
electronics

Article

Sudoku Inspired Designs for Radar Waveforms and
Antenna Arrays

Travis D. Bufler 1, Ram M. Narayanan 1,* and Kelly D. Sherbondy 2

1 Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
tdb15@psu.edu

2 Sensors and Electronics Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783, USA;
kelly.d.sherbondy.civ@mail.mil

* Correspondence: ram@engr.psu.edu; Tel.: +1-814-863-2602

Academic Editor: John Ball
Received: 17 December 2016; Accepted: 2 February 2017; Published: 8 February 2017

Abstract: Sudoku puzzles, often seen in magazines and newspapers, are logic-based challenges
where each entry within the puzzle is comprised of symbols adhering to row, column and box
constraints. Previously, we had investigated their potential in frequency-hopped waveforms to
achieve desirable radar ambiguity functions and compared them with random, as well as the more
familiar Costas sequences. This paper further examines the properties of Sudoku codes in more detail
through computational search and analysis. We examine the co-hit and cross-hit arrays, defined as
the correlation between two sequences, to quickly and efficiently evaluate numerous Sudoku puzzles.
Additionally, we investigate the use of Sudoku puzzles for antenna applications, including array
interleaving, array thinning and random element spacing.

Keywords: Sudoku; Costas; frequency hopped; array thinning; beamforming

1. Introduction

Sudoku is a combinatorial number-placement puzzle that has its roots in the well-studied Latin
squares [1]. A Latin square is comprised of an n× n grid in which each column and row contains
all of the integers from one to n. Sudoku has the additional constraint that the same integer appears
only once in the same row, column or any of the n sub-grids of size m× l of the n× n grid. The box
constraint serves to increase its Shannon entropy (measure of the disorder of a typical matrix) as
compared to cases without the constraints imposed, i.e., for randomly-generated matrices of the
same size [2]. The most recognizable Sudoku puzzle is the popular 9 × 9 variant, where n = 9
and m = l = 3. However, puzzle sizes as large as 121× 121 have been realized. While the square
and rectangular sub-grids within a Sudoku-type puzzle are the most common arrangement, other
irregular geometries exist, where the integers one through n have to fit more esoteric shapes [3].
Mutually-orthogonal Sudoku squares have also been constructed and studied [4,5]. Sudoku squares
are classified as mutually orthogonal if two squares of the same order n can be overlayed on top
of one another and produce distinct pairs of numbers. Specifically, if m = l and are prime, a set of
n−m = m(m− 1) mutually-orthogonal n× n Sudoku squares can be constructed. Thus, there are six
mutually-orthogonal realizations for the popular 9× 9 Sudoku puzzle.

Previously, we investigated the use of Sudoku puzzles as a means to realize frequency-coded
waveforms [6] similar to the well-known Costas coded sequences [7]. We explored the auto-ambiguity
and cross-ambiguity functions of different Sudoku-coded waveforms and compared them to traditional
Costas sequences and random sequences. Our initial work showed that Sudoku-based waveforms
can achieve low ambiguities in both range and Doppler planes, giving a “thumbtack”-like response.
Although such a surface is not attainable in practice, several waveform sequences based on continuous

Electronics 2017, 6, 13; doi:10.3390/electronics6010013 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2017, 6, 13 2 of 19

discrete frequency coding [8] techniques have been developed that approximate the ideal ambiguity
diagram, while at the same time allowing practical system designs. For such waveforms, any
translation of the sequence parallel to the coordinate axes (frequency and time: thus, velocity and range)
produces a very low number of out-of-phase coincidences with improved resolution characteristics
over other frequency-hopped signals, such as the linear frequency-hopping sequence [9]. Often, the
resolution of a radar system indicates its ability to resolve targets, where low ambiguities in range can
help to resolve weaker targets.

This paper expands on our previous analysis of Sudoku-coded waveforms through computational
analysis and radar simulations of Sudoku-coded waveforms. We also examine the utilization of
Sudoku puzzles for antenna arrays applications. The paper is organized as follows. Section 2 discusses
frequency-hopping-coded waveforms and provides an in depth analysis of Sudoku applied designs;
Section 3 provides an examination of Sudoku-coded arrays through computational analysis; Section 4
examines Sudoku as applied to antenna arrays for beam steering, array thinning and random element
spacing; finally, Section 5 summarizes our results and provides conclusions.

2. Sudoku-Coded Waveforms

An important tool for radar waveform analysis is the ambiguity function, first introduced by
Woodward [10]. The ambiguity function characterizes the matched filter output of a radar waveform
and is useful for analyzing resolution and ambiguities in delay and Doppler. The radar ambiguity
function, |χ(τ, fd)|, is defined as:

|χ(τ, fd)| =
∣∣∣∣ 1
2E

∫ ∞

−∞
S1(t)S∗2(t− τ)ej2π fdtdt

∣∣∣∣ , (1)

where S1 is the transmitted signal, S2 is the time-delayed received signal, τ is the time delay, fd is the
Doppler shift and E is the total energy. Often, Equation (1) is termed the auto-ambiguity function if S1

and S2 are the same waveform and likewise the cross-ambiguity function if S1 and S2 are two different
waveforms. The cross-ambiguity is of interest in order to gauge the interference from other waveforms.

In the case of a frequency-hopped radar, the signal consists of frequencies chosen from a set
{ f1, f2, ... fn} of available frequencies spanning the range [fmin, fmax], where B = fmax − fmin is the
bandwidth and ∆ f = B/n is the frequency spacing, i.e.,

∣∣ fi − f j
∣∣ = k∆ f where k is an integer and

1 ≤ i, j ≤ n. These frequencies are transmitted at each of a set {t1, t2, ...tn} of consecutive time intervals,
where T = tn − t1 is the total signal duration and ∆t = tk+1 − tk = T/n is the time step or the
sub-pulse duration, where 2 ≤ k ≤ n− 1 [11]. Optimum resolutions in both range and Doppler require
∆ f = 1/∆t [12]. Such a signal can be represented as an n× n matrix X shown in Figure 1 where the n
vertical rows correspond to the n frequencies and the n horizontal columns correspond to the n time
intervals. The matrix entry xpq equals one if and only if frequency fp is transmitted in time interval
tq; otherwise xpq = 0. Allowing the frequencies to increase or decrease in a linear order over the
various time slots would result in a Linear Frequency Modulation (LFM) waveform instead of a more
disordered frequency-hopped waveform.

The auto-ambiguity function for the frequency-hopped radar is expressed in terms of coincidence
matrices defined as follows. The auto-coincidence matrix of size (2n− 1)× (2n− 1) is denoted as χ,
and its elements are obtained from the number of the coincidences of the ones of the signal matrix X
between the original array and its translation in both coordinate directions [13]. Each entry of χ, denoted
by χrs, represents a shift of r units in the horizontal and s units in the vertical direction. For a shift
towards the right, r is positive, while it is negative for a shift towards the left. Similarly, s is positive
for a shift upward and negative for a shift downward. The entries of the auto-coincidence matrix χ

satisfy the following conditions: χ00 = n (this is the autocorrelation), 0 ≤ χrs < n for (r, s) 6= (0, 0)
when |r| ≤ n− 1 and |s| ≤ n− 1, and χrs = 0 if |r| > n or if |s| > n. For two such signals X and Y, we
define the cross-coincidence matrix ξ of size (2n− 1)× (2n− 1) as the number of coincidences of ones
between X and a translated version of Y, shifted to the right or left by r and up or down by s. Ideally, we

Electronics 2017, 6, 13 3 of 19

require ξrs(≤ n) for |r| ≤ n− 1 and |s| ≤ n− 1 to be as close to zero as possible in order to ensure
orthogonality between X and Y. Note that ξ00 represents the cross-correlation between X and Y.

Figure 1. Frequency-coded waveform matrix. The columns represent the different time intervals, and
the rows are the individual frequencies.

A specific subset of frequency-coded waveforms are Costas codes, which give what is known as
a “thumbtack”-like response for the radar ambiguity function. The longer the codes, the closer the
approximation converges to a true “thumbtack” response. Utilizing Sudoku puzzles, we can code the
waveforms based on the symbol locations as shown in Figure 2, where the locations of the one s are
laid out to demonstrate one possible code. Sudoku has the potential to offer similar performance to
that of the Costas codes with the added benefit of many more available codes compared to the finite
amount of Costas codes for a given size. One disadvantage is that the distance vectors may not be
unique as in the case for Costas-based codes, causing more coincidences to occur.

45 67 891 2 3

1234 56 78 9

12

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

1 23 4567 8

9 12 3 45 6 78

9

(a)

1

1

1

1

1

1

1

1

1

(b)

Figure 2. Representative Sudoku puzzle: (a) Sudoku puzzle; (b) same puzzle with only the
one s shown.

The ambiguity function χ(τ, fd) for Sudoku frequency-hopped waveforms is derived from the
auto-coincidence matrix by taking into account its finite time duration, as derived in [14] and shown in
Equation (2), which is made up of the sum of the auto χnn(τ, fd) and cross-term χnm(τ, fd) responses
given in Equations (3) and (4), respectively, as follows,

χ(τ, fd) = χnn(τ, fd) + χnm(τ, fd), (2)

χnn(τ, fd) =
1
N

N−1

∑
n=0

ej2π fdnTe−j2π fnτe−jπ fd(T+τ) · (1− τ

T
)

sin[π fdT(1− τ
T)]

π fdT(1− τ
T)

, (3)

Electronics 2017, 6, 13 4 of 19

χnm(τ, fd) =
1

N(N − 1)

N−1

∑
n=0

ej2π fdnT
N−1

∑
m=0 m 6=n

e−j2π fm[τ−(n−m)T]

· e−jπ fnmd(NT+τ)(1− τ

NT
)

sin[π fnmdNT(1− τ
NT)]

π fnmdNT(1− τ
NT)

, (4)

where T is the sub-pulse length, N is the number of chips, fm is the m-th frequency code, fn is the n-th
frequency code and fnmd = fn − fm − fd.

The ambiguity function plot for a Sudoku sequence of length nine corresponding to the one s
in Figure 2b is shown in Figure 3a, with the corresponding delay and Doppler cuts in Figure 3b,c.
The results are directly comparable to the Costas ambiguity function in which we observe a narrow
thumbtack-like peak, which narrows as the number of chips N increases.

Sudoku Ambiguity Surface

-15 -10 -5 0 5 10 15

Normalized Delay

-15

-10

-5

0

5

10

15

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

-15 -10 -5 0 5 10 15

Normalized Doppler F
d
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

Sudoku Zero Delay Cut

(b)

-15 -10 -5 0 5 10 15

Normalized Delay tN/

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

Sudoku Zero Doppler Cut

(c)

Figure 3. Sudoku auto-ambiguity plots: (a) 2D ambiguity surface; (b) zero-delay cut of the Sudoku
puzzle; (c) zero-Doppler cut of the Sudoku puzzle.

3. Sudoku Ambiguity Function Analysis

Instead of evaluating Equation (2) for side-lobes of multiple sequences, which would be a
time-consuming process, we can instead analyze the auto-coincidence and cross-coincidence matrices,
which can be performed more efficiently through 2D correlation. The generation of the coincidence
matrices was accomplished through the backtracking algorithm for both the Sudoku and the Latin
square matrices. The backtracking algorithm recursively solves a given Sudoku or Latin square grid.
We start with a blank grid beginning in the upper left corner, continue column wise until we reach the
end and then proceed onto the next row. The solver inserts a valid number for a given square from a
uniform distribution while checking to make sure it satisfies box, row and column constraints. The
algorithm will backtrack to previous squares if no valid numbers solve the current square.

Increasing the Sudoku and Latin square order also increases the number of possible puzzles.
While we could easily sort through all 4× 4 order matrices, going through 9× 9 and even high orders
is not feasible. Therefore, we generated a finite number of puzzles and evaluated them for different
criteria. Going above a 12× 12 Sudoku puzzle was not practical as the computational time for the
backtracking algorithm increases significantly for a valid solution; thus, 12× 12 was the highest
order investigated. The number of puzzles generated was 10,000 for a given size whose auto- and
cross-coincidence results are examined in the next section.

3.1. Sudoku Puzzle Coincidence Analysis

The auto-coincidence matrix or co-hit array is computed by correlating the binary frequency
matrix with itself, while the cross-coincidence or cross-hit array is computed by correlating two
different frequency codes with each other. By examining the resulting hit array matrices and sorting
the resulting collisions in order from greatest to least, we can investigate how well these codes perform.
Finding the second highest number of collisions in the co-hit array will give the expected side-lobe

Electronics 2017, 6, 13 5 of 19

performance of that particular code, while the highest number of collisions given in the cross-hit array
will give the highest side-lobe coincidence for interference. An example of the coincidence arrays is
given in Figure 4.

After the generation of every Sudoku or Latin square, that particular matrix is examined by
taking each of the N codes and analyzing their co-hit array performance. Similarly, the cross-hit array
performance is analyzed by taking every combination of the N codes and evaluating them among
each other.

Co-Hit Array 6x6

Delay

2 4 6 8 10

D
o
p
p
le

r

2

4

6

8

10

0

1

2

3

4

5

6

(a)

Cross-Hit Array 6x6

Delay

2 4 6 8 10

D
o

p
p

le
r

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 4. Example co-hit and cross-hit arrays: (a) co-hit array for the Sudoku sequence [2,5,4,3,6,1];
(b) cross-hit array for the Sudoku sequences [2,5,4,3,6,1] and [1,3,5,6,4,2].

3.1.1. Co-Hit Array Analysis

Histograms displaying the number of auto-coincidences are tabulated for 6× 6, 9× 9 and 12× 12
Sudoku and Latin square matrices and are shown in Figure 5. We observe that the majority of Sudoku
puzzles have two or three coincidences with 4× 4 containing equal amounts of one and two collisions.
As the Sudoku order is increased, we see a shift in the majority of collisions from two to three, with
12× 12 having a majority of three. Comparing the Sudoku co-hit arrays with Latin squares, we find that
the Sudoku puzzles offer slightly better side-lobe performance with a greater percentage of Sudoku
frequency codes offering “one” and “two” numbers of coincidences. The numerical simulations and
analysis show that Sudoku frequency codes offer slightly better performance.

Table 1 shows the percentages of the co-hit array analysis for the different sizes of Sudoku and
Latin square matrices. We can see for the Sudoku co-hit array that as the arrays increase in size, the
average collision level shifts to the right with the 6× 6 averaging two collisions and 12× 12 averaging
three for the majority. The Latin squares perform similar to the Sudoku matrices with a slightly higher
average number of collisions.

Electronics 2017, 6, 13 6 of 19

(a) (b) (c)

(d) (e) (f)

Figure 5. Histogram of co-hit array collisions: (a) 6× 6 Sudoku; (b) 9× 9 Sudoku; (c) 12× 12 Sudoku;
(d) 6× 6 Latin square; (e) 9× 9 Latin square; (f) 12× 12 Latin square.

Table 1. Percentage of auto-coincidences for Sudoku and Latin squares.

Collisions 1 2 3 4 5 6 7 8

4× 4 Sudoku 50% 50% 0% 0% 0% 0% 0% 0%
4× 4 Latin Square 50% 50% 0% 0% 0% 0% 0% 0%
6× 6 Sudoku 22.21% 55.8% 19.93% 2.04% 0% 0% 0% 0%
6× 6 Latin Square 15.15% 59.5% 21.93% 2.88% 0.50% 0% 0% 0%
9× 9 Sudoku 0.20% 50.24% 42.02% 6.56% 0.88% 0% 0% 0%
9× 9 Latin Square 0.20% 45.54% 44.15% 8.75% 1.15% 0.17% 0.01% 0.0044%
12× 12 Sudoku 0% 24.51% 58.44% 15.16% 1.97% 0.22% 0% 0%
12× 12 Latin Square 0.0025% 22.67% 58.34% 16.24% 2.54% 0.30% 0.033% 0.0042%

Furthermore, we can examine the cumulative coincidences for a given Sudoku or Latin square
matrix. The cumulative total is defined as taking a generated matrix and calculating the number of
collisions for each of the N codes and summing the total together. Histograms comparing the Sudoku
and Latin squares cumulative distributions are shown in Figure 6, where we see that the Sudoku
results are slightly shifted to the left, indicating better performance for a particular puzzle order.

Electronics 2017, 6, 13 7 of 19

(a) (b) (c)

Figure 6. Cumulative co-hit histograms of Sudoku and Latin squares: (a) order 6× 6; (b) order 9× 9;
(c) order 12× 12.

3.1.2. Cross-Hit Array Analysis

The cross-ambiguity function previously mentioned is the matched filter output from two different
signals. One reason for exploring cross-ambiguity is to see how interference from other waveforms
affects the matched filter output. We compare Latin square permutations to that of the Sudoku
solutions by means of the backtracking algorithm. We show results for two different scenarios. First,
for a given Sudoku or Latin square matrix, we evaluate the matrix as a whole, i.e., the spread of the
cross-hit side-lobes for the N frequency codes. Secondly, we evaluate the cumulative cross-hit arrays
for each of the Sudoku and Latin square matrices produced.

Histograms displaying the number of cross-hit coincidences for 6× 6, 9× 9 and 12× 12 Sudoku
and Latin square matrices are shown in Figure 7. Viewing these results in graph form rather than
tabular form clearly shows the trend of shifting to the right as the order of the Sudoku and Latin square
matrices increases.

(a) (b) (c)

(d) (e) (f)

Figure 7. Histogram of cross-hit array collisions: (a) 6× 6 Sudoku; (b) 9× 9 Sudoku; (c) 12× 12 Sudoku;
(d) 6× 6 Latin square; (e) 9× 9 Latin square; (f) 12× 12 Latin square.

Table 2 shows the percentages of cross-hit collisions in tabular form. Increasing the Sudoku order
causes the majority of cross-hits to increase and shift to the right, and the same can be seen for the

Electronics 2017, 6, 13 8 of 19

Latin square puzzles. The Latin squares show a slightly smaller shift than the Sudoku matrices and
therefore perform better for cross-hit collision performance.

Table 2. Percentage of cross-coincidences for Sudoku and Latin squares.

Collisions 1 2 3 4 5 6 7

6× 6 Sudoku 0.20% 41.31% 44.6% 12.7% 1.08% 0% 0%
6× 6 Latin Square 0.36% 41.1% 48.6% 8.69% 1.79% 0% 0%
9× 9 Sudoku 0% 10.4% 63.2% 22.2% 3.5% 0.5% 0%
9× 9 Latin Square 0% 11.95% 64.6% 20.2% 2.9% 0.31% 0.02%
12× 12 Sudoku 0% 1.66% 56.28% 34.96% 6.15% 0.8% 0.1%
12× 12 Latin Square 0% 1.97% 59.00% 33.07% 5.24% 0.6% 0.06%

The cumulative cross-hit array analysis in Figure 8 shows that indeed, the Latin squares offer
better performance in cross-hit collisions, and this effect is more prominent as the order is increased.
Comparing these results to the co-hit array results, we can see a trade-off between the co-hit and
cross-hit performance of Latin squares and Sudoku-based matrices.

(a) (b) (c)

Figure 8. Cumulative cross-hit histograms of Sudoku and Latin squares: (a) order 6× 6; (b) order 9 × 9;
(c) order 12× 12.

3.2. Costas Sudoku Solutions

Within the Sudoku context, their exists a subset of Sudoku codes that have Costas properties.
Starting the search with 4× 4 Sudoku matrices, we came across the following solution depicted in
Figure 9. Regardless of which number of locations is observed, they are in fact identical with different
rotations applied. For example, flipping the two s vertically causes the two s to line up with the four s.
Figure 9 shows a 4× 4 Sudoku matrix in which every subset of the same number is a Costas sequence,
meaning N Costas sequences can form a valid Sudoku puzzle and fit on the same N × N matrix.
Therefore, some Sudoku solutions are in fact Costas arrays. However, not all Costas arrays are Sudoku
solutions, as shown in Figure 10, which demonstrates a violation of the Sudoku box constraint.

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2


Figure 9. Sudoku 4× 4 search result where every number of subset results in a Costas sequence.

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


Figure 10. Costas code that is not a valid Sudoku solution.

Electronics 2017, 6, 13 9 of 19

Another example of a Costas code solution was found when looking at 9× 9 Sudoku matrices.
The sequence [9, 1, 4, 5, 3, 7, 6, 8, 2] corresponds to the locations of the one s in the following Sudoku
matrix shown in Figure 11. This sequence is a Costas code, but cannot be translated or rotated to fill in
the remaining spaces. 

1 4 7 8 2 9 5 3 6
2 6 9 5 4 3 8 1 7
5 3 8 6 7 1 9 2 4
3 8 2 7 6 4 1 9 5
7 9 6 1 3 5 4 8 2
4 5 1 9 8 2 6 7 3
6 7 3 4 1 8 2 5 9
8 2 5 3 9 6 7 4 1
9 1 4 2 5 7 3 6 8


Figure 11. A 9× 9 Sudoku puzzle in which the one s corresponds to a valid Costas code.

3.3. Sudoku Radar Simulations

Simulated radar target scenarios for single targets were implemented using Sudoku frequency
codes. For the frequency-hopped sequence, x(t), given by [15]:

x(t) =
1√
NTc

M

∑
n=1

u(t− nTc), (5)

where N is the number of sub-pulses and Tc is the sub-pulse length. The complex envelope, u(t), is
defined as:

u(t) =

{
exp(j2π fnt), 0 ≤ t ≤ Tc

0, elsewhere. (6)

The frequency of the sub-pulse Fn is given by:

Fn = F0 + Sn∆ f , (7)

where F0 is the carrier frequency, ∆ f is the frequency spacing of the hopped waveform given by 1/Tc
and S is the frequency-hopped sequence, represented as:

S = [a1, a2, a3 ...aM]. (8)

The parameters of the simulation are given in Table 3 where the pulse length and carrier frequency
stay constant and the bandwidth is varied based on the code lengths.

Table 3. Radar simulated scenario parameters.

Radar Parameter Values

Code Lengths 9 and 81
Tc 1 µs
F0 10 GHz
∆ f 1/Tc
Bandwidths 9 MHz and 81 MHz
Target Range 2 km
Radar Cross Section (RCS) 10 m2

Simulation results in Figure 12 pertain to targets located at a range of 2 km: a stationary target and
a moving target traveling at speeds of 1000 m/s and 200 m/s with two codes of length nine and 81.

Electronics 2017, 6, 13 10 of 19

We observe in Figure 12a,b for the stationary target case that the longer the hopped sequence, the better
the pulse suppression, which is similar to that of Costas frequency-hopped waveforms. When target
motion is considered, the results are shown in Figure 12c,d. Similar to the Costas frequency-hopped
waveforms, the Sudoku-hopped sequences are not Doppler tolerant in conformance to their ambiguity
function results. The longer code length of 81 becomes uncorrelated for much lower velocities compared
to the length nine sequence. We know from the ambiguity function plots that the Doppler axis is
normalized as given by:

fdNTc = δ f , (9)

where δ f is the Doppler shift value. Solving for the Doppler shift fd, we can compute the corresponding
velocity using:

v =
λ fd

2
. (10)

0 1 2 3 4 5

Distance (Km)

-100

-80

-60

-40

-20

0

N
o

rm
a

liz
e

d
 M

a
tc

h
e

d
 F

ilt
e

r

Sudoku Sequence Length 9

(a)

0 1 2 3 4 5

Distance (km)

-100

-80

-60

-40

-20

0

N
o

rm
a

liz
e

d
 M

a
tc

h
e

d
 F

ilt
e

r

Sudoku Sequence Length 81

(b)

0 1 2 3 4 5

Distance (km)

-100

-80

-60

-40

-20

0

N
o

rm
a

liz
e

d
 M

a
tc

h
e

d
 F

ilt
e

r

Moving Target = 1000 m/s

(c)

Distance (km)

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 M

a
tc

h
e

d
 F

ilt
e

r

-100

-80

-60

-40

-20

0
Moving Target = 200 m/s

(d)

Figure 12. Normalized matched filter output for Sudoku sequences: (a) length nine Sudoku sequence
and a single stationary target located 2 km; (b) length 81 Sudoku sequence and a single stationary
target located 2 km; (c) length nine Sudoku sequence with a target moving at 1000 m/s; (d) length 81
Sudoku sequence with a target moving at 200 m/s.

The resulting velocity depends on the code length, frequency and sub-pulse length; it is easy
to observe that as the code length gets longer, the velocity becomes smaller to represent the same

Electronics 2017, 6, 13 11 of 19

Doppler shift. This makes intuitive sense since the longer codes provide a better approximation to the
thumbtack-like response.

4. Sudoku Antenna Arrays

We also investigated the application of Sudoku puzzles to antenna array designs, specifically
planar arrays. The applications include array interleaving, thinning and random spacing. While no
specific design requirements were established when investigating Sudoku for antenna applications,
we show that Sudoku antenna designs do indeed offer interesting and useful results for future
investigations.

4.1. Sudoku Interleaved Arrays

This section explores two applications of Sudoku puzzles to antenna arrays through interleaving
of the elements: (1) main beam steering in multiple directions using a fraction of the array elements; and
(2) the generation of simultaneous multiple beams. Array interleaving has been studied previously [16]
and is of interest when multiple arrays have to share the same area. Multiple arrangements can be
made to have arrays that operate at the same frequency, as shown in Figure 13. Figure 13a shows
two arrays positioned side-by-side; Figure 13b shows an arrangement for four arrays; and Figure 13c
shows a Sudoku-based interleaving for four arrays. The non-interleaved arrays have better side-lobes,
but the interleaved arrays offer narrower beamwidths [16]. The array factor for planar arrays is given
by [17]:

AF(θ, φ) =
N

∑
n=1

M

∑
m=1

Imnejαmn ejξmn , (11a)

where:

ξmn = β[dx(m− 1)(sin θ cos φ− dy(n− 1)(sin θ sin φ)], (11b)

αmn = −β[dx(m− 1)(sin θ0 cos φ0 − dy(n− 1)(sin θ0 sin φ0)], (11c)

where β is the wave number, Imn is the excitation current for the element at position (m, n), θ and φ

are the elevation and azimuth angles, respectively, θ0 and φ0 are the main beam pointing directions,
respectively, and dx and dy is the element spacing in wavelengths in the x and y directions, respectively.
We consider a 20× 20 planar array, which consists of 400 elements. The 20× 20 array will have four
different beams where the Sudoku puzzle is used to separate the elements into four groups based
on their numbers as shown in Table 4. In other words, 25% of the elements will be used to steer the
beam in a desired direction. A comparison of the Sudoku interleaving to that of the quadrant layout in
Figure 13b for the XZ plane (φ = 0◦) is shown in Figure 14, where we can see the narrower beamwidth
of the interleaved array.

(a) (b) (c)

Figure 13. Planar array layout for multiple arrays sharing the same area: (a) side-by-side layout;
(b) quadrant layout for four separate arrays; (c) Sudoku-based layout for four arrays.

Electronics 2017, 6, 13 12 of 19

Table 4. Planar array steering phase groups.

Group Number 1 2 3 4

Numbers 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 16,17,18,19,20
Scan Angle 0◦ 20◦ 40◦ 60◦

-80 -60 -40 -20 0 20 40 60 80

 (Degrees)

-60

-50

-40

-30

-20

-10

0
A

rr
a

y
 F

a
c
to

r
(d

B
)

Sudoku Interleaved Comparison

Sudoku Interleaving

Uniform Array

Figure 14. Sudoku interleaved array compared to a uniform array quadrant layout.

First, we only consider a single main beam, which is steered to 40◦ in the θ direction, as well as
a single beam steered to 40◦ in both the θ and φ directions. The ideal case in which all elements are
turned on is shown in Figure 15.

20 20 Array Steered to 40
°
 in

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g

re
e

s
)

-20

-15

-10

-5

0

d
B

(a)

20 20 Planar Array Steered to 40 ° in &

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-20

-15

-10

-5

0

d
B

(b)

Figure 15. A 20× 20 planar array using all elements: (a) main beam steered to 40◦ in the θ direction;
(b) main beam steered to 40◦ in both the θ and φ directions.

We next compare the ideal scenarios using two approaches: the first utilizing Sudoku puzzles,
while the second being formed by a random permutation of the array elements. The results of the
Sudoku and random permutation for a single main beam are shown in Figure 16. The results are
normalized to the ideal cases in Figure 15 and, therefore, will have a maximum value lower than 0 dB
due to the fraction of elements used. We observe both the Sudoku- and random-based steering result
in very similar array factors. The main beam is approximately 12 dB lower than the ideal case and has
side-lobes mostly 10 dB below the peak value.

Electronics 2017, 6, 13 13 of 19

20 20 Sudoku Array Steered to 40 ° in

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

d
B

(a)

20 20 Sudoku Array Steered to 40 ° in &

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

d
B

(b)

20 20 Random Array Steered to 40 ° in

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

d
B

(c)

20 20 Random Array Steered to 40 ° in &

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

d
B

(d)

Figure 16. Single beam steering: (a) Sudoku-based steering for a main beam of 40◦ in the θ direction;
(b) Sudoku-based steering for a main beam of 40◦ in both the θ and φ directions; (c) random-based
steering for a main beam of 40◦ in the θ direction; (d) random-based steering for a main beam of 40◦ in
both the θ and φ directions.

Next, we examine the scenario in which all of the elements are turned on. Therefore, the resulting
array factor will have four main beams at the assigned phases given in Table 4 for the case of either the
θ direction or θ and φ directions. The results for the Sudoku and random multiple beam scenario are
shown in Figure 17. The random permutation is normalized to the Sudoku results; therefore, we see
that the largest value in the random array is larger than 0 dB. While both scenarios show the main
beams, the Sudoku-based approach appears to have a more uniform amplitude across the different
beams, while the random case has less uniformity across the beams.

We can examine this more closely in Figure 18, which shows a two-dimensional cross-cut of the
two array factors for φ = 0◦. We can see that indeed the random array does not provide as even an
amplitude distribution across the four beams. Obviously, using the random approach, the resulting
beam amplitudes could change drastically from each iteration depending on how the element phases
get assigned. The Sudoku interleaving approach based on the row, column and box constraints
provides a more even spread of the phases across the array, so that a single area of the array is not
dominated by a particular phase.

Electronics 2017, 6, 13 14 of 19

20 20 Multiple Beam Sudoku Planar Array

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-20

-15

-10

-5

0

d
B

(a)

20 20 Multiple Beam Sudoku Planar Array

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-20

-15

-10

-5

0

d
B

(b)

20 20 Multiple Beam Random Planar Array

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-20

-15

-10

-5

0
d
B

(c)

20 20 Multiple Beam Random Planar Array

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

d
B

(d)

Figure 17. Multiple beam steering: (a) Sudoku-based steering for beams of 10◦, 20◦, 30◦, 40◦ in the θ

direction; (b) Sudoku-based steering for main beams of 10◦, 20◦, 30◦, 40◦ in both the θ and φ directions;
(c) random-based steering for main beams of 10◦, 20◦, 30◦, 40◦ in the θ directions; (d) random-based
steering for main beams of 10◦, 20◦, 30◦, 40◦ in both the θ and φ directions.

0 10 20 30 40 50 60 70 80 90

 (Degrees)

-20

-15

-10

-5

0

A
rr

a
y
 F

a
c
to

r
(d

B
)

Cross Cut of Multiple Beam Generation

Random

Sudoku

Figure 18. Cross-cut for φ = 0◦ for the Sudoku- and random-based arrays.

4.2. Array Thinning

Since only a fraction of the elements were used during the investigation of array steering, it was
only natural to extend the analysis to array thinning. Large antenna arrays have hundreds of elements

Electronics 2017, 6, 13 15 of 19

where some of the elements can be turned off or removed without drastically altering the resulting
array factor. The reduction of antenna elements can save cost, reduce complexity and minimize system
weight. Previous research in this area used optimization strategies, such as genetic algorithms, to
optimize the removal of elements with respect to a desirable criterion, such as side-lobe level [18].
We investigated the application of a Sudoku rule set so that the resulting array is judiciously thinned.
We compared the Sudoku-based approach using an array factor following random element removal.
We used the same 20× 20 antenna array comprised of 400 elements.

The Sudoku array thinning was compared to random thinning for thinned percentages of 25%,
50% and 75% in Figure 19 with the main beam scanned to 40◦. The resulting thinned arrays are
normalized with respect to the maximum of the ideal array factor in Figure 15a. The results are shown
as two-dimensional images with φ on the y-axis ranging from [−180, 180] degrees and θ on the x-axis
ranging from [0, 90] degrees.

Random Thinned Array 25%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

d
B

(a)

Random Thinned Array 50%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-25

-20

-15

-10

d
B

(b)

Random Thinned Array 75%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g

re
e

s
)

-30

-25

-20

-15

-10

-5

d
B

(c)

Sudoku Thinned Array 25%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g
re

e
s
)

-30

-28

-26

-24

-22

-20

-18

-16

-14

d
B

(d)

Sudoku Thinned Array 50%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g

re
e

s
)

-30

-25

-20

-15

-10

d
B

(e)

Sudoku Thinned Array 75%

0 20 40 60 80

 (Degrees)

-150

-100

-50

0

50

100

150

 (
D

e
g

re
e

s
)

-30

-25

-20

-15

-10

-5

d
B

(f)

Figure 19. Thinned 20× 20 planar array using random- and Sudoku-based thinning: (a) random
thinning of 25%; (b) random thinning of 50%; (c) random thinning of 75%; (d) Sudoku thinning of 25%;
(e) Sudoku thinning of 50%; (f) Sudoku thinning of 75%.

Generally, the results are quite comparable between the random- and Sudoku-based thinning.
The array factor still displays low side-lobe levels of 20 dB when 25% of the elements are removed.
As more and more elements are turned off to achieve thinning percentages of 50% and 75%, the side
lobes quickly rise, and the array factor is noticeable degraded; however, it appears that the Sudoku
thinning shows the side-lobes more clearly distributed around the main beam pointing direction.
Comparing the thinned arrays to the ideal case, the main beam amplitude clearly lowers as the
elements are removed with 25% of the elements causing approximately a 12-dB loss.

Observing Figure 20a, we show a slice of the thinned Sudoku array factor in the XZ plane (φ = 0◦).
We make a comparison in Figure 20b between an ideal array, represented by the blue line, in which all of
the elements are turned on and when the array is thinned to 50%, for both Sudoku- and random-based
arrays. The Sudoku- and random-based arrays are normalized to the maximum of the ideal array,
resulting in lower amplitude compared to the ideal array factor. We can clearly see that the Sudoku
thinning, represented by the red line, has exactly the same array factor as an array that has all of

Electronics 2017, 6, 13 16 of 19

the elements turned on, whereas the random thinning, represented by the yellow line, causes the
side-lobes around the main beam to fluctuate and deviate from the ideal array factor.

0 20 40 60 80

 (Degrees)

-60

-50

-40

-30

-20

-10

0

A
rr

a
y
 F

a
c
to

r
(d

B
)

Sudoku Array Cross Cut XZ

(a)

0 20 40 60 80

 (Degrees)

-60

-50

-40

-30

-20

-10

0

A
rr

a
y
 F

a
c
to

r
(d

B
)

Cut in XZ (= 0
°
) Plane Comparison

Full Array

Sudoku

Random

(b)

Figure 20. Cross-cut of the scanned 20× 20 planar array: (a) thinned Sudoku array cross-cut in the XZ
plane; (b) comparison of the Sudoku- and randomly-thinned array factor to that of an array with all of
the elements turned on.

In order to see why Sudoku thinning keeps the same array side-lobes as an ideal array in the XZ
or YZ planes, we examine Figure 21, which shows a 4× 4 Sudoku matrix with only the one s present;
the rest of the elements are assigned a zero, corresponding to an element that is turned off. Thus, when
applying the planar array factor given previously in Equation (11a), the zeros do not contribute to
the array factor, while only the one s does. The result of evaluating the summation for the XZ plane
(φ = 0◦; thus cos φ = 1 and sin φ = 0) assuming equal element spacing in the x and y directions,
θ0 = φ0 = 0, and the current amplitudes Imn equal to unity, results in,

AF(θ, φ) = 1 + ejβd sin θ[cos φ+3 sin φ] + ejβd sin θ[2 cos φ+2 sin φ] + ejβd sin θ[3 cos φ+sin φ],

= 1 + ejβd sin θ + ej2βd sin θ + ej3βd sin θ . (12)

The resulting array factor in Equation (12) clearly represents that of a linear array. A similar result
is apparent when evaluating the array factor in the YZ (φ = 90◦) plane. In other words, Sudoku- or
Latin square-based thinning removes an element from every row and column resulting in the removal
of linear array products.

One might be interested in what advantages, if any, Sudoku-based thinning offers over random
thinning or over more robust optimization methods. We believe that Sudoku thinning offers a more
uniform thinning of the array since the row, column and subgrid Sudoku constraints cause thinning to
not be concentrated in one area, as what could happen in randomly thinning the array. Furthermore,
we see good side-lobe behavior within the thinned Sudoku arrays, as well as the cardinal cuts holding
the ideal planar array shape. 

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Figure 21. A 4× 4 Sudoku array with only the one s present to study the effects of turning off elements
with row, column and subgrid constraints.

Electronics 2017, 6, 13 17 of 19

4.3. Random Element Spacing

Owing to the equal element spacing, the periodic arrays are susceptible to grating lobes when
the spacing becomes too large for a particular scan angle. Using irregular spacing has the benefit of
reducing the appearance of grating lobes while also increasing the bandwidth of the antenna array.

4.4. Perturbed Planar Arrays

We investigate using Sudoku puzzles as perturbations within the planar array of the same size.
This is accomplished by modifying the planar array Equation (11a) so that dx and dy have an added
perturbation δ. The spacing in the x and y directions then become dx = dx + δ and dy = dy + δ,
respectively. The degree of perturbation comes from the Sudoku puzzle.

First, let us assume we have a 9× 9 planar array with λ0 = 15 cm corresponding to a frequency
of 2 GHz along with equal amplitude excitation of one and uniform spacing of λ0/2, as shown in
Figure 22a.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Planar Array

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Planar Array Perturbation

(b)

Figure 22. Array topology: (a) planar array with λ/2 spacing corresponding to 2 GHz; (b) planar array
with Sudoku-based perturbations.

The generation of two random Sudoku matrices, one for the x-direction and the other for the
y-direction, will serve as the perturbations. We would like to add perturbations based on the bandwidth
we want the array to operate over; in this case, we consider an operating frequency in the range of 1 to
3 GHz. The bandwidth of 2 GHz was divided evenly among the nine Sudoku numbers, giving nine
frequencies spaced 250 MHz apart. The corresponding wavelengths were:

λ = [0.3, 0.24, 0.2, 0.1714, 0.15, 0.1333, 0.12, 0.109, 0.1].

The number one corresponds to λ = 0.3 cm (f = 1 GHz) and the number nine to λ = 0.1 cm
(f = 3 GHz), with the rest of the integers following in decreasing order in wavelength or increasing order
in frequency. Utilizing the randomly-generated Sudoku matrices, the numbers were replaced with
their respective perturbation values and added to each element during the array factor construction.
The output of this procedure is shown in Figure 22b, where we now see that the resulting array has a
random-like structure, while also increasing in size by 2λ0.

The size of the array has increased from 0.6λ × 0.6λ to 0.9λ × 0.9λ. We compare the resulting
perturbed array to the equally-spaced planar array for the frequencies of 1, 2 and 3 GHz in Figure 23
for φ = 0◦ and φ = 90◦. We clearly see lower side-lobes in the perturbed array. This suggests
that the Sudoku-based perturbations are able to achieve good random arrays, resulting in better
side-lobe performance.

Electronics 2017, 6, 13 18 of 19

0 50 100 150 200 250 300 350

θ (Degrees)

-60

-50

-40

-30

-20

-10

0
φ

 (
D

e
g
re

e
s
)

Planar Array No Perturbation φ=0°

(a)

0 50 100 150 200 250 300 350

θ (Degrees)

-60

-50

-40

-30

-20

-10

0

φ
 (

D
e

g
re

e
s
)

Planar Sudoku Perturbation φ=0
°

1 GHz

2 GHz

3 GHz

(b)

0 50 100 150 200 250 300 350

θ (Degrees)

-60

-50

-40

-30

-20

-10

0

φ
 (

D
e
g
re

e
s
)

Planar Array No Perturbation φ=90°

1 GHz

2 GHz

3 GHz

(c)

0 50 100 150 200 250 300 350

θ (Degrees)

-60

-50

-40

-30

-20

-10

0
φ

 (
D

e
g
re

e
s
)

Planar Sudoku Perturbation φ=90
°

1 GHz

2 GHz

3 GHz

(d)

Figure 23. Planar array with spacing equal to the center frequency of 2 GHz: (a) no perturbation for
φ = 0◦; (b) Sudoku perturbation for φ = 0◦; (c) no perturbation for φ = 90◦; (d) Sudoku perturbation
for φ = 90◦.

5. Conclusions

A detailed investigation into Sudoku-coded waveforms was presented in this paper. We utilized
the backtracking algorithm to generate multiple Sudoku puzzles of different sizes to analyze their
auto-ambiguity and cross-ambiguity function properties. We compared Sudoku sequences to that of
the traditional Latin squares and showed that while Sudoku offers better auto-ambiguity properties,
Latin squares offer better cross-ambiguity performance. Furthermore, we showed through our
computational search that there exist Costas sequences within Sudoku puzzles and that some
Sudoku solutions are in fact all Costas codes. One advantage of the Sudoku sequence is that
numerous such sequences are freely available owing to its popularity, making it easy for the radar
designer to implement nearly optimal high-resolution waveforms. It has been proven that there are
approximately 6.671 × 1021 valid Sudoku grids of a size of 9× 9 [19], with this number increasing
with the order of the Sudoku puzzle. Secondly, the lower number of collisions compared to Latin
squares allows for reduced side-lobes.

We also investigated Sudoku puzzles for antenna array applications. While no specific antenna
array design requirements were investigated, such as side-lobe level, we show that Sudoku arrays
offer unique results. First, we examined Sudoku-based interleaving of multiple arrays used for beam
steering, which proved beneficial over randomly assigning the phases to the array by providing a

Electronics 2017, 6, 13 19 of 19

more uniform amplitude across the multiple beams. Secondly, we considered planar array thinning
using Sudoku codes as compared to randomly turning off a fraction of the elements. We concluded
that Sudoku array thinning leaves the cardinal planes looking like a full antenna array since Sudoku
thinning removes linear array products, while randomly removing elements does not. Lastly, we
applied Sudoku puzzles to planar arrays to produce a pseudo-random spatial arrangement for
reduction in grating lobes across multiple frequencies. Our work demonstrates the usefulness of
Sudoku sequences in enhancing the performance of radars and antenna arrays. Future work involves
setting specific design goals (e.g., beamwidth, side-lobe level, beam steering angle) and comparing the
design of antenna arrays with other popular optimization techniques.

Acknowledgments: This work was supported by the U.S. Army Research Office Grant # W911NF-16-1-0144
(Point of Contact (POC): James Harvey).

Author Contributions: All authors contributed equally to the analytical development. T.D.B.performed the
simulations and wrote the first draft of the paper, and the other authors contributed to its final form.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the decision
to publish the results.

References

1. Keedwell, A.D.; Dénes, J. Latin Squares and their Applications; North Holland: Amsterdam, The Netherlands, 2015.
2. Newton, P.K.; DeSalvo, S.A. The Shannon entropy of Sudoku matrices. Proc. R. Soc. A 2010, 466, 1957–1975.
3. Sarkar, J.; Sinha, B.K. Sudoku squares as experimental designs. Resonance 2015, 20, 788–802.
4. Pedersen, R.M.; Vis, T.L. Sets of mutually orthogonal Sudoku Latin squares. Coll. Math. J. 2009, 40, 174–181.
5. Keedwell, A.D. Constructions of complete sets of orthogonal diagonal Sudoku squares. Australas. J. Comb.

2010, 47, 227–238.
6. Narayanan, R.M.; Bufler, T.D.; Leshchinskiy, B. Radar ambiguity functions and resolution characteristics of

Sudoku-based waveforms. In Proceedings of the IEEE International Radar Conference, Philadelphia, PA,
USA, 2–6 May 2016; pp. 17–21.

7. Costas, J.P. A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties.
Proc. IEEE 1984, 72, 996–1009.

8. Wehner, D.R. High Resolution Radar; Artech House: Norwood, MA, USA, 1987.
9. Levanon, N. Radar Principles; John Wiley: New York, NY, USA, 1988.
10. Woodward, P.M. Probability and Information Theory with Applications to Radar; Pergamon: New York, NY,

USA, 1953.
11. Golomb, S.W.; Taylor, H. Constructions and properties of Costas arrays. Proc. IEEE 1984, 72, 1143–1163.
12. Zhang, Y.; Wang, J. Design of frequency-hopping waveforms based on ambiguity function. In Proceedings

of the 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009.
13. Chang, W.; Scarbrough, K. Costas arrays with small number of cross-coincidences. IEEE Trans. Aerosp.

Electron. Syst. 1989, 25, 109–112.
14. Kang, E.W. Radar System Analysis, Design and Simulation; Artech House: Norwood, MA, USA, 2008.
15. Levanon, N.; Mozeson, E. Radar Signals; John Wiley: New York, NY, USA, 2004.
16. Haupt, R.L. Antenna Arrays: A Computational Approach; John Wiley: New York, NY, USA, 2010.
17. Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley: New York, NY, USA, 2012.
18. Haupt, R.L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 1994, 42, 993–999.
19. Felgenhauer, B.; Jarvis, F. Enumerating possible Sudoku Grids. Available online: http://www.afjarvis.staff.

shef.ac.uk/sudoku/sudoku.pdf (accessed on 1 October 2015).

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sudoku-Coded Waveforms
	Sudoku Ambiguity Function Analysis
	Sudoku Puzzle Coincidence Analysis
	Co-Hit Array Analysis
	Cross-Hit Array Analysis

	Costas Sudoku Solutions
	Sudoku Radar Simulations

	Sudoku Antenna Arrays
	Sudoku Interleaved Arrays
	Array Thinning
	Random Element Spacing
	Perturbed Planar Arrays

	Conclusions

