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Abstract: This article reviews the use of synthetic aperture radar remote sensing data for earthen
levee mapping with an emphasis on finding the slump slides on the levees. Earthen levees
built on the natural levees parallel to the river channel are designed to protect large areas of
populated and cultivated land in the Unites States from flooding. One of the signs of potential
impending levee failure is the appearance of slump slides. On-site inspection of levees is expensive
and time-consuming; therefore, a need to develop efficient techniques based on remote sensing
technologies is mandatory to prevent failures under flood loading. Analysis of multi-polarized radar
data is one of the viable tools for detecting the problem areas on the levees. In this study, we develop
methods to detect anomalies on the levee, such as slump slides and give levee managers new tools to
prioritize their tasks. This paper presents results of applying the National Aeronautics and Space
Administration (NASA) Jet Propulsion Lab (JPL)’s Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) quad-polarized L-band data to detect slump slides on earthen levees. The study
area encompasses a portion of levees of the lower Mississippi River in the United States. In this paper,
we investigate the performance of polarimetric and texture features for efficient levee classification.
Texture features derived from the gray level co-occurrence (GLCM) matrix and discrete wavelet
transform were computed and analyzed for efficient levee classification. The pixel-based polarimetric
decomposition features, such as entropy, anisotropy, and scattering angle were also computed and
applied to the support vector machine classifier to characterize the radar imagery and compared
the results with texture-based classification. Our experimental results showed that inclusion of
textural features derived from the SAR data using the discrete wavelet transform (DWT) features
and GLCM features provided higher overall classification accuracies compared to the pixel-based
polarimetric features.

Keywords: discrete wavelet transform (DWT); gray level co-occurrence matrix (GLCM); image
classification; radar polarimetry; synthetic aperture radar (SAR); support vector machine (SVM)

1. Introduction

There are over 100,000 miles of dam and levee structures of varying designs and conditions
in the United States. Today, nearly 3600 miles of levees make the Mississippi River basin the
most extensively controlled river system in the world [1]. The levee system design incorporates
technological breakthroughs from the science of soil mechanics that take into account the type,
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condition, and moisture content of material used in the construction of the levees. The levee systems
incorporate several safety measures by installing land-side berms and relief wells to reduce the water
pressure. Excessive water pressure can lead to complete levee failure. The Levee Board implements
strict annual levee maintenance programs that are expensive and require many man hours of the levee
personnel to perform inspection. These inspections are helpful for identifying the weak areas on the
levee; however, there are limited processes to monitor these structures and predict potential risk to
communities. Therefore, we need an inexpensive remote sensing technology to monitor levees on
a continuous basis. The potential loss of life and property associated with the failure of dams and
levees can be extremely large. The catastrophe caused by Hurricane Katrina and the floods along the
Mississippi River in May 2011 emphasizes the importance of examination of levees to improve the
condition of those that are prone to failure under flood loading. Two types of problems that occur
along the levees, which can be precursors to complete failure during a high water event are slough
(or slump) slides and sand boils. If the underlying foundation materials that support the levee are
weak, or become destabilized, a slope failure can develop and result in a catastrophic failure of the
levee. These slope failures can form as slough/slump slides along a levee and are vulnerable to levee
failure. Usually, the slump slides appear on the river side of the levee and may cause seepage during
high water events. In this study, we focus on slump slides, since they occur in areas more visible to
remote sensing.

On-site inspection of levees is expensive and time-consuming; therefore, a need to develop
efficient techniques based on remote sensing technologies is mandatory to prevent failures under flood
loading. Synthetic Aperture Radar (SAR) technology, due to its high spatial resolution and potential
soil penetration capability, is a good choice to identify problem areas along the levee so that they
can be treated to avoid possible catastrophic failure. Furthermore, the radar sensors can penetrate
through soil to a depth equal to 10% to 25% of their wavelength, which equals a few millimeters to
centimeters [2]. Improved knowledge of the status of these levees would significantly improve the
allocation of precious resources to inspect, test, and repair the ones in most need. This research and
development effort is leading to new methods to detect the problem areas along the levee such as
slump slides and give levee managers new tools to prioritize their tasks and repair efforts.

Remote sensing studies in the last decade have largely focused on detection of deformation,
slides, and seepage on levees and dikes [3–5]. SAR data has been investigated and widely used
for deformation detection on levees and dikes. The radar backscatter data is capable of identifying
variations in soil properties of the areas that might cause levee failure. We hypothesize that the surface
roughness and related textural characteristics of the soil in a slide affect the characteristics of radar
backscatter, and thus could be useful data sources for identifying problem areas in levees. Polarimetric
SAR data with HH, HV and VV polarizations is very effective for classification because it contains
different scattering characteristics of each target and hence contains data about the nature of the
backscattering mechanisms in the signal. Note that the first letter corresponds to the transmitted
signal polarity, while the second letter corresponds to the receive signal polarity, with H and V
denoting horizontal and vertical polarities, respectively. The radar backscatter also depends on the
dielectric properties of soil surface, and the co-polarization sensitivity to surface materials improve the
classification accuracies to a great extent.

Several supervised and unsupervised classification algorithms have been applied to SAR data
for efficient land cover classification [6,7]. The Support Vector Machine (SVM) is a nonparametric
classification method which has been used successfully in many remote sensing studies [8]. Nonlinear
SVM classifiers use kernel mapping to map the data in the input space to a high dimensional
(potentially infinite dimensional) feature space in which the mapped data usually becomes more
linearly separable. The decision function of SVM depends not only on number of support vectors
but also on the a priori chosen kernel. Zhang et al. [9] implemented the SVM algorithm for the
classification of polarimetric SAR image using scattering and textural features. Gray level co-occurrence
(GLCM) matrix features have been a popular method for textural extraction in remotely sensed
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images [10,11]. Cui et al. [12] have implemented a multi-classifier decision fusion framework for levee
health monitoring using texture features derived from the gray level co-occurrence matrix. GLCM
textural features extracted from the European Remote Sensing satellite 1 (ERS-1) synthetic radar
imagery have been used to map sea ice texture [13]. The type of vegetation that grows in a slide
area differs from the surrounding levee vegetation, which can also be utilized in detecting slides [14].
Polarimetric decomposition parameters entropy (H), anisotropy (A), and scattering angle (α) derived
from the coherency matrix calculated from the SAR data have been used to detect anomalies such as
slough slides along the levee [15]. Melamed et al. [16] applied the Silverman–Totman–Caefer (SRC)
algorithm and a classification algorithm by Cloud and Pottier [17,18] to polarimetric SAR data to
detect anomalies.

In this paper, we focus on analyzing different algorithms to assess the condition of levee structure
using multi-polarized SAR images. This work is an extension of the previous work [4,15,19,20]
of several of the authors. The Reed-Xiaoli (RX) anomaly detector, a training-free unsupervised
classification algorithm, was implemented on the levee segments to detect slump slides on the levee [4].
In [15], Freeman–Durden decomposition and Wishart unsupervised classification algorithms were
applied to screen Earthen levees. In this work, we propose a classification method, which utilizes
the polarimetric and texture features of the image for efficient classification and detection of slump
slides. Early detection of the occurrence of these events can assist levee mangers in prioritizing their
inspection and repair efforts. In addition, a pixel-based scheme is also investigated, which does not
take vicinal pixel information into account during the classification process.

This paper is organized as follows. Section 2 discusses the proposed methodology. Section 3
describes the study area and the polarimetric SAR data used in this research. The results are discussed
in Section 4. Conclusions are drawn and future work is given in Section 5.

2. Methods

This section discusses the image processing chain block diagram, the extraction of texture features,
polarimetric features, and the SVM classification scheme. In SAR images, texture and intensity are
two important characteristics for the classification tasks. Polarimetric SAR measurements can be
used to assess information about the scattering mechanisms in the radar pixel. Statistical texture
analysis is very useful in image classification since it can improve segmentation of various regions.
The roughness and related textural characteristics of the soil affect the amount and pattern of radar
backscatter. The SAR data used in this study was acquired by the National Aeronautical and Space
Administation (NASA)’s UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) airborne
radar system.

The block diagram showing the overall processing chain is shown in Figure 1. The SAR data is
acquired and preprocessed as necessary. Our current method does not segment the levee automatically,
so this step is currently done manually; this step could be accomplished via an automated segmentation
algorithm, or by using polygons of known Global Positioning System (GPS) points. Features are then
extracted from the levee area. Feature extraction is discussed in detail in Section 2.1. Next, feature
selection is performed. Herein, feature selection is really just a switch so we can select which feature
set we want to analyze (see Sections 2.1.1–2.1.3). The ground truth is derived from a priori data, and is
discussed in Section 3. Training masks are generated based on area ground truth. The SVM is trained
on the training data and then the entire levee area is classified by the SVM. The SVM is discussed in
Section 2.2.

In this research, pixel-based polarimetric and window-based texture features were extracted
from the SAR data. The pixel-based polarimetric decomposition features such as entropy, anisotropy,
scattering angle and texture features from gray level co-occurrence matrix and discrete wavelet
transform were computed and analyzed for efficient levee classification.
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Figure 1. Block diagram of UAVSAR image processing chain.

2.1. Texture Features

It is our hypothesis that both texture-based features and polarimetric features would be useful
in analyzing levees for damage. A damaged section of the levee will have structural differences
internally, and the surface will also have differences with the surrounding soil. Furthermore, over time,
the vegetation around the damaged area may also change due to the moisture coming through the
levee. It is anticipated that these changes will be “visible” in features extracted from SAR imagery.

Feature extraction in this study is based on three different feature types, explained in the sections
below. GLCM-based features are textural features based on pixel value co-occurrences. Discrete
Wavelet Transform-based features are based on a 2D Discrete Wavelet Transform (DWT) analysis.
Finally, polarimetric features are based on data derived from the multiple polarization scattering matrix.

In the sequel, Section 2.1.1 discusses the DWT-based features. Section 2.1.2 discusses the
GLCM-based features, while Section 2.1.3 discusses the polarimetric features.

2.1.1. DWT-Based Features

The first type of texture features used in this study are based on the DWT. The DWT was first
proposed for texture analysis by Mallat [21]. The DWT allows a signal to be decomposed using a series
of elemental functions called wavelets, which are based on translations and scaling of the so-called
mother wavelet. The mother wavelet for a given scale s and translation u are given by

Ψsu(x) =
1√

s
Ψ
(

x− u
s

)
. (1)

The wavelet decomposition of a function f (x) for a given scale and translation is given by
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W f (s, u) =
∫
R

f (x)
1√

s
Ψ∗
(

x− u
s

)
dx. (2)

In practice, dyadic (sizes are powers of two) wavelets can be implemented as a series of high-pass
(detail) and low-pass (approximation) filters. When applied to 2D imagery, wavelets decompose
the image into different sub-bands. Common features extracted include wavelet decomposition
values, absolute values, or energies. The 2D DWT is essentially a double 1D analysis of a 2D signal,
by operating on the rows and columns of an image. As shown in Figure 2, the 2D DWT is accomplished
by passing the input image through a high-pass filter, g[n], and a low-pass filter, h[n]. The first step
applies the filter to the image rows, and the second step applies the filters to the columns. After the
filtering, a decimation by two (↓ 2) prepares the signal for the next level of decomposition.

A total of 48 DWT coefficients were generated from the analysis using an 8 × 8 window.
These features were then normalized to the range [0, 1] using the minimum and maximum of each
feature. The same data transformations were used with both training and testing data. The low-pass
features provide information on the more slowly-varying parts of the signal, e.g., coarse textural
information. The high-pass feature provide detail (higher frequency) information. In our analysis,
dyadic wavelets were utilized, and window sizes of 4× 4 pixels, 8× 8 pixels, and 16× 16 pixels
were analyzed. In Figure 2, the letters H and L refer to high and low pass portions of the DWT
analysis, respectively.

Figure 2. Schematic diagram of one-level two-dimensional DWT image decomposition process.

2.1.2. GLCM-Based Features

The second type of features analyzed are the GLCM-based features. GLCM analysis is a
second-order statistical tool usually used to characterize texture in imagery. The GLCM features
analyze imagery based on the frequency of two gray levels appearing in an image according to a
position operator. In effect, it is estimating the joint probability of the two gray levels from a pair
of pixels along a given distance and direction. The GLCM features are extracted from four spatial
orientations: horizontal, left-diagonal, right-diagonal, and vertical. Each of these directions yields one
GLCM matrix. From each matrix, six features are extracted: energy, correlation, variance, homogeneity,
entropy, and inertia. The formulas for calculating these features are shown in Table 1.
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Table 1. GLCM Features.

GLCM Feature Equation

Contrast ∑
i

∑
j

Pij(i− j)2

Entropy ∑
i

∑
j

Pijlog
(

Pij
)

Correlation ∑
i

∑
j

(i−µ)(j−µ)Pij
σ2

Energy ∑
i

∑
j

(
Pij
)2

Homogeneity ∑
i

∑
j

Pij

1+(i−j)2

Variance ∑
i
(i− µ)2∑

j
Pij

In Table 1, Pij is the graylevel matrix value at the coordinate (i, j), µ = ∑
i

∑
j

Pij, and σ2 is

the variance.
For each radar polarization channel (HH, HV and VV), 24 GLCM texture features are generated,

corresponding to the four directions and six types of texture features. In total, 72 GLCM-based features
were extracted from the SAR data. In order to quantify the effects of the analysis block size, the window
size was varied by 5× 5 pixels, 7× 7 pixels, 9× 9 pixels, and 11× 11 pixels. GLCM analysis requires
a center pixel in the analysis window, so all the window dimensions are odd. After feature extraction,
the features were normalized to [0,1], using the min-max method.

2.1.3. Polarimetric-Based Features

The third type of features analyzed are polarimetric-based features. In Polarimetric SAR (PolSAR),
the transmitted radio frequency signal is polarized. The receiver is able to concurrently receive
multiple polarizations, which can be used to help discriminate different scattering mechanisms.
The backscattering signal properties are captured in the scattering matrix, S, which is given by

S =

[
Shh Shv
Svh Svv

]
, (3)

where the subscripts h and v represent horizontal and vertical polarization, respectively. Note that due
to symmetry, Shv = Svh (since our radar is monostatic, it is usually the case that reciprocity holds; that
is, that the cross-polarization scattering factors are identical. This assumption would not necessarily be
the case for a bistatic radar, for which reciprocity does not hold.).

To relate the scattering matrix to the physical properties of the scatterer, the target vector ~KP is
represented in the 3D Pauli basis [22] as given by

~KP =
1√
2

 Shh + Svv

Shh − Svv

2Shv

 . (4)

The coherency matrix, T, contains the second order statistical information about the target
backscatter response, and is given by

T = ~KP~KH
P , (5)

where H represents the Hermitian operator (matrix transpose and complex conjugation).
For single-look and multi-look processed data, the coherency matrix is defined as:
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T =


|Shh + Svv|2

〈
(Shh + Svv) (Shh − Svv)

∗〉 2
〈
(Shh + Svv) S∗hv

〉〈
(Shh − Svv) (Shh + Svv)

∗〉 |Shh − Svv|2 2
〈
(Shh − Svv) S∗hv

〉
2
〈
Shv(Shh + Svv)

∗〉 2
〈
Shv(Shh − Svv)

∗〉 4|Shv|2

 , (6)

where the diagonal elements T11, T22, T33 give the surface, double-bounce, and volume scattering
information about the target, respectively. The VV backscatter dominates at the surface scattering areas,
the HV backscatter dominates in the volume scattering, and HH dominates in the double-bounce areas.

Cloude and Pottier [18,22] developed a polarimetric decomposition theorem based on
eigenanalysis of the 3× 3 coherency matrix. The decomposition extracts an estimate of the entropy, H,
scattering angle α, and anisotropy, A, from the coherency matrix [18,22].

The entropy parameter, H, is a measure of the randomness in the backscatter, and is defined as
the logarithmic sum of the weighted eigenvalues [23], as given by

H = −
3

∑
i=1

pilog3 (pi), (7)

where pi =
λi

3
∑

k=1
λk

and pi corresponds to the eigenvalue λi. For smooth surfaces, H takes on values close

to zero, implying a non-depolarizing scattering mechanism. Usually, low entropy (H < 0.3) indicates
a single scattering mechanism, while high entropy (H > 0.8) indicates more random scattering from
multiple point objects.

The anisotropy feature helps to distinguish different types of scattering mechanisms which have
different eigenvalue distributions. This parameter examines the second and third eigenvalues and is
given by

A =
λ2 − λ3

λ2 + λ3
. (8)

The anisotropy can be considered a measure of the lack of azimuth symmetry, or as an indication
of the small-scale surface roughness. For surfaces with perfect azimuth symmetry, λ2 = λ3, and the
anisotropy is zero. Usually, this feature is a good discriminator when A > 0.7 [24]. When the entropy
feature is low, the anisotropy is noisy [24]. Since the UAVSAR usually has a good signal-to-noise ratio,
the UAVSAR provides good anisotropy values.

The third feature is the mean angle (α) and is an indicator of the type of scattering mechanism
that is occurring. The α parameter varies from 0◦ to 90◦ and is defined as

α =
3

∑
i=1

piαi, (9)

where αi = cos−1
(

|SHH+SVV |√
|SHH+SVV |2+|SHH−SVV |2+4|SHV |2

)
. The feature α is approximately 0◦ when the

target has a dominant surface or single-bounce component, while α = 45◦ indicates volume scattering,
and α = 90◦ indicates that double-bounce scattering has occurred.

2.2. Support Vector Machine Classifier

The SVM is a nonparametric classification method and has been used successfully in many remote
sensing studies. The two-class SVM classifier discriminates two classes by fitting an optimal separating
hyperplane to the training data within a kernel-induced feature space. Nonlinear kernel function in
the SVM framework helps to map nonlinear separation in the original space to a linear separation in
the kernel-induced feature space. Another advantage of SVM is that it often works well with small
training data sets. The kernel function plays a critical role in SVM training and classification [25].
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The essence of the kernel function is to enable operations to be performed in the input space rather
than the high dimensional feature space. Some commonly implemented kernel functions are the linear
kernel, polynomial kernel, and the Gaussian radial basis function (RBF) kernel. The RBF is given as

Kσ

(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
, (10)

where the parameter σ is a width parameter that usually must be optimized for the given problem.

3. Materials

The study area is a stretch of 230 km of levees along the lower Mississippi River along the western
boundary of the state of Mississippi (MS, USA), as shown in Figure 3. The study area was selected
based on the history of levee failure events occurring in the lower Mississippi valley. This history can
facilitate the investigation of the use of remote sensing data to analyze physical factors that would
indicate problems in levee conditions, whether they arise from moisture content, slope instability,
hydraulic uplift, water seepage through levees, or underseepage resulting in sand boils. Figure 4
shows the photograph of Earthen levee on the banks of Albermarle Lake, MS, USA, a Mississippi river
oxbow. Levee vegetation consists mostly of grasses and weeds. Three types of grasses predominate on
the levees in the study area are: Bermuda, Rye, and Johnsongrass.

The SAR data used in this study were acquired by NASA Jet Propulsion Laboratory’s (JPL)
UAVSAR polarimetric L-band (λ = 23.98 cm) synthetic aperture radar with a range bandwidth of
80 MHz (resulting in better than 2 m range resolution). UAVSAR is specifically designed to acquire
airborne repeat track SAR data for differential interferometric measurements [26]. The single look
complex (SLC) data from UAVSAR is of very high resolution with an azimuth slant pixel spacing of
0.6 m and range pixel spacing of 1.6 m. However, the single-look images are very speckled in slant
range, which makes visual interpretation and characterization very difficult. To reduce the effects of
noise, multi-look cross product (MLC) data is derived from SLC data by averaging a region sized three
range pixels by twelve azimuth pixels. These complex cross products preserve most of the important
amplitude and phase information that are needed to analyze the data. These products are widely used
in radar applications due to speckle reduction by averaging the single-look pixels. The multi-looked
SAR data is projected to the ground range using an Earth ellipsoid model and the resultant product is
used in this study, which has square pixels of 5.5 m spatial resolution. The instrument is capable of
penetrating dry soil to a few centimeters depth, and measuring vertical displacements on the order
of a few millimeters. The differences in vegetation growth (sparse or dense) and vegetation type
(Bermuda grass, weeds, etc.) influence the radar backscatter and are distinguishable in the imagery.
Thus, it is valuable in detecting changes in levees that are key inputs to the classification system.

A multi-polarized radar image acquired in June 2009 has been analyzed in detail for detecting
the anomalies on the levees. The UAVSAR flew over the study area for data collection and NASA
JPL performed pre-processing of the data by applying radiometric calibrations, geo-registration, and
orthorectification. In addition to the radar data, we rely on ground truth data collected by the US
Army Corps of Engineers (USACE) and our team in field data collection trips. This data documented
the exact location and timing of slough slide appearance, dimensions of the land slides, their repair
status, how they were repaired, etc. The USACE maintains a national inventory of levee systems and
posts the information on the National Levee Database (NLD) website [27]. It provides information
about the location and condition of levees and floodwalls. The ground truth data that is used in this
research was obtained from the Engineer Research and Development Center (ERDC) in Vicksburg,
Mississippi. This data is tabulated in Table 2. There were three active slide events identified at the time
of image acquisition and precise boundaries of the slump slide were mapped with polygons drawn
using a GPS instrument during field data collection trips. The ground truth was also compared to the
optical NAIP (National Agriculture Imagery Program) data to visually confirm the slide events and
training masks were created based on those results. The photograph of an active slump slide shown in
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Figure 3 (upper left) was taken during one of our field data collection trips. The location of this slide is
at the Eagle Lake area near Vicksburg, MS. Training samples of slides and healthy levee areas were
obtained from the UAVSAR data using the training masks for feature extraction analysis.

Table 2. Levee slides’ ground truth data from the Mississippi Levee Board.

Slide #
(ArcGIS FID)

From Levee Board (08 Apr. 2011) Slide Measurements
Type of RepairLatitude

(North)
Longitude

(West)
Date Slide
Appeared

Date Slide
Repaired

Length
(Feet)

Vertical Face
(Feet)

Distance from
Crown (Feet)

17 N32◦36′49.9′ ′ W90◦59′37.3′ ′ Oct 09 Nov 09 165 2 15 Dug out/pushed back

19 N32◦36′36.0′ ′ W90◦59′45.2′ ′ Stability
Berm - 90 2 140 Not Repaired

20 N32◦36′32.0′ ′ W90◦59′46.3′ ′ Aug 08 Nov 09 120 3 15 Dug out/pushed back

21 N32◦36′29.1′ ′ W90◦59′48.0′ ′ - Sept 10 200 8 8 Lime

Figure 3. Map and pictures of study area. (a) Picture of levee slump slide; (b) Study area location.
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Figure 4. Earthen Levee on the banks of Albemarle Lake, MS, USA, a Mississippi River oxbow.

The UAVSAR imagery acquired on 16 June 2009 was used in the analysis and the georeferenced
layers used in the analyses have been masked by a 40 m buffer from the crown of the levee on the river
side. Each pixel of multi-look UAVSAR imagery is 5.5 m × 5.5 m, and the size of the subset is 1.1 km
along the levee (164× 94 pixels), which had three reported slide events (Slide number 17, 20 and 21) at
the time of image acquisition was used in the analysis. The ground truth data from the Mississippi
Levee Board at the time of image acquisition with active slump slides and their repair status along
with its dimensions is given in Table 2.

As shown in Figure 5, the levee is divided into two classes, healthy/non-slide levee and slump
slide, and the training masks were designed based on the ground truth data. This subset has a total of
102 slump slide pixels and 549 healthy/non-slide levee pixels.

Figure 5. Training mask for UAVSAR subset with two ground truth classes: slump slide and
non-slide/healthy Levee with three-band UAVSAR (HH, HV, and VV) image at the background.
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4. Results and Discussion

The SVM was utilized to classify the results for the DWT, GLCM, and Polarimetric features.
The SVM can work well even with small training data sets, which is very important for levee
applications, as the training data is very small. In this study, the RBF kernel was chosen. The other
parameters considered are called hyper parameters and these are the soft margin constant C and the
width of the Gaussian kernel γ = 1

2σ2 . The soft margin constant C controls the penalty of misclassifying
training samples.

In this study, the performance of the SVM classifier using three different combinations of groups
of features were compared. The texture features from DWT, GLCM and H/A/α polarimetric features
were included separately and the SVM algorithm was implemented using a Gaussian RBF kernel.
The performance of the classification was tested with different values of the kernel parameter σ as
well as different window sizes for the texture feature calculations. The regularization parameter C
was varied but did not significantly affect the results. Note that the number of training samples
is imbalanced: the slump slide class has less pixels than the non-slide levee class and 10% of the
labeled samples were used as training and the rest of the pixels were predicted by the classifier.
The classification accuracy was also compared by using only the three types of radar polarization
channel amplitude data: HH, HV, and VV (without feature sets).

4.1. DWT Feature Results

The SVM algorithm was implemented on the extracted DWT texture features of the SAR data
set using a Gaussian RBF kernel and the performance of the classification was tested with different
values of the kernel parameter, σ. The DWT features with different mother wavelets were calculated.
However, the Daubechies db-4 mother wavelet [28] gave better accuracies in detecting the slump
slides, so only Daubechies wavelet features were analyzed. Figure 6 shows the overall classification
accuracies of the SVM classifier with DWT feature set with varying σ parameter for the RBF kernel and
different window size values. Figure 7 shows the wavelet features superimposed on an aerial image.
This figure also shows the SVM classification results.

Figure 6. Classification accuracy (%) of SVM classifier with DWT features with different block/window
sizes (B−window is B× B pixels).
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Figure 7. SVM Classification. The SVM Classification map for UAVSAR data set using DWT features
with σ = 0.08 and wavelet block size B = 8 (window is B× B) is shown on the right. On the left is a
enlarged overlay of the wavelet features (with an aerial image background).

From Figure 6, the 8× 8 pixel window size produced the best results, and this window size did
not show a significant change as the SVM RBF σ parameter was varied. The 8× 8 pixel window size
produced the highest accuracies of 95.6% for the slide class and 95.9% for the non-slide levee class.
The 16× 16 and 4× 4 pixel window sizes had significantly poor results. The performance of the
classifier was also compared by using only the three types of radar polarization channel data, HH, HV,
and VV (without wavelet features), which resulted in lower classification accuracies. The accuracy
assessment was conducted ten times (using randomly selected training samples), and the results were
averaged. The confusion matrix from one of the ten runs with σ = 0.08 and wavelet block size B = 8 is
given in Table 3, and the classification map (σ = 0.08 and B = 8) is shown in Figure 7.

Table 3. Confusion matrix of SVM classifier output using the DWT features with σ = 0.08 and block
size B = 8 pixels.

Class Slump Slide Non-Slide Levee Producer’s Accuracy

Slump Slide 87 4 95.6%
Non-Slide Levee 20 474 95.9%
User’s Accuracy 81.3% 99.2% Overall Accuracy 93.0%

4.2. GLCM Feature Results

The GLCM features energy, correlation, variance, homogeneity, entropy, and inertia were
computed and the SVM classifier was trained and tested with this extracted feature data.
The classification was performed with different block size windows: 5× 5 pixels, 7× 7 pixels, 9× 9
pixels, and 11× 11 pixels. The results showed that the classifier performed well with GLCM window
size 9× 9 pixels having the highest accuracies of 75% and 93.5% for the slide and non-slide levee
class, respectively. The confusion matrix of one of the ten runs of GLCM feature classification with
σ = 1.7 and window size 9× 9 pixels is shown in Table 4. The classification accuracies with different
σ values and window sizes is shown in Figure 8. In general, the 5× 5 pixels had the worst performance,
the 11× 11 pixels had slightly better performance, the 7× 7 pixels even better performance, and
9× 9 pixels the best performance. This is somewhat similar to what was seen in the DWT-based
features, where the best window size was 8× 8 pixels. A window that is too small will have more
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inaccurate mean and variance estimates, and a window that is too large can include pixels that cross
slide boundaries, providing a mixed evaluation that includes features from slide pixels as well as
non-slide pixels. This analysis shows that one must try various window sizes in order to determine
the best results. Figure 9 shows the classification map for the GLCM results.

Figure 8. Classification accuracy (%) of SVM classifier with GLCM features with different
block/window size (B−window is B× B pixels).

Figure 9. SVM Classification map for UAVSAR data set using GLCM features with σ = 1.7 and block
size B = 9 (window is B× B).
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Table 4. Confusion matrix of SVM classifier output with GLCM features, σ = 1.7, and block size B = 9.

Class Slump Slide No-Slide Levee Producer’s Accuracy

Slump Slide 69 23 75.0%
Non-Slide Levee 32 463 93.5%
User’s Accuracy 68.3% 95.3% Overall Accuracy 84.3%

4.3. Polarimetric Feature Results

From the radar polarimetric backscatter data, the coherency matrix was computed, which contains
the second order statistical information about the polarization. The decomposition parameters entropy
(H), anisotropy (A) and scattering angle (α) were derived from the eigenvalue decomposition of the
coherency matrix.

4.3.1. Entropy

The parameter entropy (H) indicates the degree of randomness of the scattering medium.
The slump slides are usually rough in texture, which will result high entropy values. However,
the levees in our study area are covered with vegetation (different types of grass—mostly Bermuda,
Rye, Johnson grass and weeds in some areas), so the river side of the levee has moderate to high
entropy values. From the entropy map shown in Figure 10a, it is clear that the slump slides have high
entropy values ranging from 0.48 to 0.72.

Figure 10. Polarimetric features from 16 June 2009 UAVSAR subset with optical NAIP imagery
background. The slump slides are shown by the small black polygons in the images. (a) entropy
(ranges from 0 to 1); (b) anisotropy (ranges from 0 to 1); (c) scattering angle (ranges from 0◦ to 90◦).

4.3.2. Anisotrophy

In general, the anisotropy values will be affected by the size and type of vegetation, the time of year
(season), and by how much of the radar signal is reflected by the ground vegetation versus how much
is reflecting from the ground. The UAVSAR’s L-Band instrument has a relatively long wavelength,
so it penetrates through short vegetation and the backscatter is mostly from the underlying ground.
However, the vegetation in the study area is about 2–3 feet high at the time of image acquisition (June
2009), so double bounce scattering dominates and the values of entropy and anisotropy are relatively
high. However, the slump slide areas, as shown in Figure 3, are without vegetation and are relatively
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rough in texture, so the anisotropy values are comparatively lower than the surrounding non-slide
areas of the levee. The values of anisotropy within the slump slide areas range from 0.95 to 0.98
(Figure 10b).

4.3.3. Scattering Angle

The angle α corresponds to the variation in scattering mechanism, with α = 0◦ corresponding
to surface scattering; α = 45◦, dipole scattering; and α = 90◦, double bounce scattering. For smooth
surfaces, surface scattering dominates and the entropy is close to 0. As shown in Figure 10c, the alpha
values are very high due to double-bounce scattering. The slump slides are rough in texture with
certain depth, so these areas resulted in double-bounce scattering. In addition, the vegetation on the
levee also causes double-bounce scattering, resulting in high values of scattering angles all through
the levee. The alpha values within the slump slide range from 89.5◦ to 89.8◦.

4.3.4. SVM Classification Results

The support vector machine algorithm was implemented based on the polarimetric target
decomposition parameters entropy, anisotropy, and scattering angle derived from the eigenvalue
decomposition of the coherency matrix. The UAVSAR subset of Figure 5 was used and the classifier
was trained with 10% of the labeled data. The classifier accuracies were 58% and 72% for slump slide
and non-slide/healthy levee, achieved at σ = 2.5 as shown in Figure 11.

Figure 11. SVM classifier accuracies with polarimetric decomposition feature set (H, A, and α) for
UAVSAR subset of 16 June 2009 versus σ. The blue line is healthy levee and the red line slump slides.

5. Conclusions and Future Work

In this paper, DWT, GLCM and polarimetric-based features from SAR data were used with
a SVM classifier to detect slump slides on levees. The DWT features performed the best, having an
overall accuracy of 93.0% with a window size of 8× 8 pixels across a wide range of RBF σ parameters.
The window size had a large effect on the overall accuracy with the DWT-based features. The GLCM
features also performed well, with an overall accuracy of 84.3%. These features were also sensitive to
the window size. The polarimetric-based features had the lowest performance, but the anisotropy and
scattering angle α parameters did provide some discriminative values for detecting slump slides.

The levee area is segmented based on the orientation of the levee in the SAR image. That is,
we wanted the select regions of the levee where the levee was basically oriented in one direction,
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versus areas where the levee made sharp changes to follow the river. The reason was that the
backscatter will appear differently if the levee changes direction sharply. The segments are created
based on human ground truth data on existing slide events at the time of the image acquisition.
There were only a small amount of training and testing pixels available, and the SVM did a good job
with the limited data.

In the future, we plan to perform several more experiments. First, X-band satellite data is also
available, and it could be used and compared to the current L-band data. Furthermore, data fusion
between these two radars could be performed, as each could provide different information about the
levee health. In addition, feature-level fusion could be performed across the different features used
in this study. Decision-level fusion can be applied by using multiple SVMs and fusing the results.
Multiple Kernel Learning (MKL) [29,30] can also be applied, which searches for an optimal linear
combination of kernels which are utilized in multiple SVMs.

Deep learning has made significant progress in analyzing optical, LiDAR [31], and SAR [32–36]
data. Extending these architectures (or modifying them) for SAR data processing promises even
better results. The challenge here is the small amount of training data. The benefit (other than
high classification accuracies) is that the deep learning network can learn the features from the data,
versus hand-coded features (e.g., the features we used in this paper). We also want to examine levee
segmentation by an automated algorithm (probably requiring GPS data or other Graphical Information
System data). This could also be a good task for a deep learning system.

Finally, we want to examine computing the GLCM features on PolSAR decomposition features,
e.g., Yamaguchi decomposition [37] features, which would effectively combine PolSAR radar returns
and SAR textural features.
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