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Abstract: This work presents a multi-objective approach for scheduling energy consumption in data
centers considering traditional and green energy data sources. This problem is addressed as a whole
by simultaneously scheduling the state of the servers and the cooling devices, and by scheduling
the workload of the data center, which is comprised of a set of independent tasks with due dates.
Its goal is to simultaneously minimize the energy consumption budget of the data center, the energy
consumption deviation from a reference profile, and the amount of tasks whose due dates are violated.
Two multi-objective evolutionary algorithms hybridized with a greedy heuristic are proposed and
are enhanced by applying simulated annealing for post hoc optimization. Experimental results show
that these methods are able to reduce energy consumption budget by about 60% while adequately
following a power consumption profile and providing a high quality of service. These results confirm
the effectiveness of the proposed algorithmic approach and the usefulness of green energy sources
for data center infrastructures.

Keywords: data centers; scheduling; energy efficiency; green energy

1. Introduction

Energy consumption in data centers has become a critical matter, especially to large providers like
Google, Facebook, and Amazon among others. The Internet industry requires more and bigger data
centers to sustain its growth, but the amount of energy required for their operation has become an issue
for economic and environmental reasons. In 2005, data centers accounted for around 0.5% of the total
world energy consumption, while in the year 2010, it reached an estimate of 1.3%. With an estimated
annual growth rate of more than 16%, forecasts are grim [1,2]. By the year 2030, the worst-case
scenario estimates the electricity consumption from data centers will reach up to 13% of the total world
energy [3].

Significant efforts have been made to address the aforesaid energy issues with different approaches
and techniques [4,5]. Many traditional energy saving methods focus on lowering energy consumption
when computing resources are idle, or reducing the system performance when executing non-critical
computing tasks, or scheduling the computational load when energy is cheaper [6–9]. These methods
are helpful, but their effectiveness is limited because they usually lower the quality of service
delivered by the data center. More recently, advances in renewable energy sources—known as green
energy—have provided new ways to reduce energy consumption and the environmental impact of
data centers [10]. The use of green energy sources has empowered energy saving methods, enabling the
scheduling of computational workload when green energy is available. Nevertheless, this remains a
challenging approach since green energy sources are unreliable and depend on uncontrollable external
conditions such as sun irradiation and wind velocity. Because of their unreliability, most data centers
must consider a hybrid energy approach, with green energy combined with traditional energy—known
as brown energy—to avoid energy outages.
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When optimizing energy consumption in data centers, most approaches focus on optimizing
Central Processing Units (CPUs) and cooling devices that are the most power hungry components in
data centers. CPUs are, by far, the most power hungry components, using an estimated 46% of the total
power consumption of a data center. The second most power hungry components are cooling devices,
such as air conditioning systems, which consume an estimated of 15% of the total power. Despite the
fact that cooling devices consume less energy than CPUs, they are a key focus when addressing
energy consumption since they are the most inefficient components and the best candidates for
improvement [11].

This work presents a multi-objective problem formulation for optimizing the energy consumption
of data centers that are powered by hybrid energy. The problem formulation addresses the scheduling
of computational load and cooling devices in a data center in order to minimize its energy consumption
budget, minimize the deviation of its energy consumption from a reference consumption profile,
and maximize the Quality of the Service (QoS) provided to its users. Two Multi-Objective Evolutionary
Algorithms (MOEAs) are applied for effectively solving the scheduling problem: the Non-dominated
Sorting Genetic Algorithm, version II (NSGA-II) [12] and the Epsilon-Variable Multi-Objective Genetic
Algorithm (ev-MOGA) [13]. Experimental results show the proposed approach reduces energy
consumption budget by about 60% while maintaining QoS over 95% and a deviation from a reference
power profile of about 3%, all this compared to a traditional business as the usual data center scenario.

This work is an extension of our previous work [14]. This work further extends [14] by applying
ev-MOGA and comparing its accuracy with NSGA-II when addressing the proposed problem.
In addition to this, a larger and more diverse set of problem instances are evaluated and a more
thorough multi-objective experimental analysis with statistical support is provided.

This article is organized as follows: Section 2 briefly reviews the most relevant and recently
published work. Section 3 defines the scheme of the data center model. Section 4 presents the
problem formulation. Section 5 describes the proposed MOEA designed for solving the problem.
Section 6 reports and discusses the results of the experimental evaluation. Finally, Section 8 presents
conclusions and future work.

2. Related Work

Many articles in the literature address the energy efficiency problem in data centers. Next, some of
the latest and most relevant ones are presented.

Goiri et al. [8] propose GreenSlot, a single-objective greedy heuristic for scheduling computational
load in data centers powered by green and brown energy. The aim of GreenSlot is to schedule a set
of independent parallel computing tasks using the minimum amount of traditional energy while
also meeting all task deadlines. Although GreenSlot takes into consideration a hybrid energy source,
it uses brown energy just as a backup for when it cannot meet all deadlines using green energy alone.
Furthermore, Goiri at al. use a realistic energy forecast model based on historical data to predict the
availability of green energy. Goriri et al. show GreenSlot can reduce energy cost by up to 39% when
compared to conventional schedulers. The work from Goriri et al. is different from ours mainly in
that they address a single-objective problem considering QoS as a constraint, and because they do not
consider cooling devices as energy consuming components nor temperature as an operative constraint.

Lei et al. [9] address the energy efficiency problem in data centers by scheduling a set of
independent tasks with deadlines to be executed in a system with Dynamic Voltage Frequency Scaling
(DVFS) and powered by hybrid energy. The scheduler uses DVFS for reducing energy consumption
when executing tasks with loose deadlines. In this formulation, a task can be rejected when its
deadline cannot be met. Lei et al. formulate a multi-objective problem and propose two MOEA for
solving it, optimizing four objectives: (i) maximizing green energy usage; (ii) minimizing the finishing
time of the whole schedule; (iii) minimizing the total energy consumption; and (iv) minimizing
the task rejection rate. Then, the proposed MOEAs are compared with each other using a simple
multi-objective metric. Although Lei et al. argue that these results confirm the effectiveness of
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their approach, the amount of energy consumption saved when using it is not clear. This work is
different from the work of Lei et al. in that, in our work, the temperature of the data center is a constraint
and cooling devices are considered when computing the energy consumption. In addition, a thorough
multi-objective analysis is performed in our work and statistical confidence results are presented.

Peng et al. [15] deal with the scheduling of resources in multiple data centers powered by
hybrid energy. The aim of this problem is to allocate virtual machines to physical machines in order to
satisfy the computing demand while minimizing total energy cost and considering quality of service
as a constraint. Peng et al. propose a single-objective formulation for addressing this problem and
present an evolutionary algorithm for solving it. Peng et al. report that this approach reduces energy
cost between 8% and 10% when compared to traditional allocation schemes. Once more, the work
from Peng et al. is different from ours in that, in our work, a multi-objective problem is addressed
and the scheduling of cooling devices and the temperature of the data center as a constraint are
both considered.

In our previous work [14], a data center powered by hybrid energy was modeled, considering
cooling devices and internal data center temperature. The multi-objective scheduling problem of
minimizing the energy budget, maximizing the QoS, and meeting a brown energy consumption
threshold is addressed, constrained to the operative temperature of the data center. The scheduling
problem consisted of scheduling a set of independent computing tasks with due dates into a set of
computing resources. An improved scheduling algorithm is proposed by hybridizing NSGA-II with a
Local Search (LS) operator in order to exploit the most promising solutions. Experimental results show
that this approach is able to reduce the energy budget by about 30% when compared to traditional
schedulers. This work extends our previous work [14] by comparing evMOGA—a novel state of the
art MOEA—with NSGA-II, our previously proposed approach. The experimental analysis is improved
by increasing the number and diversity of evaluated problem instances and by performing a more
thorough experimental analysis presenting multi-objective metrics, providing statistical confidence.

3. The Data Center Energy- and QoS-Aware Model

The proposed data center model is based on the one proposed in [16] and further extended in [14].
Figure 1 shows the schema of the data center model.
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Figure 1. Data center scheme considering energy consumption and quality of service.

This model is comprised of two main components: the Heating, Ventilation and Air Conditioning
(HVAC) component and the Computing Infrastructure (CI) component. The HVAC component
represents the cooling devices, while the CI component represents the computing resources of the
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data center (i.e., the servers). A simple but realistic energy model is considered where each server
may be either in the executing state, in the idle state, or in the sleep state. Every time a server
executes a task, it is considered to be at peak performance, thus consuming the maximum amount
of energy for the server. When a server is on but not executing a task, it is considered to be idle
and consuming a lower amount of energy. Finally, a server may be in sleep state and consuming
a minimum amount of energy. Formally, the total energy consumption of the CI component (It) is
calculated as It = Smax

t + Sidle
t + Ssleep

t , where Smax
t is the total energy consumption of servers that are

executing a task, Sidle
t of which are in idle state, and Ssleep

t of which are in sleep state.
The data center is controlled by two input variables: task schedule (st) and cooling schedule (ct).

The task schedule st defines the allocation of tasks to computing resources in the CI component for
each time unit. Likewise, the cooling schedule ct defines the cooling strategy of the HVAC component
for each time unit.

Furthermore, two non-controllable input variables are considered: external temperature (αt) and
green energy availability (Gt). These variables are external and are not controllable by the scheduling
algorithm. The external temperature variable, αt, represents the temperature outside the data center at
each time unit. This temperature affects the effectiveness of the free cooling method. While the green
energy availability variable, Gt, represents the amount of energy generated by the renewable energy
source for each time unit.

Finally, three output variables are defined for the model: (i) the amount of overdue time required
for task completion (Qt); (ii) the internal temperature variable (Tt) which is the temperature inside
the data center; and (iii) Ct which is the energy required by the HVAC component, and It which is
the energy required by the CI component. Hence, the total power required by the data center (Pt) is
the sum of the power required by the HVAC and the CI components. Similarly, the total amount of
traditional energy required by the data center (Bt) is the difference between the required power (Pt)
and the amount of green power available (Gt).

The computing workload of the data center is comprised of a set of independent tasks with
due dates. For a task, its due date is its expected or desired completion time. In this approach, the QoS
of the system is measured by the total amount of additional time, over the due date, required by
the system to complete the execution of all tasks. It is key to consider a QoS-related objective when
reducing energy consumption since the latter, most likely, will affect the QoS provided to the final users.

The variable ct schedules the HVAC while considering two cooling methods: air conditioning
and free cooling. Both of these methods are widely used cooling methods [11]. The air conditioning
mode uses the conventional Computer Room Air Conditioning (CRAC) unit which can take on and
off values. The free cooling mode uses a fan system to inject air from the outside into the data center,
and it can take fan speed values between 1 and 100. Hence, the energy consumption of the HVAC
component at time t (Ct) is defined as shown in Equation (1):

Ct =


CompressorPWR, if air conditioning mode is on,

FanPWR(s), if free cooling mode is on at speed s (1 ≤ s ≤ 100),

0, if both air conditioning and ventilation are off.

(1)

The energy consumption of the air conditioning (CompressorPWR) is fixed, and FanPWR(s) is
between 0 and the maximum fan energy consumption. Because the cooling mode directly affects the
temperature Tt in the data center, the Auto-Regressive eXogenous (ARX) model presented in [17] is
used for modeling Tt. This model estimates the internal temperature of the data center taking into
account the air conditioning, fan speed, outside temperature, and data center load.

4. The Problem Formulation

The data center must execute N tasks in a time horizon of K time units. The problem formulation
consists of finding a schedule of computing tasks (st) and cooling resources (ct) such that: it minimizes
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the difference between the energy consumption of the data center (Pt) with respect to a predefined
reference profile (Rt), minimizes the energy budget, and minimizes the total overdue time of the tasks.
Furthermore, the problem is subject to the internal temperature of the data center (Tt) which must be
kept below its maximum operative value (T̂).

Each task is an atomic unit which cannot be interrupted; once started, it must be executed to
completion. Moreover, each task i should be completed before its due date D(i) for the data center
to deliver the optimum QoS level. With FT(i) representing the finishing time of task i and Mb

t
representing the brown energy cost at time t, optimization goals of this problem can be formally
defined as presented in Equation (2):(3) and (4).

min zp =
K

∑
t=1

{
(Pt − Rt)/ max(Rt), if Pt > Rt,

0, if Pt ≤ Rt,
(2)

min zb =
K

∑
t=1

Bt ×Mb
t , (3)

min zq =
N

∑
i=1

{
FT(i)− D(i), if FT(i) > D(i),

0, if FT(i) ≤ D(i).
(4)

Equation (2) defines the objective of minimizing the deviation of the power consumption of
the data center with respect to the reference power profile Rt. Equation (3) defines the objective of
minimizing the total monetary cost of the energy consumption of the system. Finally, Equation (4)
defines the objective of minimizing the total overdue time required for completing the execution of
all tasks.

5. Multi-Objective Evolutionary Scheduling for Energy-Aware Data Centers

Evolutionary algorithms are iterative stochastic optimization methods inspired in the evolution
of the species and the natural selection process [18]. Algorithm 1 presents the general schema of
an evolutionary algorithm. At each iteration, the evolutionary algorithm stochastically applies a
set of evolutionary operators to a population of candidate solutions to the optimization problem.
These evolutionary operators combine and mutate solutions in the population, producing new
solutions that compete with each other to survive the selection process and remain in the population.
The recombination operator exploits known solutions by producing new solutions with the best
characteristics of solutions already in the population. On the other hand, the mutation operator explores
the solution landscape searching for solutions with new characteristics by applying small perturbations
to known solutions. These methods have been successfully applied for solving optimization, search,
and learning problems in many application domains.

Multi-Objective Evolutionary Algorithms (MOEAs) are evolutionary algorithms that deal with
more than one simultaneous optimization objective. Unlike single objective optimization methods,
MOEAs are able to compute a set of trade-off solutions in a single execution thanks to their
population-based approach. However, an MOEA must maintain a adequate balance between
optimizing each objective as much as possible, and sampling a diverse and homogeneously distributed
Pareto front.

In this work, NSGA-II [19] and ev-MOGA [20] are applied for addressing the proposed scheduling
problem. These MOEA are entrusted with planning the state of servers and the cooling devices. On top
of these MOEA, two hybridization mechanisms are further applied. The first mechanism consists of
applying a greedy scheduling heuristic during the evolutionary process for reducing the dimension of
the problem search space. This greedy heuristic receives a server and cooling schedule, and computes
a scheduling for the task workload. The second mechanism consists of applying Simulated Annealing
(SA) as a post hoc optimization procedure. That is, once the evolutionary process has finished,
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the SA is applied for further improving the accuracy of the solutions computed by the MOEAs. Next,
the proposed algorithmic approach is described in detail.

Algorithm 1 General schema of an evolutionary algorithm

g← 0
P0 ← initializePopulation() . create the initial population of parents
F0

p ← evaluate(P0) . evaluate population of parents
while stopping condition is not met do

λg ← selectParents(Pg) . select parents to evolve
µg ← recombine(λg) . recombine parents and create offspring
µg ← mutate(µg) . mutate offspring
Fg

µ ← evaluate(µg) . evaluate population of offspring
Pg+1 ← createNewPopulation(Pg, Fg

p , µg, Fg
µ ) . new population with the best individuals

g← g + 1
end while

5.1. Solution Representation

For representing the problem solution, a time discretization approach is applied using a time
horizon of K = 150 time steps. For each time step, the solution encodes the number of active servers
and the state of the cooling devices.

The active servers are encoded directly with their total power consumption in Watts. Hence,
an integer vector of size K is used, with values ranging from 0 up to Smax, where Smax is the power
consumed when all servers are active. Similarly, the state of the cooling devices is encoded as an integer
vector of size K with each value representing three states in the interval [1, 300]. A value v in the
interval [1, 100] represents the free cooling being used with a fan speed of v. On the other hand, a value
v in the interval [101, 200] represents the CRAC being used. Finally, a value v in the interval [201, 300]
means that all cooling devices are off.

Considering both encodings, the complete solution representation is an integer vector of size 2K
where the cooling devices are encoded in the first K integers of the representation, and the server state
is encoded in the last K elements of the representation. This representation was previously introduced
in [17]. Figure 2 shows the representation of a sample solution.

1 2 ...K-1 K+2K+13 2KK...

70 ...014981560201...220153 200

Free cooling with fan speed at 70%
CRAC system is used

Total amount of energy
used by the servers

No cooling

Figure 2. Representation of a sample solution.

5.2. Initial Population

Each solution of the initial population is created randomly using the following criteria.
With probability p = 0.5, the new solution is created totally at random. That is, each value of
the solution encoding is chosen randomly following a uniform distribution in the whole range of
valid values. Otherwise, the new solution is created randomly in a high energy subspace of the
solution space. For this, each value of the encoding is chosen in the upper 20% of the range of
valid values. This technique allows us to provide the MOEA with a greater number of feasible
solutions in the initial population.
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5.3. Evolutionary Operators for NSGA-II

NSGA-II is a well-known MOEA proposed by Deb [19]. In this work, the NSGA-II implementation
previously proposed in [14] is applied for addressing the scheduling problem since it proved to be
accurate and efficient. Next, the recombination and mutation operators for the NSGA-II are presented.

5.3.1. Recombination Operator

A three-point operator is defined for the recombination operator. This operator starts by selecting
three points: p1, p2, p3. Point p1 is selected randomly following a uniform distribution in the interval
[1, K − 1]. Point p2 is always K, and point p3 is K + p1. By defining p2 to always be K, it is asserted
that cooling and server power values at each time step from each parent are inherited together
by the offspring. For example, the value at position 1′ is always inherited with position K + 1′,
each corresponding to cooling and server power values at time step 1. Figure 3 shows how this
operator works.

1' 2' ...K-1' K+2'K+1'3' 2K'K'...

p2p1 p3

1'' 2'' ...K-1'' K+2''K+1''3'' 2K''K''...

1' 2' ...K-1' K+2'K+1'3' 2K'K'...

1'' 2'' ...K-1'' K+2''K+1''3'' 2K''K''...

parent1

parent2

offspring1

offspring2

Figure 3. Example of the three point recombination operator for the Non-dominated Sorting Genetic
Algorithm, version II (NSGA-II).

5.3.2. Mutation Operator

The mutation operator is applied individually to each integer in the solution encoding but uses
two different approaches, one for the cooling state part of the solution and another for the server
power part. For the cooling state part (i.e., the first K elements in the encoding), a differential approach
is applied. This approach works as follows. For mutating an integer value v, a random value r ∈ [0, 1)
is selected, and the mutated value of v is computed as v′ = (v + r × 300) mod 300. For the server
power part of the encoding (i.e., elements K + 1 to 2K), a simple uniform mutation is applied, such that
the value of v′ is a random value between 0 (i.e., when all servers are off) and Smax (i.e., when all
servers are on).

5.4. Evolutionary Operators for ev-MOGA

The ev-MOGA was proposed by Martínez et al. [20] to address the shortcomings of many MOEAs.
In this work, ev-MOGA uses the exact same mutation operator as NSGA-II. This mutation operation
proved to be useful and adapted adequately for ev-MOGA. On the other hand, a linear recombination is
used for the recombination of an operator, as recommended by the original ev-MOGA implementation.
This latter operator is detailed next.
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5.4.1. Recombination Operator

For the recombination operation, a linear recombination method is applied such that parents P1

and P2 are recombined to produce offspring O1 and O2 as shown in Equation (5) and (6):

O1 = α⊗ P1 + (1− α)⊗ P2, (5)

O2 = (1− α)⊗ P1 + α⊗ P2, (6)

where α is a random vector in the space [0, 1)2K and⊗ is the element-wise multiplication of two vectors.
Finally, all values of O1 and O2 are rounded to their nearest integer value to satisfy the encoding.

5.4.2. Fitness Functions

The fitness functions that guide the evolutionary process are identical to the ones defined in
Equation (2), (3) and (4). Because the MOEA solution encodes the cooling and server power, it alone is
sufficient for computing Equation (2) and (3). However, because it does not include task scheduling
information, it is not possible to compute Equation (4).

For computing Equation (4), the Best Fit Hole (BFH) algorithm is used as a subordinate greedy
scheduling heuristic for computing a task-to-server scheduling. Next, the BFH task-scheduling
heuristic is presented in detail.

5.4.3. Greedy Task Scheduling Heuristic

The Best Fit Hole (BFH) heuristic is applied for task scheduling [7]. This heuristic works by
applying a backfilling approach and keeping track of holes in the schedule when servers are idle.
Tasks are assigned, one by one, to the hole that satisfies their due date and minimizes the difference
between its execution time and the hole duration (i.e., it best fits the task). If no hole satisfies the
deadline constraint of a task, then that task is scheduled at the end of the server that can execute
it faster. Algorithm 2 shows the schema of the BFH scheduler.

Algorithm 2 Schema of the Best Fit Hole (BFH) scheduling heuristic

U ← tasks . queue of tasks
H ← ∅ . set of holes
while U 6= ∅ do

t← f irst(U) . get the first task and remove it from the set
Ht ← canAcomodateTask(H, t) . get holes which may accommodate the task
Ht ← satis f iesDueDate(Ht, t) . get holes which satisfy the due date of the task
if Ht 6= ∅ then

h← getSmallestHole(Ht) . get hole with smallest length
assignTaskToHole(t, h)
H = (H \ h) ∪ (h \ t) . remove hole from set and update remaining hole time

else
assignToFastestServer(t)

end if
end while

5.5. Simulated Annealing for Post Hoc Optimization

Simulated Annealing (SA) is a metaheuristic introduced by Kirkpatrick et al. [21]. In this work,
it is applied as a post hoc optimization for further improving the solutions computed by the MOEA.
A similar post hoc approach proved to be very effective in significantly improving QoS in [14].

Since SA works with a single solution, it is executed separately from each non-dominated solution
computed by the MOEA. On top of that, SA is a single objective optimization method and cannot deal
with multiple objectives. For this reason, it is applied multiple times (N) for each solution. Each time,
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the SA randomly chooses an optimization objective to be improved. Algorithm 3 shows the schema
for applying the post hoc optimization. Dominance is used as an acceptance criterion, that is, a new
solution is accepted only when it dominates the current solution. The neighborhood for the SA is
constructed using a simple task moving operation which moves one task from its current machine to a
new machine in some arbitrary position.

Algorithm 3 Schema for post hoc optimization using Simulated Annealing (SA)

S← solutions . set of solutions computed by the MOEA
S∗ ← ∅ . set of improved solutions
while S 6= ∅ do

s← f irst(S)
for i = 1 : N do

s′ ← applySA(s) . applies simulated annealing to s
if s′ dominates s then . evaluates Pareto dominance

s← s′
end if

end for
S∗ = S∗ ∪ s

end while

6. Experimental Evaluation

In this section, the experimental evaluation of the proposed algorithmic solutions is presented.
It introduces the problem instances created for assessing the efficacy of the proposed algorithms and
the parameter setting of each algorithm.

6.1. Problem Instances

A set of realistic problem instances is created to evaluate the proposed algorithmic approach.
For all these problem instances, a scheduling horizon of K = 150 time steps is defined and a
rescheduling policy is considered. Every K time steps or when a new task arrives, the scheduling
algorithm is executed and all queued tasks are rescheduled. This is a realistic time horizon with an
adequate compromise of time ahead scheduling and rescheduling frequency. An external temperature
of 25 ◦C is considered, an initial internal temperature of 26.5 ◦C, and a maximum operative temperature
of 27 ◦C. The data center simulates the Parasol data center presented in [8]. This data center consists of
64 low-power servers with Intel Atom processors. Each server consumes 30 W when executing at peak
performance, 22 W in idle state, and only 3 W in sleep state. The CRAC system consumes 2.3 kW and
the free cooling system up to 410 W.

Considering all the above, small, medium, and large workloads are defined comprised of 200,
300 and 400 tasks, respectively. Three different workload instances are created for each size totaling
nine different workload instances. For the reference power profile, Rt, three different configurations
are considered. These configurations represent a fairly heterogeneous spectrum of scenarios with
varying reference profiles. Figure 4 shows all three reference power profiles. Regarding the green
power generation, an array of three solar panels are simulated, each one capable of producing up to
0.5 kW. Three different green power profiles are considered for these solar panels. The first one, g1,
is shown in Figure 5a and represents a morning power generation profile. This profile represents a
scenario that starts with low energy generation and gradually increases energy generation as midday
approaches. Profile g2, which corresponds to a midday power generation profile, is shown in Figure 5b.
This profile represents the maximum energy generation profile with peak solar irradiation. Finally,
profile g3 equals a null green power generation representing a nighttime environment. This profile is
not even shown, as no energy is generated during the night. All three of these power profiles were
generated using historical solar irradiation information from [8].

In total, 81 different instances are created considering a wide range of different scenarios.
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Figure 4. Power reference profiles. (a) profile A; (b) profile B; and (c) profile C.
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Figure 5. Green power generation profiles. (a) morning profile (g1); and (b) midday profile (g2).

6.2. Parameter Settings

In this work, NSGA-II is configured with a population size of #pop = 20, a recombination
probability of pr = 0.9, and a mutation probability of pm = 0.01. On the other hand, ev-MOGA is
configured with a P population size of #popP = 100 and a G population size of #popG = 8. A mutation
probability of pm = 0.1 and a recombination probability of pr = 0.9. These settings are heavily based on
the values proposed originally by [19,20]. Both MOEAs were configured with a stopping criterion (sc)
of 1000 generations for keeping the algorithms within reasonable execution times.

As for the post hoc optimization, SA is configured to be executed N = 12 times for each
non-dominated MOEA solution. The initial temperature of SA was configured as T0 = 1, the stopping
temperature (st) as Ti ≤ 1× 10−8, and the cooling schedule (cs) as Ti+1 = Ti × 0.8. These settings are
heavily based on the values originally proposed by [21]. Table 1 summarizes NSGA-II, ev-MOGA and
SA settings.

Table 1. Parameter settings for Non-dominated Sorting Genetic Algorithm version II (NSGA-II),
Epsilon-Variable Multi-Objective Genetic Algorithm (ev-MOGA) and simulated annealing (SA).

Algorithm Parameter Value

NSGA-II

pr 0.9
pm 0.01

#pop 20
sc 1000 generations

ev-MOGA

pr 0.9
pm 0.1

#popP 100
#popG 8

sc 1000 generations

SA

N 12
T0 1
st Ti ≤ 1× 10−8

cs Ti+1 = Ti × 0.8



Electronics 2016, 5, 71 11 of 16

7. Experimental Results and Discussion

This section presents and discusses the experimental results computed by both algorithmic
approaches, the one based on NSGA-II and the one based on ev-MOGA. First, the efficacy of these
approaches is studied by comparing their accuracy at optimizing the objectives and at sampling
the Pareto front. After that, the best approach is compared with a traditional business-as-usual
scenario where no power optimization is performed and no green power source is available.
This business-as-usual scenario is a typical scenario in many small- and medium-sized data centers.

7.1. NSGA-II and ev-MOGA Comparison

The hypervolume metric is applied for comparing the NSGA-II and ev-MOGA approaches.
The hypervolume metric was introduced by Zitzler and Thiele [22] and is the most used metric for
comparing multiobjective optimization results [23]. This metric works by constructing a hypercube
vi for each solution i in the Pareto front Q. Each hypercube is defined with a reference point W
and solution i as corners of the diagonal of the hypercube. The reference point W is arbitrary but
may be easily constructed using the worst computed values for each objective function. Finally,
the hypervolume (HV) is computed as the union of all hypercubes such that a larger hypervolume is
always preferable. Equation (7) shows how hypervolume is calculated:

HV = volume
(
∪|Q|i=1vi

)
. (7)

The hypervolume metric considers both the convergence and the diversity of a Pareto front
providing an all-around quantitative value. In this work, the relative hypervolume metric is reported
for readability. The relative hypervolume is computed as RHV = HV

HV∗ , where HV∗ is the hypervolume
of the best known approximation to the true Pareto front.

For the comparison study, a total of 30 independent executions were performed for each algorithm
and for each problem instance. Table 2 shows the average and standard deviation of the relative
hypervolume computed by each algorithm grouped by workload size and by green power profile.
The Kruskal–Wallis test [24] is used to provide statistical confidence in the comparison. Statistically
significant differences are presented in bold font.

Table 2. Average and standard deviation of the relative hypervolume (RHV) computed by each
algorithm for each workload size and green power generation profile.

Workload Green Power Average RHV
Size Profile ev-MOGA NSGA-II

small
g1 0.89 ±0.19 0.72 ± 0.12
g2 0.93 ± 0.12 0.73 ± 0.13
g3 0.84 ± 0.23 0.61 ± 0.16

medium
g1 0.91 ± 0.14 0.69 ± 0.16
g2 0.89 ± 0.16 0.76 ± 0.15
g3 0.83 ± 0.18 0.63 ± 0.13

large
g1 0.79 ± 0.13 0.62 ± 0.17
g2 0.86 ± 0.10 0.67 ± 0.15
g3 0.75 ± 0.14 0.57 ± 0.14

Note: statistical differences are shown in bold font (p ≤ 0.001).

Overall results show ev-MOGA computes consistently better solutions than NSGA-II for all
scenarios. Figures 6 and 7 present box plots for RHV results aggregated by dimension and by green
power profile. For all scenarios, ev-MOGA presents a higher median RHV and a better reliability
supported by lower dispersion values.
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Next, the best aggregated results computed by each algorithm are analyzed, that is, the best
approximation to the true Pareto front computed by each algorithm. Table 3 presents the best
aggregated RHV values for each algorithm, for each workload size, and for each green power profile.
Results show ev-MOGA is significantly better than NSGA-II for all problem instances with small-
and medium-sized workloads. In particular, for small-sized workloads, ev-MOGA is always able to
compute the best approximation to the true Pareto front without fail. Results are more contested for
the large-sized workloads where ev-MOGA is significantly better than NSGA-II in just one out of
three scenarios.
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Figure 6. Relative hypervolume computed by Epsilon-Variable Multi-Objective Genetic Algorithm
(ev-MOGA) and Non-dominated Sorting Genetic Algorithm version II (NSGA-II) for each workload
size. (a) small workload size; (b) medium workload size; and (c) large workload size.
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Figure 7. Relative hypervolume computed by Epsilon-Variable Multi-Objective Genetic Algorithm
(ev-MOGA) and Non-dominated Sorting Genetic Algorithm version II (NSGA-II) for each green energy
profile. (a) morning profile (g1); (b) midday profile (g2); and (c) night profile (g3).
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Table 3. Average and standard deviation of the relative hypervolume (RHV) for the best aggregated
Pareto front computed by each algorithm for each workload size and green power generation profile.

Workload Green Power Average RHV
Size Profile ev-MOGA NSGA-II

small
g1 1.00 ± 0.00 0.87 ± 0.03
g2 1.00 ± 0.00 0.87 ± 0.03
g3 1.00 ± 0.00 0.82 ± 0.04

medium
g1 1.00 ± 0.00 0.89 ± 0.04
g2 0.99 ± 0.01 0.91 ± 0.04
g3 0.98 ± 0.02 0.85 ± 0.04

large
g1 0.97 ± 0.02 0.92 ± 0.06
g2 0.99 ± 0.01 0.91 ± 0.03
g3 0.93 ± 0.04 0.86 ± 0.04

Note: statistical differences are shown in bold font (p ≤ 0.001)

Figure 8a–c show a sample of the best aggregated Pareto front for each algorithm and for each
green power profile for a medium-sized workload. In summary, ev-MOGA proved to be more accurate
than NSGA-II in nearly all of the considered problem instances.
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Figure 8. Best aggregated Pareto front computed by each algorithm for medium-sized workloads and
for each green energy profile. (a) morning profile (g1); (b) midday profile (g2); and (c) night profile (g3).

7.2. Comparison of ev-MOGA with the Business-as-Usual Approach

The business-as-usual scenario represents a real-world scenario where no green power source is
available and where servers are never in sleep state. For this comparison, just solutions with a relative
QoS of 95% or greater are considered. This is a realistic scenario since providing a low QoS is not
desirable for most data centers. The relative QoS value is computed as the total amount of overdue
time relative to the sum of execution time required by all tasks. Hence, a schedule with a relative QoS
of 95% means it requires just 5% of additional overdue time for task execution.

Table 4 shows the average and standard deviation for the relative budget reduction computed by
ev-MOGA over the business-as-usual scenario for each workload size and each green power profile
with QoS of over 95%. On top of that, it also shows the average and standard deviation for the relative
deviation from the reference power profile, with the deviation from the reference power profile being
calculated as the total amount of energy required that surpasses the reference profile, relative to the
total amount of energy specified in the reference profile.
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Table 4. Average and standard deviation for the relative budget reduction over the business-as-usual
scenario (BAU), and relative deviation from the reference power computed by ev-MOGA for quality of
service over 95%.

Workload Green Power Budget Reduction Relative Deviation
Size Profile over BAU from Ref. Power

small
g1 76% ± 5% 1% ± 2%
g2 83% ± 3% 0% ± 1%
g3 58% ± 5% 2% ± 3%

medium
g1 66% ± 4% 1% ± 2%
g2 70% ± 6% 1% ± 2%
g3 46% ± 5% 5% ± 4%

large
g1 53% ± 2% 4% ± 3%
g2 59% ± 2% 1% ± 1%
g3 33% ± 3% 11% ± 5%

Results show that ev-MOGA is able to compute a large budget reduction, up to 83%, with a small
relative deviation from the power reference profile, lower than 5% in most scenarios. As expected, the
larger reductions are computed for the morning and midday green power profile (g1 and g2), with an
average reduction of 68%. Budget reduction is much lower for the nighttime green power profile (g3),
with an average reduction of 46%, which accounts for just the server state and cooling device planning.
These results show the effectiveness of considering green energy sources for data center infrastructures,
reducing the energy budget by an average of 22%. Figure 9 shows the average budget reduction and
relative power reference deviation for the solutions computed by ev-MOGA when compared to the
business-as-usual scenario.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Small Medium Large

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n
/d

e
v
ia

ti
o

n
 

Problem size 

Budget reduction over BAU

Deviation from reference power

Figure 9. Average relative budget improvement over business-as-usual scenario and relative deviation
from power reference computed by ev-MOGA for a relative quality of service over 95%

8. Conclusions

This work addresses the problem of controlling power consumption in data centers considering
both traditional and renewable energy sources. This scheduling problem consists of simultaneously
scheduling the states of the servers and the cooling devices of the data center, and the scheduling
of tasks to be executed in the data center. A mathematical formulation is proposed for this problem,
taking into account a desired reference power consumption profile, the overall electricity budget, and
the QoS provided to its users.

A fully Pareto-oriented methodology is applied for solving this problem, and two multi-objective
evolutionary algorithms—NSGA-II and ev-MOEA—are presented. Both are hybridized with a
greedy scheduling algorithm and a simulated annealing algorithm. In the proposed schema,
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the multi-objective evolutionary algorithms schedule the server and cooling devices, while the greedy
heuristic schedules the execution of tasks. On top of that, simulated annealing is used as a post hoc
optimization mechanism and it is executed at the very last moment.

A small low-power data center is modeled for the experimental, taking into account the heat
dissipation of its servers and the effectiveness of its cooling devices. A wide set of problem
instances are constructed considering different power profiles, green power generation profiles,
and workloads of tasks. First, NSGA-II and ev-MOEA approaches are compared using a Pareto-aware
methodology to determine the best evolutionary approach. Next, the best approach is compared with
a business-as-usual scenario with no scheduling of server or cooling devices, and with just a traditional
energy source.

Results show the ev-MOGA approach is significantly more accurate than the NSGA-II approach
for all of the problem instances, improving accuracy of the schedules by about 18% in average.
When comparing ev-MOGA with the business-as-usual scenario, only schedules with high QoS values
are considered, since low QoS values are certainly not desirable for most real-world data centers.
In these high-QoS scenarios, ev-MOGA proved to be very effective, computing average budget
reductions ranging from 33% up to 83%, depending on the workload size and green power generation
profile. Furthermore, these reductions are obtained with an average deviation from the reference
power profile of just about 3%.

These results confirm the effectiveness of the proposed approach and the usefulness of
considering renewable energy sources for data center infrastructures. The main lines of future work
include extending the experimental analysis and improving the efficiency of the proposed methods.
The experimental analysis is to be improved by considering larger data center infrastructures and
a wider range of green power generation profiles. At the same time, improving the efficiency and
efficacy of the proposed methods is equally important and is certainly necessary in order to address
larger problem instances.
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