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Abstract: Power consumption has become an increasingly important metric when building large
supercomputing clusters. One way to reduce power usage in large clusters is to use low-power
embedded processors rather than the more typical high-end server CPUs (central processing units).
We investigate various power-related metrics for seventeen different embedded ARM development
boards in order to judge the appropriateness of using them in a computing cluster. We then build
a custom cluster out of Raspberry Pi boards, which is specially designed for per-node detailed
power measurement. In addition to serving as an embedded cluster testbed, our cluster’s power
measurement, visualization and thermal features make it an excellent low-cost platform for education
and experimentation.

Keywords: Raspberry Pi; embedded supercomputers; GFLOPS/W; cluster construction; power
measurement

1. Introduction

Embedded systems and modern supercomputers, while at opposite ends of the computing
spectrum, share an important design constraint: the need to have the highest possible performance
while staying inside of a power budget. As the number of cores in large computers increases,
the per-core power usage becomes increasingly important.

One way to address this power consumption problem is to replace high-end server central
processing units (CPUs) with the low power processors more traditionally found in embedded systems.
The use of embedded processors in supercomputers is not new; the various BlueGene [1–3] machines
use embedded-derived PowerPC chips. The ARM embedded architecture has drastically increased in
performance, including the introduction of 64-bit processors for use in high-end cell phones. This has
led to a new source of well-supported, inexpensive, relatively high-performing embedded processors
ready for use in supercomputing and cluster applications.

Despite the seeming inevitability of large ARM supercomputers, the actual uptake has been
extremely slow. As of November 2015, there are still no ARM-based systems on the Top500
supercomputer list [4].

In order to evaluate the future potential of large ARM-based systems we have built a computing
cluster out of commodity ARM development boards. We first evaluate seventeen different ARM-based
systems with the goal of finding a low-cost, low-power, high-performance board suitable for cluster
use. By using existing boards, we reduce development time and cost, at the expense of possibly
missing out on some features that are key to large-scale cluster development (most notably, graphics
processing unit (GPU) acceleration, fast memory hierarchies and high-speed network interconnects).
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After weighing the various tradeoffs, we chose the Raspberry Pi as the basis for our cluster.
Our current cluster is made out of 25 Raspberry Pi Model 2B systems linked together with 100 MB
Ethernet. It can obtain 15.4 billion floating point operations per second (GFLOPS) of performance,
while consuming 93 W. While these results are not remarkable compared to a high-end Intel x86
server, we have included some features in our cluster that make it an interesting measurement and
educational tool. We have per-node visualization via 8×8 light-emitting diode (LED) displays that
allow the detailed machine state to be seen at a glance. We also have detailed, per-node power
measurement capabilities, which allow fine granularity measurements of cluster power consumption.
We primarily use this cluster as an educational tool to provide low-cost hands-on experience in a
cluster computing class.

2. Experimental Section

2.1. Board Comparison

Before designing our cluster, we evaluated the power and performance tradeoffs found in
seventeen different commodity 32-bit and 64-bit ARM boards, as listed in Table 1. The boards,
all running Linux, span a wide variety of speeds, cost and processor types. More complete info on the
hardware capabilities of the boards can be found in Appendix A.

Table 1. Overview of the ARM systems examined in this work. Cost is given in U.S. dollars at the time
of purchase in late 2015 or early 2016. More details can be found in Appendix A.

System Family CPU (Central Processing Unit) Memory Cost (USD)

Raspberry Pi Zero ARM1176 1 1 GHz Broadcom 2835 512 MB $5

Raspberry Pi Model A+ ARM1176 1 700 MHz Broadcom 2835 256 MB $20

Raspberry Pi Compute Module ARM1176 1 700 MHz Broadcom 2835 512 MB $40

Raspberry Pi Model B ARM1176 1 700 MHz Broadcom 2835 512 MB $35

Raspberry Pi Model B+ ARM1176 1 700 MHz Broadcom 2835 512 MB $35

Gumstix Overo Cortex A8 1 600 MHz TI OMAP3530 256 MB $199

Beagleboard-xm Cortex A8 1 1 GHz TI DM3730 512 MB $149

Beaglebone Black Cortex A8 1 1 GHz TI AM3358/9 512 MB $45

Pandaboard ES Cortex A9 2 1.2 GHz TI OMAP4460 1 GB $199

Trimslice Cortex A9 2 1 GHz NVIDIA Tegra2 1 GB $99

Raspberry Pi Model 2-B Cortex A7 4 900 MHz Broadcom 2836 1 GB $35

Cubieboard2 Cortex A7 2 912 MHz AllWinner A20 1 GB $60

Chromebook Cortex A15 2 1.7 GHz Exynos 5 Dual 2 GB $184

ODROID-xU Cortex A15 4 1.6 GHz Exynos 5 Octa 2 GB $169Cortex A7 4 1.2 GHz

Raspberry Pi Model 3-B Cortex A53 4 1.2 GHz Broadcom 2837 1 GB $35

Dragonboard Cortex A53 4 1.2 GHz Snapdragon 410 1 GB $75

Jetson TX-1 Cortex A57 4 1.9 GHz Tegra X1 4 GB $600Cortex A53 4 unknown
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2.1.1. Experimental Setup

During the experiments we configure the machines as if they were a node in a larger cluster.
No extraneous devices (keyboards, mice, monitors, external drives) are attached during testing; the only
connections are the power supplies and network cables (with the exception of the Chromebook, which
has a wireless network connection and a laptop screen). Machines that did not have native Ethernet
were provided with a USB Ethernet adapter.

2.1.2. Benchmarking Programs

Choosing a representative set of High Performance Computing (HPC) benchmarks remains
difficult, as cluster performance is tightly tied to the underlying workload. We chose two HPC
benchmarks that are widely used in cluster benchmarking: Linpack and STREAM.

High-performance Linpack (HPL) [5] is a portable version of the Linpack linear algebra
benchmark for distributed-memory computers. It is commonly used to measure the performance of
supercomputers worldwide, including the twice-a-year Top500 Supercomputer list [4]. The program
tests the performance of a machine by solving complex linear systems through use of basic linear
algebra subprograms (BLAS) and the message-passing interface (MPI).

For our experiments, mpich2 [6] was installed on each machine to provide a message passing
interface (MPI), and the OpenBLAS [7] library was installed on each machine to serve as the BLAS.

The second benchmark we use is STREAM [8], which tests a machine’s memory performance.
STREAM performs operations, such as copying bytes in memory, adding values together and scaling
values by another number. STREAM completes these operations and reports the time it took, as well
as the speed of the operations.

We compiled our benchmarks with the version of gcc that was installed on the various machines
(typically it was gcc 4.9, as most machines were running the Raspbian Jessie Linux distribution).
We used the default compiler options when compiling.

We did not use any digital signal processing (DSP) or graphics programming unit (GPU)
acceleration, even though many of the boards support this. In general, the boards do not support Open
Computing Language (OpenCL) or any other abstraction layer on top of the accelerators. To gain
access to the DSP or GPU would require extensive custom coding for each individual board, and often,
these interfaces are not well documented. The Jetson TX-1 board does support NVIDIA CUDA, so we
tried running HPL_cuda on the board. This consistently crashed the system, so we were unable to
obtain results. The TX-1 GPU is optimized for single-precision floating point, so direct comparisons
against the CPU results (which use double-precision) would not be possible.

2.1.3. Power Measurement

The power consumed by each machine was measured and logged using a WattsUpPro [9] power
meter. The meter was configured to log the power at its maximum sampling speed of once per second.

The power readings were gathered on a separate machine from the one running the benchmarks.
For proper analysis, the timestamps of the power readings need to match up with the start and stop
times of the benchmarks. We did this by synchronizing the clocks of the two machines to the same
network time protocol (NTP) time server before starting the runs. There is some potential for drift,
but since our power meter only provides one second of resolution, this solution was deemed to be
good enough.

2.1.4. HPL FLOPS Results

Table 2 summarizes the floating point operations per second (FLOPS) results when running HPL.
We took many results for each board, varying the N term to find the maximum performance. N is the
problem size: usually higher is better, but at some point, performance starts declining as the amount of
memory available is exhausted.
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The FLOPS value is unexpectedly low on the Cortex-A8 machines; the much less advanced
ARM1176 Raspberry-Pi obtains better results. This is most likely due to the “VFP-lite” floating point
unit found in the Cortex-A8, which takes 10 cycles per operation rather than just one. It may be
possible to improve these results by changing the gcc compiler options; by default, strict IEEE-FP
correctness is chosen over raw speed.

The ARM1176-based systems (low-end Raspberry Pis) all cluster together with similar
performance, differing mostly by the CPU clock frequency.

The more advanced Cortex-A9 and Cortex-A7 systems have a noticeable improvement in floating
point performance. This includes the Pandaboard, Cubieboard2 and Raspberry Pi Model 2B. Some of
this is due to these machines having multiple cores. We do not have numbers for the Trimslice: building
a BLAS for it proved difficult, as it lacks NEON support (NEON is optional on Cortex-A9), and a later
hardware failure prevented further testing.

Table 2. Performance (FLOPS) and power summary for the various ARM boards, with three x86 systems
shown for comparison. Many runs were done, with the peak FLOPS result (as well as the corresponding
high-performance Linpack (HPL) benchmark N matrix size parameter) reported. Some of the high-end
ARM boards compare favorably with the x86 systems on the GFLOPS per Watt and MFLOPS per US
dollar metrics.

System N GFLOPS
Idle AvgLoad GFLOPS MFLOPS

Power Power per Watt per US$

Gumstix Overo 4000 0.041 2.0 2.7 0.015 0.20

Beagleboard-xm 5000 0.054 3.2 4.0 0.014 0.36

Beaglebone Black 5000 0.068 1.9 2.6 0.026 1.51

Raspberry Pi Model B 5000 0.213 2.7 2.9 0.073 6.09

Raspberry Pi Model B+ 5000 0.213 1.6 1.8 0.118 6.09

Raspberry Pi Compute Module 6000 0.217 1.9 2.1 0.103 5.43

Raspberry Pi Model A+ 4000 0.218 0.8 1.0 0.223 10.9

Raspberry Pi Zero 5000 0.319 0.8 1.3 0.236 63.8

Cubieboard2 8000 0.861 2.2 4.4 0.194 14.4

Pandaboard ES 4000 0.951 3.0 5.8 0.163 4.78

Raspberry Pi Model 2B 10,000 1.47 1.8 3.4 0.432 42.0

Dragonboard 8000 2.10 2.4 4.7 0.450 28.0

Chromebook 10,000 3.0 5.9 10.7 0.277 16.3

Raspberry Pi Model 3B 10,000 3.7 * 1.8 4.4 0.844 106

ODROID-xU 12,000 8.3 2.7 13.9 0.599 49.1

Jetson TX-1 20,000 16.0 2.1 13.4 1.20 26.7

pi-cluster 48,000 15.5 71.3 93.1 0.166 7.75

2 core Intel Atom S1260 20,000 2.6 18.6 22.1 0.149 4.33

16 core AMD Opteron 6376 40,000 122 167 262 0.466 30.5

16 core Intel Haswell-EP 80,000 428 58.7 201 2.13 107

With extra cooling, the Pi3 can get 6.4 GFLOPS.

The Cortex-A15 machines (Chromebook and Odroid-xU) have an even greater boost in FLOPS,
with the highest performance of the 32-bit systems.

The 64-bit systems have high performance, as well, with the high-end Cortex-A57 (Jetson TX-1)
with the best performance and the lower end Cortex-A53 systems (Dragonboard, Raspberry Pi
Model 3B) not far behind.
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The Raspberry Pi Model 3B posed some interesting challenges. Unlike previous models, when
running HPL, the chip can overheat and produce wrong results or even crash [10]. With an adequate
heat sink, cooling and boot loader over-volt settings, an impressive 6.4 GFLOPS can be obtained, but on
stock systems, the CPU overheats and/or clocks down the CPU, with much lower results are obtained.

For comparison, we show results from a few x86 machines. We find that while the high-end ARM
systems can outperform a low-end atom-based x86 server, recent high-end AMD and Intel servers
have at least an order of magnitude more FLOPS than any of the ARM systems.

2.1.5. HPL FLOPS per Watt Results

Table 2 also shows the GFLOPS per average power results (GFLOPS/W). This is shown graphically
in Figure 1, where an ideal system optimizing both metrics would have points in the upper left. In this
metric, the 64-bit machines perform best by a large margin. The Jetson TX-1 (and properly-cooled
Raspberry Pi 3B) break the 1 GFLOP/W barrier. The Chromebook is at a disadvantage compared to
the other boards, as it is a laptop and has a display that was operating while the test was running.
This is most noticeable in the idle power being higher than all of the other boards.

While the 64-bit machines have much better efficiency than earlier processors, a high-end x86
server can still obtain twice the power per watt than even the best ARM system to which we have access.
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Figure 1. Performance (GFLOPS) compared to average power. Upper left is the best.

2.1.6. HPL FLOPS per Cost Results

Table 2 also shows the FLOPS per dollar cost (purchase price) of the system (higher is better);
this is also shown in Figure 2, where an ideal system optimizing both would have points in the upper
left. The Raspberry Pi 3 performs impressively on the MFLOPS/US$ metric, matching a high-end x86
server. The Raspberry Pi Zero is a surprise contender, due mostly to its extremely low cost.
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Figure 2. Performance (GFLOPS) compared to cost in US$. Upper left is the best.

2.1.7. STREAM Results

We ran Version 5.10 of the STREAM benchmark on all of the machines. We use the default array
size of 10 million (except for the Gumstix Overo, which only has 256 MB of RAM, so a problem size
of 9 million was used). Figure 3 shows a graph of the performance of each benchmark. The more
advanced Cortex-A15 chips have much better memory performance than the earlier boards, most
likely due to the use of dual-channel low-power double-data rate (LPDDR3) memory. The Jetson-TX1
has extremely high memory performance, although not quite as high as a full x86 server system.

To fully understand the results, some knowledge of modern memory infrastructure is needed.
On desktop and server machines, synchronous dynamic random access memory (SDRAM) is used, and
the interface has been gradually improving over the years from DDR (double data rate) to DDR2, DDR3
and now DDR4. Each new generation improves the bandwidth by increasing how much data can be
sent per clock cycle, as well as by increasing the frequency. Power consumption is also important,
and the newer generations reduce the bus voltage to save energy (2.5 V in DDR, 1.8 V in DDR2, 1.5 V
in DDR3 and down to 1.2 V in DDR4). Embedded systems can use standard memory, but often they
use mobile embedded SDRAM (low-power), such as LPDDR2, LPDDR3 or LPDDR4. This memory is
designed with embedded systems in mind, so often trade off performance for lower voltages, extra
sleep states and other features that allow using less power.

One factor affecting performance is the number of DRAM (dynamic random access memory)
channels the device has: despite having similar CPUs, the Trimslice only has a single channel to
memory, while the Pandaboard has two, and the memory performance is correspondingly better.
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Figure 3. STREAM benchmark results.

The bus frequency can also make a difference. Note that the Odroid-xU and the Dragonboard
both have LPDDR3 memory; however, the Odroid runs the memory bus at 800 MHz versus the
Dragonboard’s 533 MHz, and the STREAM results for Odroid are correspondingly better.

2.1.8. Summary

Results of both the HPL and STREAM benchmarks show the Jetson TX1 machine as the
clear winner on performance, STREAM and performance per Watt metrics. If cost is factored
in, the Raspberry Pi 3B makes a strong case, although it has the aforementioned problems
with overheating.

The Pi 3B and Jetson TX-1 were not yet released when we started building our cluster, so our
design choice was made without those as options. At the time, the best performing options other
than the Pi were the Chromebook (which has a laptop form factor and no wired Ethernet) and the
Odroid-xU (which was hard to purchase through our university’s procurement system). We chose
to use Raspberry Pi B boards for various practical reasons. A primary one was cost and the ease of
ordering large numbers at once. Another important concern is the long-term availability of operating
support and updates; the Raspberry Pi foundation has a much stronger history of this than the
manufacturers of other embedded boards.

Our cluster originally used Model B boards, and we have since updated to B+ and then 2B.
The compatible design of the Raspberry Pi form factor means it should be easy to further upgrade the
system to use the newer and better performing Model 3B boards.

2.2. Cluster Design

Based on the analysis in Section 2.1, we chose Raspberry Pi Model 2B boards as the basis of
our cluster. The Raspberry Pi boards provide many positive features, including small size, low cost,
low power consumption, a well-supported operating system and easy access to general-purpose
input/output (GPIO) pins for external devices. Figure 4 shows the cluster in action. The compute part
of the cluster (compute nodes plus network switch) costs roughly US$2200; power measurement adds
roughly $200; and the visualization display costs an additional $700.
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Figure 4. The raspberry-pi cluster.

2.2.1. Node Installation and Software

Each node in the cluster consists of a Raspberry Pi Model 2B with its own 4 GB SD card. Each node
has an installation of the Raspbian operating system, which is based on Debian Linux and designed
specifically for the Raspberry Pi.

One node is designated as the head node and acts as a job submission server, central file server
and network gateway. The file system is shared via Network File System (NFS) and subsequently
mounted by the sub-nodes. Using NFS allows programs, packages and features to be installed on a
single file system and then shared throughout the network, which is faster and easier to maintain than
manually copying files and programs around. Passwordless SSH (Secure Shell) allows easily running
commands on the sub-nodes. MPI (message passing interface) is installed to allow cluster-wide parallel
jobs. The MPI implementation used for this cluster is MPICH2, a free MPI distribution written for
UNIX-like operating systems. For job submission, the Slurm [11] batch scheduler is used.

The nodes are connected by 100 MB Ethernet, consisting of a 48-port 10/100 network switch,
which draws approximately 20 Watts of power.

2.2.2. Node Arrangement and Construction

The initial cluster has 24 compute nodes plus one head node. It is designed so expansion to
48 nodes is possible.

A Corsair CX430 ATX power supply powers the cluster. The Pi boards are powered by the
supply’s 5-V lines, as well as via the 12-V lines through a direct current (DC-DC) converter that reduces
this to 5-V. We found it necessary to draw power from both the 5-V and 12-V lines of the power supply,
otherwise the voltages provided would become unstable. This is typical behavior of most desktop
power supplies, as they are designed to provide a minimum load on the 12-V lines, and if this load is
not present, the output voltages can drift outside of specifications.

The head node is powered by the supply’s standby voltage, which allows the node to be powered
up even when the rest of the cluster is off. The head node can power on and off the rest of the cluster
by toggling the ATX power enable line via GPIO.

Power can be supplied to a Raspberry Pi in two ways, through the micro USB connector or
through the GPIO header. The power pins on the GPIO header connect directly to the main power
planes and have no protection circuitry. We use the micro USB power connector to take advantage
of the fuses and smoothing capacitors that add an extra layer of protection. This did complicate
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construction, as we had to crimp custom micro-USB power cords to connect the Pis to the power
measurement and distribution boards.

The boards are attached via aluminum standoffs in stacks of four and are placed in a large server
case that has had wooden shelving added.

2.2.3. Visualization Displays

Two main external displays are used to visualize the cluster activity.
The first is a series of 1.2 inch bi-color 8×8 LED matrix displays (Adafruit, New York, NY, USA)

attached to each node’s GPIO ribbon cable. These LED displays can be individually programmed
via the nodes’ i2c interface. These per-node displays can be controlled in parallel via MPI programs.
This not only allows interesting visualization and per-node system information, but provides the
possibility for students to experience plainly visible representations of their underlying MPI programs.

The second piece of the front end is an LCD-PI32 3.2 inch LCD touchscreen (Adafruit, New York,
NY, USA) that is programmed and controlled using the head node’s SPI interface. This screen allows a
user to view overall power and performance information, as well as check the status of jobs running
on all nodes of the cluster.

2.2.4. Power Measurement

Each node has detailed power measurement provided by a circuit as shown in Figure 5.
The current consumed is calculated from the voltage drop across a 0.1-Ohm sense resistor, which is
amplified by 20 with an MCP6044 op-amp and then measured with an MCP3008 SPI A/D converter.
Multiplying overall voltage by the calculated current gives the instantaneous power being consumed.
There is one power measurement board for each group of four nodes; the first node in each group is
responsible for reading the power via the SPI interface.

Level

ShifterA/D

SPI Pi

−

+

+5V

0.1

Ohm

10k

10k

+5v

to

Pi

200k

200k

to additional PIs

5V 3.3V

Figure 5. The circuit used to measure power. An op-amp provides a gain of 20 to the voltage drop
across a sense resistor. This can be used to calculate current and then power. The values from four Pis
are fed to a measurement node using an SPI A/D converter. The 5-V SPI bus is converted down to the
3.3 V expected by the Pi measurement node.

An example power measurement for the full cluster is shown in Figure 6. The workload is a 10 k
12-node HPL run with 5 s of sleep on either side. While sampling frequencies up to at least 1 kHz are
possible, in this run, the power is sampled at 4 Hz in order to not clutter up the graph.

One of the nodes (node05–2) is currently down, and the power measurement of three of the nodes
(node03–0, node03–3 and node01–0) is currently malfunctioning. The rest of the nodes are measuring
fine, and you can see detailed behavior across the cluster. Half of the nodes are idle, and the rest show
periodic matching peaks and troughs as the workload calculates and then transmits results.
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Figure 6. Detailed per-node power measurement with 4-Hz sampling while running a 12-node 10 k
HPL (high-performance Linpack) run. All 24 nodes are shown, but only half are being used, which is
why 12 remain at idle throughout the run. node05–2 is currently down and node03–0, node03–3 and
node01–0 have malfunctioning power measurement.

One advantage of our custom power measurement circuits is that we can sample at a high
granularity. We can alternately measure system-wide power with a WattsUpPro [9] power meter.
The WattsUpPro can only sample power at 1-Hz resolution, which can miss fine-grained behaviors.
Figure 7 shows the loss of detail found if the sampling frequency is limited to 1-Hz.
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Figure 7. Comparison showing increased details available with the STREAM benchmark when using a
higher sample rate of 100 Hz vs. the 1-Hz sampling available with a WattsUpPro meter.



Electronics 2016, 5, 61 11 of 19

2.2.5. Temperature Measurement

In addition to power usage, it is often useful to track per-node temperature. The Raspberry Pi
has an on-chip thermometer that can be used to gather per-board temperature readings. Our power
measurement boards also support the later addition of 1-wire protocol temperature probes if additional
sensors are needed.

3. Results

We ran the HPL benchmark on our 25-node Raspberry Pi 2B cluster while measuring the power
consumption. For comparison, we show earlier results with our prototype 32-node Pi B+ cluster (both
stock, as well as overclocked to 1 GHz).

3.1. Peak FLOPS Results

Table 3 shows the peak performance of our Raspberry Pi Model 2B cluster running with 24 nodes.
We find a peak of 15.5 GFLOPS while using 93.1 W for a GFLOPS/W rating of 0.166. This is much better
than the results found with our prototype Raspberry Pi Model B+ cluster, even when overclocked.
For comparison, we show a few Intel x86 servers; our cluster still lags those both in performance
and FLOPS/W. Part of this inefficiency is due to the 20-W overhead of the network switch, which is
amortized as more nodes are added.

Our cluster would have been Number 7 on the first Top500 list from June 1993 [12].

Table 3. Peak FLOPS cluster comparison.

Type Nodes Cores Freq Memory Peak Idle Busy GFLOPS
GFLOPS Power Power per Watt

Pi2 Cluster 24 96 900 MHz 24 GB 15.5 71.3 93.1 0.166
Pi B+ Cluster 32 32 700 MHz 16 GB 4.37 86.8 93.0 0.047

Pi B+ Overclock 32 32 1 GHz 16 GB 6.25 94.5 112.1 0.055
AMD Opteron 6376 1 16 2.3 GHz 16 GB 122 167 262 0.466

Intel Haswell-EP 1 16 2.6 GHz 80 GB 428 58.7 201 2.13

3.2. Cluster Scaling

Figure 8a shows the performance results of our prototype Model B cluster scaling as more nodes
are added. Scaling behavior will be similar with our Model 2B cluster. Adding nodes continues to
increase performance in an almost linear fashion, this gives hope that we can continue to improve
performance by adding more nodes to the cluster.

Figure 8b shows the average power increase as nodes are added. This scales linearly, roughly
proportional to 18 W (for the router) with 3.1 W for each additional node. The increase when moving
from 16 to 32 nodes is less; that is because those additional nodes are Model B+ boards, which draw
less power.

Figure 8c shows the performance per Watt numbers scaling as more nodes are added. This value is
still increasing as nodes are added, but at a much lower level than pure performance. This is expected,
as all of the boards have the same core MFLOPS/W value, so adding more is simply mitigating the
static overhead power rather than making the cluster more efficient.

Figure 8d shows how many Joules of energy are used on average for each floating point operation.
The optimum for a number of problem sizes is with an eight-node cluster, but the value does get lower
as more nodes are added.
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Figure 8. Scaling behavior of a 32-node B+ Cluster. (a) MFLOPS with the number of nodes for the
Raspberry Pi cluster, no overclocking; (b) average power with the number of nodes for the Raspberry
Pi cluster, no overclocking; the drop off with 32 nodes is because the additional 16 nodes use Model B+
(instead of Model B), which uses less power; (c) nanoJoulesper floating point operation with the number
of nodes for the Raspberry Pi cluster, no overclocking; (d) nanoJoules per floating point operation with
the number of nodes for the Raspberry Pi cluster, no overclocking.

3.3. Summary

We find that it is possible to build a low-cost, power-instrumented, Raspberry Pi cluster that is
capable of over 15 GFLOPS of performance. Due to the modular design of the Raspberry Pi boards,
it should be easy to upgrade this to the newer Model 3B designs, which have GFLOPS/W results
approaching those of high-end x86 servers. Despite the poor networking hardware in the Pis, we find
that cluster performance keeps increasing even up to the 32 node mark. Our cluster serves as an
excellent educational tool for general parallel programming, as well as for conducting detailed ARM
power/performance code optimization.

4. Discussion

4.1. Related Work

We perform a price, performance and cost comparison of a large number of ARM boards. We use
those results to guide the design of a cluster with per-node power instrumentation and visualization.
We break the related work out by topic, as previous papers have investigated various subsets of
these topics.
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4.1.1. Cluster Power Measurement

Other work has been done on gathering fine-grained cluster power measurement; usually,
the cluster in question runs x86 processors. Powerpack [13] is one such instrumented x86 cluster.
The PowerMon2 [14] project describes small boards that can be used to instrument a large x86 cluster.
Hackenberg et al. [15] describe various power measurement techniques (including Intel running
average power limit (RAPL) power estimates), but again, primarily looking at x86 devices.

4.1.2. ARM HPC Performance Comparisons

Dongarra and Luszczek [16] were one of the first groups attempting to optimize for HPC
performance on small boards; they created an iPad2 (Cortex A9) Linpack app showing that performance
was on par with early Cray supercomputers.

Aroca et al. [17] compare Pandaboard, Beagleboard and various x86 boards with FLOPS and
FLOPS/W. Their Pandaboard and Beagleboard performance numbers are much lower than the
ones we measure. Jarus et al. [18] compare the power and energy efficiency of Cortex-A8 systems
with x86 systems. Blem et al. [19] compare Pandaboard, Beagleboard and x86. Stanley-Marbell and
Cabezas [20] compare Beagleboard, PowerPC and x86 low-power systems for thermal and power.
Pinto et al. [21] compare Atom x86 vs. Cortex A9. Padoin et al. [22–24] compare various Cortex A8
and Cortex A9 boards. Pleiter and Richter [25] compare Pandaboard vs. Tegra2. Laurenzano et al. [26]
compare Cortex A9, Cortex A15 and Intel Sandybridge and measure power and performance on a
wide variety of HPC benchmarks.

Our ARM comparisons are different from the previously-mentioned work primarily by how many
different boards (seventeen) that we investigated.

4.1.3. ARM Cluster Building

There are many documented cases of compute clusters built from commodity 32-bit ARM boards.
Many are just brief descriptions found online; we concentrate on those that include writeups with
power and HPL performance numbers.

Geveler et al. [27] build a 60-node Tegra-K1 cluster capable of being powered by solar panels.
The cluster has a theoretical peak performance of 21 TFLOPS while consuming 2 kW of power, which
is an efficiency of 10.5 GFLOPS/W.

Rajovic et al. [28,29] describe creating the Tibidabo cluster out of 128 Tegra 2 boards. They obtain
97 GFLOPS when running HPL on 96 nodes. Göddecke et al. [30] use this cluster on a wide variety of
scientific applications and find that the energy use compares favorably with an x86 cluster.

Sukaridhoto et al. [31] create a cluster out of 16 Pandaboard-ES boards. They run STREAM and
HPL on it, but do not take power measurements. Their STREAM results are much lower than ours,
but the HPL FLOPS values are close.

Balakrishnan [32] investigates a six-node Pandaboard cluster, as well as a two-node Raspberry Pi
cluster. He uses a WattsUpPro as we do, but only runs HPL on the Pandaboard. He finds lower results
than we do with STREAM, but his HPL results on Pandaboard are much higher than ours.

Ou et al. [33] create a four-board Pandaboard cluster and measure the energy and cost efficiency
of web workloads on ARM compared to x86 servers.

Fürlinger et al. [34] build a cluster out of four Apple TV devices with Cortex A8 processors.
They find 16 MFlop/W. Their single-node HPL measurements are close to ours.

4.1.4. Raspberry Pi Clusters

Various groups have built Raspberry Pi clusters, we focus here on ones that were reported with
HPL as a benchmark or else have large numbers of nodes. None of them are instrumented for per-node
power measurements like ours is. Pfalzgraf and Driscoll [35] create a 25-node Raspberry Pi cluster, but
do not provide power or FLOPS results. Kiepert [36] builds a 32-node Raspberry Pi cluster. He includes
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total power usage of the cluster, but does not include floating point performance results. Tso et al. [37]
build a 56-node Raspberry Pi “cloud” cluster. Cox et al. [38] construct a 64-node Raspberry Pi cluster.
They obtain a peak performance of 1.14 GFLOPS, which is much less than we find with 32 nodes on
our cluster. Abrahamsson et al. [39] built a 300-node Raspberry Pi cluster.

4.1.5. Summary

There is much existing related work; our work is different primarily in the number of boards
investigated and in the per-node power measurement capabilities of the finished cluster.

One worrying trend found in the related works is the wide variation in performance
measurements. For the various ARM boards, the STREAM and HPL FLOPS results should be consistent,
yet the various studies give widely varying results for identical hardware.

Differences in HPL results are most likely due to different BLAS libraries being used, as well as
the difficulty finding a “peak” HPL.datfile that gives the best performance.

It is unclear why STREAM results differ so widely, as there are fewer variables involved. It could
be due to differences in compiler, compiler options or problem size, but most papers do not give details
on how the benchmarks were built, nor are the compiled binaries available for download.

Power measurement is also something that is hard to measure exactly, especially on embedded
boards that use a variety of power supplies. Raspberry Pi machines in particular have no standard
power supply; any USB supply (with unknown efficiency) can be used, and since the total power being
measured is small, the efficiency of the supply can make a big difference in the results.

4.2. Future Work

Our cluster is fully functional and is used for computing tasks, as well as class assignments. We do
have some future plans to enhance the cluster:

• Expand the size: We have parts to expand to 48 nodes. This can be done without requiring a larger
network switch.

• Upgrade the cluster to use Raspberry Pi Model 3B nodes: The 3B has the same footprint as the
2B, so this would require minimal changes. This would improve the performance of the cluster
by at least a factor of two, if not more. The main worry is the possible need for heat sinks and
extra cooling as the 3B systems are known to have problems under extreme loads (i.e., while
running Linpack).

• Enable distributed hardware performance counter support: The tools we have currently can gather
power measurements cluster-wide. It would be useful to gather hardware performance counter
measures (such as cycles, cache misses, etc.) at the same time.

• Harness the GPUs. Table A2 shows the GPU capabilities available on the various boards.
The Raspberry Pi has a potential 24 GFLOPS available perf node, which is over an order of
magnitude more than found on the CPU. Grasso et al. [40] use OpenCL on a Cortex A15 board
with a Mali GPU and find that they can get 8.7-times better performance than the CPU with 1/3
the energy. If similar work could be done to obtain GPGPU support on the Raspberry Pi, our
cluster could obtain a huge performance boost.

• Perform power and performance optimization: We now have the capability to do detailed
performance and power optimizations on an ARM cluster. We need to develop new tools and
methodologies to take advantage of this.

4.3. Conclusions

We measure the power and performance tradeoffs found in seventeen different ARM development
boards. Upon careful consideration of the boards’ merits, we choose the Raspberry Pi as the basis
of an ARM HPC cluster. We design and build a 24-node cluster that has per-node real-time power
measurement available. We plan to use this machine to enable advanced power and performance
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analysis of HPC workloads on ARM systems. It will be useful for educational and classroom use,
as well as a testbed for the coming use of ARM64 processors in server machines.

The overall performance per Watt may not match that of an x86 server, but that was not the overall
end goal of this project. Clusters made of embedded processors might not win on raw numerical power,
but they have an amazingly low barrier to entry with an extremely low cost. This makes affordable and
accessible cluster computing available to the public and is extremely valuable in education. Low-power
parallel programming is the future of computing, and students will need access to low-cost clusters to
properly hone their skills. A Raspberry Pi cluster as described in this paper efficiently and accessibly
meets those needs.

Author Contributions: Michael F. Cloutier built the prototype cluster and gathered the initial power/
performance results. Chad Paradis helped design the power measurement circuitry. Vincent M. Weaver analyzed
the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed System Information

Detailed system information is provided for the various ARM boards. This supplements the
information found earlier in Table 1. Table A1 gives more details on CPU capabilities. Table A2
describes the floating point, vector and GPU capabilities. Table A3 describes the memory hierarchies.

Table A1. Overview of the ARM systems examined in this work.

System Family Type Process CPU Design BrPred Network

RPi Zero ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Model A+ ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Compute Module ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES n/a

RPi Model B ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES 100 USB

RPi Model B+ ARM1176 Broadcom 2835 40 nm InOrder 1-issue YES 100 USB

Gumstix Overo Cortex A8 TI OMAP3530 65 nm InOrder 2-issue YES 100

Beagleboard-xm Cortex A8 TI DM3730 45 nm InOrder 2-issue YES 100

Beaglebone Black Cortex A8 TI AM3358/9 45 nm InOrder 2-issue YES 100

Pandaboard ES Cortex A9 TI OMAP4460 45 nm OutOfOrder YES 100

Trimslice Cortex A9 NVIDIA Tegra2 40 nm OutOfOrder YES 1000

RPi Model 2-B Cortex A7 Broadcom 2836 40 nm InOrder YES 100 USB

Cubieboard2 Cortex A7 AllWinner A20 40 nm InOrder Partl-2-Issue YES 100

Chromebook Cortex A15 Exynos 5 Dual 32 nm OutOfOrder YES Wireless

ODROID-xU Cortex A7 Exynos 5 Octa 28 nm InOrder YES 100Cortex A15 OutOfOrder

RPi Model 3-B Cortex A53 Broadcom 2837 40 nm InOrder 2-issue YES 100 USB

Dragonboard Cortex A53 Snapdragon 410c 28 nm InOrder 2-issue YES n/a

Jetson-TX1 Cortex A53 Tegra X1 20 nm InOrder 2-issue YES 1000Cortex A57 OutOfOrder
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Table A2. Floating point and GPU configurations of the boards.

System FPSupport NEON GPU DSP/Offload Engine

RPi Zero VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model A+ VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Compute Node VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model B VFPv2 no VideoCore IV (24 GFLOPS) DSP

RPi Model B+ VFPv2 no VideoCore IV (24 GFLOPS) DSP

Gumstix Overo VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) n/a

Beagleboard-xm VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) TMS320C64x+

Beaglebone Black VFPv3 (lite) YES PowerVR SGX530 (1.6 GFLOPS) n/a

Pandaboard ES VFPv3 YES PowerVR SGX540 (3.2 GFLOPS) IVA3 HW Accel
2 × Cortex-M3 Codec

Trimslice VFPv3, VFPv3d16 no 8-core GeForce ULP GPU n/a

RPi Model 2-B VFPv4 YES VideoCore IV (24 GFLOPS) DSP

Cubieboard2 VFPv4 YES Mali-400MP2 (10 GFLOPS) n/a

Chromebook VFPv4 YES Mali-T604MP4 (68 GFLOPS) Image Processor

ODROID-xU VFPv4 YES PowerVR SGX544MP3 (21 GFLOPS) n/a

RPi Model 3-B VFPv4 YES VideoCore IV (24 GFLOPS) DSP

Dragonboard VFPv4 YES Qualcomm Adreno 306 Hexagon QDSP6

Jetson TX-1 VFPv4 YES NVIDIA GM20B Maxwell (1 TFLOP) n/a

Table A3. Memory hierarchy details for the boards.

System RAM L1-I Cache L1-D Cache L2 Cache Prefetch

RPi Zero 512 MB LPDDR2 16 k,4-way, 32 B 16 k,4-way, 32 B 128 k * no

RPi Model A+ 256 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Compute Module 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Model B 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

RPi Model B+ 512 MB LPDDR2 16 k, 4-way, 32 B 16 k, 4-way, 32 B 128 k * no

Gumstix Overo 256 MB DDR 16 k, 4-way 16 k, 4-way 256 k no

Beagleboard-xm 512 MB DDR2 32 k, 4-way, 64 B 32 k, 4-way, 64 B 256 k, 64 B no

Beaglebone Black 512 MB DDR3 32 k, 4-way, 64 B 42 k, 4-way, 64 B 256 k, 64 B no

Pandaboard ES 1 GB LPDDR2 Dual 32 k, 4-way,32B 32 k, 4-way,32B 1 MB (external) yes

Trimslice 1 GB LPDDR2 Single 32 k 32 k 1 MB yes

RPi Model 2B 1 GB LPDDR2 32 k 32 k 512 k yes

Cubieboard2 1 GB DDR3 32 k 32 k 256 k shared yes

Chromebook 2 GB LPDDR3, Dual 32 k 32 k 1 M yes

ODROID-xU 2 GB LPDDR3 32 k 32 k 512 k/2 MB yes
Dual 800 MHz

RPi Model 3B 1 GB LPDDR2 16 k 16 k 512 k yes

Dragonboard 1 GB LPDDR3 unknown unknown unknown yes
533 MHz yes

Jetson TX-1 4 GB LPDDR4 48 kB, 3-way, 32 kB, 2-way 2 MB/512 kB yes

* By default, the L2 on the ARM1176 Pis belong to the GPU, but Raspbian reconfigures it for CPU use.
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Appendix B. Materials and Methods

More information can be found on the project’s website: http://web.eece.maine.edu/~vweaver/
projects/pi-cluster/.

The raw performance data and detailed instructions on how it was gathered can be found here:
http://dx.doi.org/10.5281/zenodo.61993.
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40. Grasso, I.; Radojković, P.; Rajović, N.; Gelado, I.; Ramirez, A. Energy Efficient HPC on Embedded SoCs:
Optimization Techniques for Mali GPU. In Proceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 123–132.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Experimental Section
	Board Comparison
	Experimental Setup
	Benchmarking Programs
	Power Measurement
	HPL FLOPS Results
	HPL FLOPS per Watt Results
	HPL FLOPS per Cost Results
	STREAM Results
	Summary

	Cluster Design
	Node Installation and Software
	Node Arrangement and Construction
	Visualization Displays
	Power Measurement
	Temperature Measurement


	Results
	Peak FLOPS Results
	Cluster Scaling
	Summary

	Discussion
	Related Work
	Cluster Power Measurement
	ARM HPC Performance Comparisons
	ARM Cluster Building
	Raspberry Pi Clusters
	Summary

	Future Work
	Conclusions

	Detailed System Information
	Materials and Methods

