewHHnews∣2E∣HnewHz∣2=E∣HnewHHnews∣2EHnewHzHzHnew=E∣HnewHHnew∣EsEzHz



(38)







Since [image: there is no content] provides:


[image: there is no content]








then (38) can be rewritten as:


γpropsed=MHd−1HvHHvMHdEsσZ2=NTMHv−1HvHHvMHvEsσZ2








where [image: there is no content] is a [image: there is no content] Hadamard matrix when [image: there is no content]. Comparing (38) and (37), it is clear that the power gain in using [image: there is no content] is [image: there is no content]-times greater than using [image: there is no content]. The use of [image: there is no content] thus affects the slope of the BER so that the full-diversity method of the proposed QO-STBC becomes better. In general, the method of constructing [image: there is no content] antenna configurations described in Section 3.1 can be extended to any higher order design, namely [image: there is no content], 16, 32, etc.



Remark 1.

We refer the reader to our earlier discussion in [1,48] for other designs that do not enable the full rate, but maintain full diversity.







5. Simulation Results and Discussion


In [1], we have studied only the cases of MISO using QPSK and [image: there is no content], and here (in this study), we extend the MISO configuration to include [image: there is no content]. For fair comparisons, the simulation environments are similar except for the use of suitable EVCM configurations for different numbers of antenna configurations and code design styles. The symbols we have used are not coded; in other words, no forward error correction is applied. At the receiver, the optimum detector is assumed so that an MRC combining method is adopted. We do not present the simulation results for [image: there is no content] and [image: there is no content] in this work, as these have been addressed in [1]. Meanwhile, the Rayleigh fading channel model is used, which is considered to be quasi-static over each symbol block. The model has zero mean with unit variance.



5.1. MISO and MIMO QO-STBC Design Using Eight Transmit Antennas


This study implements the standard QO-STBC code system described in Section 2 in the transmitter and an ML detection dispensing with MRC in the receiver to construct a [image: there is no content], [image: there is no content] and [image: there is no content] MIMO system using 16 and 128 QAM; [image: there is no content] and these are simulated over the MATLAB environment. In the process, random symbols are generated; this involves [image: there is no content] symbols averaged over each channel block. These are mapped using the aforementioned mapping schemes, demultiplexed and processed over the EVCM channels that enabled [image: there is no content] when [image: there is no content] and [image: there is no content] transmit antennas are used, respectively.



Using EVCM simplifies detection to linear processing so that the estimates of the transmitted symbols, s^1,⋯,s^NTT, are easily decoupled. Since there are [image: there is no content] transmitting branches, then each branch receives [image: there is no content] messages up to a total of [image: there is no content] (where [image: there is no content] for MISO design) receptions. The receiver finds estimates [image: there is no content] whose Euclidean distance, [image: there is no content], is closest to the transmitted messages; then, afterwards, M-QAM signal demodulation is performed. The transmitted message ([image: there is no content]) and the received message ([image: there is no content]) are then compared for the error value as [image: there is no content]; the BER is computed, and the results are shown in the following Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6.


Figure 1. The The 16-QAM results for the full-diversity QO-STBC MIMO system [image: there is no content] with [image: there is no content] 2.



[image: Electronics 06 00037 g001]





Figure 2. The 128 QAM results for the full-diversity QO-STBC MIMO system [image: there is no content] with [image: there is no content] 2.



[image: Electronics 06 00037 g002]





Figure 3. The 16 QAM results for the full-diversity QO-STBC MIMO system [image: there is no content] with [image: there is no content] 2.
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Figure 4. The 128 QAM results for the full-diversity QO-STBC MIMO system [image: there is no content] with [image: there is no content] 2.
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Figure 5. The 16 QAM for the full-diversity QO-STBC MIMO system [image: there is no content] with [image: there is no content] 2.
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Figure 6. The 128 QAM for the full-diversity QOSTBC MIMO system [image: there is no content] with [image: there is no content] 2.
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In Figure 1, the proposed QO-STBC outperforms the standard and eigenvalue QO-STBC styles. Specifically, at [image: there is no content] BER, the proposed outperforms eigenvalue QO-STBC by 10 dB and better than the standard QO-STBC by 5 dB. For the MIMO design, namely [image: there is no content], the proposed technique outperforms the standard QO-STBC by 6 dB and better than the eigenvalue QO-STBC technique by 9 dB. The degradation is from the eliminated off-diagonal terms that diminishes the true power of the received signal.



We extend our investigation to 128 QAM as shown in Figure 2; it is found that the proposed also outperforms both the eigenvalue technique and the standard QO-STBC.



From (18), the gain [image: there is no content] and [image: there is no content] impact the amplitude of the received signal while only [image: there is no content] impacts the noise. The [image: there is no content] amplifies the amplitude of the received signal such that the power gain is improved (see (18)) compared to the eigenvalue interference-free QO-STBC in Figure 2. Furthermore, in Figure 2, this proposed QO-STBC technique translates to a 6-dB gain in comparison to the earlier eigenvalue-based QO-STBC scheme. Significantly, two parts are involved ([image: there is no content] and [image: there is no content]); [image: there is no content] is an interference term that degrades the [image: there is no content] gain [image: there is no content]. Any method that can eliminate [image: there is no content] would further improve the BER performance.




5.2. MISO and MIMO QO-STBC Design Using 16 Transmit Antennas


In (18), it is found that the result of the proposed QO-STBC (in Figure 3) satisfied the Hadamard criteria in (18). For [image: there is no content] with the NR=1,2 QO-STBC scheme, the proposed outperformed the eigenvalue QO-STBC. Clearly, the [image: there is no content]-times amplitude gain of the Hadamard criteria in (18) is reflected also in Figure 3, as the proposed QO-STBC consistently outperformed both the standard and eigenvalue-based QO-STBCs by about 10 dB and 13 dB, respectively, at [image: there is no content] BER. In all cases, the proposed method outperformed all other QO-STBCs.



Although the symbols transmitted over antenna spaces are typically unique, however, the EVCM are constructed with respect to Section 2 of this study. In the receiver, AWGN terms, [image: there is no content], are constructed and added to each receiver antenna branch. Since there are [image: there is no content] transmitting branches, then each branch receives [image: there is no content] messages up to a total of [image: there is no content] (where [image: there is no content] for MIMO design) receptions. Again, using the EVCM simplifies the detection of the transmitted symbol for a linear processing so that the estimates of the transmitted symbols, s^1,⋯,s^NTT, are easily decoupled. The receiver finds estimates of [image: there is no content] whose Euclidean distance, [image: there is no content], is closest to the transmitted messages; then, 128 QAM signal demodulation is performed in Figure 4. The proposed method clearly outperformed both the standard and eigenvalue approaches. Both techniques show falling BER measures due to some irreducible errors from the “untrue-gain” and the noise-power enhancement.



In (27), linear detection was performed; for the QO-STBC discussed in [17], it was shown that the detection matrix (27) is huge, complex and contains further degrading elements that limit the improvement from the true gain ([image: there is no content]); on the other hand, the QO-STBC method of [48] provided a matrix that precludes these limitations.



The investigation is further extended to a higher modulation scheme, such as 16 QAM; the results are shown in Figure 5.




5.3. MISO and MIMO QO-STBC Design Using 32 Transmit Antennas


Finally, we report in Figure 5 and Figure 6 the results for NT=16,32 with NR=1,2 using 16 and 128 QAM, respectively. In Figure 5, the proposed QO-STBC for the 16 × 1 antenna design at [image: there is no content] BER outperformed eigenvalue QO-STBC by 15 dB and better than the standard QO-STBC by 8 dB. Consider the design also for the 16 × 2 antenna configurations at [image: there is no content] BER, the proposed QO-STBC outperformed eigenvalue-based QOSTBC by 15 dB.



Similarly, the proposed Hadamard-based QO-STBC performs better than the standard QOSTBC technique by 10 dB. From the proposed QO-STBC design coupled with the MRC rule in the receiver, it follows that the performance of the MIMO design method using MRC provides improvement to the QO-STBC system design for independently fading channels, thus showing increasing power gain with increasing receivers. By increasing the transmitter diversity and using a higher order and spectrally-efficient modulation scheme as in Figure 6, the results for 128-QAM also corroborate the foregoing performance gains achieved by the proposed QO-STBC over other similarly-configured QO-STBC techniques. For example, at [image: there is no content] BER for [image: there is no content] with [image: there is no content], the proposed QO-STBC design achieves 15 dB better than eigenvalue-based QO-STBC. Similarly, when the receiver diversity is increased from [image: there is no content] to [image: there is no content], it can be seen that the proposed scheme achieves 15 dB better than the eigenvalue-based QO-STBC and 12 dB better than the standard QO-STBC.



In general, the off-diagonal interfering terms further reduce the performance of the QO-STBC scheme of the eigenvalue-based QO-STBC design.



Note that due to amplitude modulation in QAM modulators, a normalization of the received symbol amplitudes must be observed before demodulation to realize these results. For PSK symbols, there are no bias-energy terms, and thus, it can be more tolerant than the QAM modulators.




5.4. PAPR Evaluation of Different QO-STBC Schemes


In this section, we evaluate the performances of these different QO-STBC schemes in our foregoing discussion. We show in Figure 7 the performances of the PAPR metrics of the three QO-STBCs under study using [image: there is no content] and 128 QAM modulation.


Figure 7. PAPR for different QO-STBCs ([image: there is no content], 128 QAM).
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From the results, the Hadamard technique proffers better PAPR than the rest EVD and standard techniques in all cases. On the other hand, while the Hadamard technique volunteers a better PAPR than the EVD technique, the EVD QO-STBC is also 1 dB better than the standard QO-STBC scheme, which is slightly better than the conventional OFDM system. Meanwhile, the performance of the Hadamard-based (and similarly, the EVD) QO-STBC system can be improved by adopting any of the well-known PAPR reduction techniques. Such techniques must also appeal to the aim of this work, which is geared towards reducing the complexity of the receiver, as the receiver modules are general small in nature, and this will eliminate the unnecessary depletion of the limited-battery power of such devices. Examples of such light-weight PAPR reduction techniques include companding and iterative clipping and filtering.





6. Conclusions


In this study, we have proposed and evaluated a simple technique for using eigenvalues or its matrix (modal matrix) to improve QO-STBC system performances so that it can achieve full diversity. Similar matrices of earlier methods are limited in performance by some null-terms of the modal matrix, which further impoverishes the RF chain in terms of PAPR. We suggested and proved that by using Hadamard matrices as the modal matrices, the QO-STBC can achieve linear processing, thus reducing the system complexity, since the detection matrices are diagonal with no off-diagonal ISI terms. Two new proposed methods of constructing QO-STBC codes for maximal diversity gain attainment were explored for up to [image: there is no content], 16 and 32 antenna configurations enabling MIMO design. While the QO-STBC was used to enable multiple antennas at the transmitter, we introduced MRC at the receiver, which combines the gains from all branches to maximize diversity gain. DHSTBC code provides a method of designing the QO-STBC system, but the detection matrix provides poorer performance due to some extra interfering terms, [image: there is no content], in the detection matrix. These extra degrading detection terms are absent in the proposed QO-STBC scheme, leading to better performances in terms of BER and PAPR. The results showed that the proposed method consistently outperforms the conventional ISI-free EVD QO-STBC in the order of [image: there is no content]-times the received SNR for all [image: there is no content] investigated and increasingly outperformed earlier QO-STBC schemes that used Hadamard matrices. Thus, the interference terms are a limitation in the QO-STBC design as they degrade the true power gains on every antenna at the receiver; especially in earlier DHSTBC. In all of the MIMO cases reported with MRC at the receiver, it is found that the proposed QO-STBC is a better MIMO technique by at least 9 dB at [image: there is no content] BER. With the style of higher antenna orders discussed, our proposal therefore shows the potential for supporting massive MIMO system configurations.
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Glossary of Notations


[image: there is no content] and [image: there is no content] are the numbers of transmitting and receiving antennas, respectively.



[image: there is no content] and [image: there is no content] represent vectors and matrices, respectively.



[image: there is no content] represents a vector or matrix.



[image: there is no content] is the transpose of [image: there is no content].



[image: there is no content] represents the real part of [image: there is no content].



[image: there is no content] represents complex conjugate x.



[image: there is no content] represents the conjugate transpose of [image: there is no content].



[image: there is no content] represents the absolute value.



[image: there is no content] represents the norm operator.



[image: there is no content] represents the identity matrix with [image: there is no content] dimensions.



[image: there is no content] represents the modal matrix of [image: there is no content] dimensions.



[image: there is no content] represents the equivalent virtual channel matrix.



[image: there is no content] is the EVCM with [image: there is no content] dimensions.



[image: there is no content] is the trace of [image: there is no content].



[image: there is no content] is the conditional probability of X given C and D.



[image: there is no content] represents the expectation value.



[image: there is no content] is the detection matrix that implements a QO-STBC system.



[image: there is no content] represents the Q-function of x.



[image: there is no content] is the Frobenius norm.
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