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Abstract: In the domain of digital wireless communication, flexible design implementations are
increasingly explored for different applications in order to cope with diverse system configurations
imposed by the emerging wireless communication standards. In fact, shrinking the design time to
meet market pressure, on the one hand, and adding the emerging flexibility requirement and, hence,
increasing system complexity, on the other hand, require a productive design approach that also
ensures final design quality. The no instruction set computer (NISC) approach fulfills these design
requirements by eliminating the instruction set overhead. The approach offers static scheduling
of the datapath, automated register transfer language (RTL)synthesis and allows the designer to
have direct control of hardware resources. This paper presents a complete NISC-based design and
prototype flow, from architecture specification till FPGA implementation. The proposed design
and prototype flow is illustrated through two case studies of flexible implementations, which are
dedicated to low-complexity MIMO turbo-equalizer and a universal turbo-demapper. Moreover, the
flexibility of the proposed prototypes allows supporting all communication modes defined in the
emerging wireless communication standards, such LTE, LTE-Advanced, WiMAX, WiFi and DVB-RCS.
For each prototype, its functionality is evaluated, and the resultant performance is verified for all
system configurations.

Keywords: NISC; flexible implementation; application-specific processor; prototype flow; FPGA;
MIMO; iterative; equalization; demapping

1. Introduction

To follow the evolution in wireless communication applications, the rapid design and
implementation of embedded systems are vital factors. Reducing the development cycle of hardware
designs is greatly demanded in order to meet market pressure. The realization of the hardware
prototypes is required to be within a short time to carry out on-chip system validation and to
evaluate exactly the performance under various usage scenarios. On the other hand, the utility
of application-specific processors is of an increasing extent, since they provide a good solution in
designing efficient hardware architectures that can satisfy the tight constraints on the implementation
area and power consumption and nowadays fulfill the requirements in terms of high throughput
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and low error-rate performance. These facts motivate exploiting design and prototype flows that
are capable of providing high design quality, as well as increased design productivity. In addition,
wireless digital communication standards are developing continuously. Consequently, the applications
are becoming increasingly complex and diverse. Wireless digital communication standards, such as
DVB-RCS [1] for digital video broadcasting, 802.11 (WiFi) [2] and 802.16 (WiMAX) [3] for wireless
local and wide area networks and LTE and LTE-Advanced [4] for mobile phones, support a variety of
system configurations related to channel codding type, modulation type, mapping styles and antenna
dimensions for multiple-input multiple-output (MIMO) transmission techniques. In order to cope with
the various configurations, flexible architecture designs comprise a key trend in implementing different
components of the transmission scheme. This work concerns the design and the implementation
of flexible and high performance application-specific processors dedicated to the equalizer and the
demapper modules of the turbo-receiver. In contrast to a non-iterative receiver, an iterative receiver
is characterized by the existence, in addition to forward paths, of feedback paths through which
constituent units can send the information to previous units iteratively. On every new iteration, each
block generates soft information depending on channel information and on received a priori soft
information generated by other blocks in the previous iteration.

The concept of turbo equalization allows improving communication system performance by iteratively
exchanging information between the soft-input soft-output (SISO) equalizer and the SISO channel decoder.
It was initially introduced in [5] to alleviate the destructive effects of inter-symbol interference (ISI)
for wireless digital transmission, which is protected by convolution codes. In modern communication
systems, the use of MIMO raises co-antenna interference at the receiver side. Nowadays, to combat
against ISI, orthogonal frequency-division multiplexing (OFDM) is mainly utilized. In a MIMO-OFDM
system, where a receiver should address the effects of co-antenna interference, in addition to ISI,
the concept of turbo equalization can be used to mitigate iteratively the co-antenna interference.
Among different equalization methods, MIMO minimum mean-squared error (MMSE) is a prominent
low-complexity suboptimal algorithm [6,7]. Using the MMSE algorithm in an iterative scheme
compensates sub-optimality and leads to an error-rate performance near enough to the performance
achieved when the optimal high-complexity maximum-likelihood (ML) algorithm is used [8,9].

Iterative demapping was proposed firstly in [10] based on bit interleaved coded modulation
(BICM) with additional soft feedback from the SISO convolutional decoder to the constellation
demapper. For a system with convolutional code, BICM and 8-PSK modulation, 1 dB and 1.5 dB
gains for BER performance were reported for Rayleigh flat fading channels and channels with AWGN,
respectively. In [11], the use of iterative demapping shows performance improvement of 1.2 dB at BER
of 10−6 for the QAM BICM scheme with the ow-density parity-check (LDPC) channel decoder over
a flat fading Rayleigh channel with 15% of erasures. The symbol-by-symbol maximum a posteriori
(MAP) algorithm is the optimal algorithm for obtaining the outputs of the demapper. The MAP
algorithm is likely to be considered of high complexity for hardware implementation in a real system
basically because of the numerical representation of probabilities, non-linear functions and because
of mixed multiplications and the additions of these values [12]. Implementing the MAP algorithm
in its logarithmic domain instead of the probabilistic form reduces the computational complexity.
The Max-Log-MAP demapping algorithm is a suboptimal direct transformation of the MAP algorithm
into the logarithmic domain; hence, the values and operations are easier to handle. Figure 1 presents the
MIMO-OFDM receiver block diagram, which uses MMSE turbo-equalization and turbo-demapping.
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Figure 1. Block diagram of the MIMO-OFDM turbo receiver.

In previous work, presented in [13,14], flexible application-specific processors dedicated for
turbo-equalization and turbo-demapping have been proposed. The first task in realizing a flexible
multi-standard hardware component is to define the flexibility parameters. The equalizer module is
based on the MMSE algorithm, and it is affected by flexibility parameters, which are extracted from
the following requirements:

1. The ability to support various MIMO schemes reaching to a 4 × 4 antenna dimension
2. The capability of using efficiently the implemented hardware resources for different time diversity

channel types (block fading, quasi-static and fast fading)
3. The possibility to execute in both iterative and no-iterative modes

Regarding turbo-demapping, the demapper implements the Max-Log-MAP algorithm. It embraces
all flexibility requirements for recent wireless digital communication standards. It can execute in
iterative and non-iterative processing schemes and support different mapping styles, modulation
types and signal space diversity (SSD) with rotated constellation. Such wide flexibility becomes
crucial in the current trend toward the convergence of wireless communication services [15] and the
requirement of multi-standard terminals. In addition, the demonstration of the ability of designing
highly flexible, yet efficient, hardware architectures can prompt the proposition of new processing
schemes and parameters that better meet the environment conditions and applications. Such novel
schemes, associated with efficient flexible implementations, can then constitute potential candidates
for adoption in next generation communication systems.

In addition to the requirements of efficiency and productivity, the emergent flexibility requirement
sets up a new design metric. The application-specific instruction set processor (ASIP) concept offers a
trade-off in terms of the efficiency of the application-specific integrated circuit (ASIC) and the flexibility
of the general purpose (GP) processor by customizing the datapath structure and functionality by
using a custom instruction set. In cases where the tailored hardware is dedicated for a particular fixed
application, the process of instructions’ specification and describing forms an overhead. Instead of
dynamic scheduling, no instruction set computer (NISC) concept adopts static scheduling of operations
to simplify the ASIP approach. Figure 2 shows the transition from the ASIP design approach to the
NISC design approach.
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Figure 2. Transition from the application-specific instruction set processor (ASIP) to the no instruction
set computer (NISC) design approach.

By eliminating the task of finding and designing a custom instruction set, the design productivity
is increased. Furthermore, the design quality is better achieved by shrinking the design complexity to
match the exact requirements of the desired application. The typical controller functionalities, such as
instruction decoding, dependency analysis and instruction scheduling, are carried out by the compiler
in NISC. The compiler is responsible for scheduling operations and decoding them into control
words (CWs), where each represents the group of control signals that must be loaded to the datapath
components in every clock cycle. At run time, the CWs that are stored in the control memory are loaded
by means of a simple controller, which applies the control signals to their corresponding components
in the datapath. Moreover, an NISC-based architecture may be reused for different applications or
various system configurations of the same application. Flexibility is attained by re-exploiting the
hardware architecture design without any modifications on the structures of the datapath or controller.
Different groups of control words are only re-generated statically and re-loaded to the control memory
of the design.

In this paper, we aim to present in detail the entire design and prototype flow, starting
from architecture specification till FPGA implementation, in addition to hardware validation and
performance evaluation. The rest of this paper is organized as follows. The following section illustrates
the proposed NISC architectures. The adopted prototyping flow is presented in details in Section 3.
Section 4 presents the on-chip validation and summarizes the obtained results. Finally, Section 5
concludes the paper.

2. Designed NISC-Based Architectures

2.1. Equalizer Architecture

The designed NISC-based architecture, which is dedicated to MMSE equalization, is basically
made of a control unit and the equalizer module called EquaNISC, which is the main core of the
design. To meet with the demanded requirements of flexibility, the hardware resources are instantiated
carefully and shared among different computations. Adequate hardware operators are implemented
to perform all required computations taking into account the requirements of flexibility, efficiency
and performance. Fixed-point arithmetic is adopted rather than floating-point arithmetic in order to
reduce the implementation costs, while ensuring sufficient accuracy and negligible performance loss.
Floating-point arithmetic is generally used to conduct performance evaluation studies of algorithms.
This is typically limited to theoretical performance evaluation in terms of communication quality
and error rates. For a practical implementation perspective, using fixed-point arithmetic instead of
floating-point reduces significantly the implementation costs in terms of area occupation and energy
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consumption. In fixed-point architectures, the memory and bus widths are smaller, leading to a
definitively lower cost and power consumption. Moreover, floating-point operators are more complex,
having to deal with the exponent and the mantissa, and hence, their area and latency are greater than
those of fixed-point operators [16]. All operands that are involved in MMSE computational operations
are quantized in the 16-bit two’s complement representation according to carefully-determined
precisions [17]. Temporal parallelism using a pipeline is applied to improve the performance and to
increase the throughput. The designed architecture is shown in Figure 3, which presents the constituent
units, as well as the input/output interface. The equalizer architecture receives input data from the
soft mapper, the look-up table 1

x LUT and channel and control memories, which are called ChMem and
CMem, respectively. ChMem stores the constant data of the channel, and CMem stores the control words
generated statically by the NISC compiler. The 1

x LUT is used to replace the inversion operations, which
are computationally demanding, in order to avoid undergoing expensive computations. The LUT uses
memory instead of large numbers of computational elements. It includes all 16-bit inverse values,
which are possibly used in the inversion process. These values are pre-computed and stored such
that the value x intended to be inverted is used directly as the LUT index (address) to retrieve the
inverse value 1

x . When using LUT, both resource utilization and propagation delay are reduced at
the cost of accuracy. A detailed analysis and long numerical simulations have been conducted for
different configurations to find the required data width and accurate precisions for the fixed-point
representation of the involved values. Moreover, the size of the LUT adds additional overhead.
However, the required memory space in this application is reasonable since the LUT depth is limited
to 216. To reduce the size of the LUT, the segmentation approach may be used by storing one inverse
value, the median of the group, in the LUT to represent the results of 1

x for a group of consecutive
values of x [18]. Other memory size reduction technique are achieved by storing only positive values
in the LUT. In this case, the LUT depth is reduced from 2m to 2m

2 , where m is the number of bits
representing the positive number.
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Figure 3. Proposed equalizer architecture.
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2.1.1. Control Unit

The control unit has a simple architecture. Its main functionality is to load at run-time the
proper control words stored in Cmem to the different components of the EquaNISC module. Moreover,
the control unit manages the sequential activity of the design. It specifies the iteration number, as well
as the order of symbols in the equalization process. Furthermore, the control unit produces notification
signals about the equalizer activity, such as the readiness of output data at the end of the frame.
Such signals are used to synchronize the equalizer model with input/output memory blocks and other
components in the receiver scheme.

2.1.2. EquaNISC Module

EquaNISC is the principal module of the proposed architecture dedicated for MIMO MMSE linear
turbo equalization. It is hierarchically composed of three units:

1. Storage unit (SU)
2. Multiplexing unit (MU)
3. Computational unit (CU)

Storage unit (SU):

SU is responsible for saving data loaded from memory blocks and the results of intermediate
computations. It is composed of three groups (H, V and G) of 16-bit registers that each can store one
4 × 4 complex matrix. Inside the groups, registers are classified into couples such that each is proposed
to store the real part and the imaginary part of a complex number. In addition to the register groups,
four registers are instantiated to store the variance values.

Multiplexing unit (MU):

MU is responsible for arranging the data transfer in the EquaNISC module between internal
units (storage unit and computational unit). Furthermore, it manages the flow of input/output data
and reformulates it in order to match the desired quantization. It is composed of multiplexers that
construct a connecting chain between different components of the architecture. For each multiple-input
component, a multiplexer is allocated to manage its input data flow coming from different sources.

Computational unit (CU):

The CU contains all hardware resources that perform all required computation operations in
the MMSE equalization algorithm. It spreads over six pipeline stages and includes all hardware
operators, which are utilized in the execution of the required algorithmic computations. It incorporates
carefully-designed modules, which are capable of using the allocated resources efficiently for different
system configurations. For the additional details about the structures of each unit, the reader can
refer to [13].

2.2. Demapper Architecture

The designed NISC-based architecture dedicated to the universal demapper, as any NISC-based
architecture, is basically composed of the module, which performs the main functionality, which
is referred to as DemaNISC, and a simple control unit. Figure 4 shows the hierarchical structure
of the proposed architecture and its connections with input and output blocks. The inputs to the
demapper architecture are the log-likelihood ratios (LLRs)from the decoder, variance σ2, control words,
constellation information, received symbols, fading factors and the inverse values 1

2x . Figure 4 shows
several memory blocks. AprMem stores the a priori information (LLRs), which is provided by the
channel decoder through the feedback path. The control words (CWs) generated by the NISC tool
set compiler are saved in the CMem memory block. Constellation information is arranged in the
Constellation LUT. YMem and ρMem include, respectively, the received symbols and fading factors
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collected from the channel or delivered by the equalizer module in case turbo equalization is adopted.
The look-up table 1

2x LUT contains the pre-computed inverse values required in inversion operations.
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Figure 4. Proposed NISC-based demapper architecture.

2.2.1. Control Unit

The control unit is mainly responsible for loading CWs, which are stored in the control memory
CMem into the components of the DemaNISC module. In fact, it shares a similar architecture to the
control unit used in the equalizer described in the previous chapter. To accomplish this functionality,
the unit handles the address of CMem memory and constructs links to distribute the control-signal bits
of CWs to appropriate components. In addition, the control unit manages the input data flow from
YMem, ρMem and Constellation LUT. These basic tasks reveal the simple hardware structure required to
implement the control unit.

2.2.2. DemaNisc Module

The DemaNisc module is considered the main core of the architecture design tailored to
implement the Max-Log-MAP demapping algorithm. From a hierarchical scope, it can be viewed as a
concatenation of five units:

1. Euclidean distance unit (EDU)
2. A priori LLR summation unit (ASU)
3. Inter-subtraction unit (ISU)
4. Minimum finders unit (MFU)
5. Output unit (OU)

Euclidean distance unit (EDU):

This unit incorporates all hardware resources that are involved in computing the Euclidean
distance. It is provided by the in-phase (I) and the quadrature (Q) components of the received symbols
yI and yQ, constellation symbols xI and xQ and fading factors ρI and ρQ, in addition to the noise
variance σ2. At each computation, the Euclidean distance unit can deliver one two-dimensional
distance or two one-dimensional distances.
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A priori LLRs summation unit (ASU):

The hardware resources located in ASU generate the a priori LLRs summation of input LLRs,
which are required in the case of turbo demodulation. The LLR values stored in AprMem memory and
the vector v representing the binary mapping µ of symbols from the Constellation LUT are the inputs to
this unit.

Inter-subtraction unit (ISU):

The a priori LLRs summation values generated by ASU are delivered to ISU, which subtracts
them in parallel from the value of two-dimensional Euclidean distance calculated by EDU. To perform
this functionality, ISU includes a subtractor set, which is made of eight real subtractors and sufficient
registers to store the output results.

Minimum finders unit (MFU):

Minimum finders are established to compute the minimum functions required in the
Max-Log-MAP algorithm. This unit integrates eight minimum finder blocks, the architecture of
which is presented in Figure 5. Each block is concerned with finding the minimums associated with a
bit location vi along all constellation symbols. For the additional details about the structures of each
unit, the reader can refer to [14].

Output unit (OU):

The output unit is responsible for delivering the final LLR values corresponding to each bit.
The inputs of this unit are the minimum values available in the registers of the minimum finders
unit. Once the minimums of all constellation points are determined, this unit produces the difference
between minimum pairs, which correspond to each bit location. The resultant differences are then
stored in output registers.
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Figure 5. (a) Minimum finder operational unit; (b) subtractor used in the subtraction operation of the
minimum pair.

3. Typical NISC Design Methodology

The NISC design approach offers an open source tool set [19] that can be used either as a free
C-to-RTL(i.e., C to Verilog) synthesis tool or as a tool to design embedded custom processors. To design
a custom processor dedicated to a specific application, the designer should specify first a datapath and
a C code, which describes the target application. The formal ADL of the tool set, which is called generic
netlist representation (GNR), captures the structural details of the datapath [20,21]. GNR describes the
datapath as a netlist of components and assigns different attributes to each component. The component
type can be a basic RTL component or a module, which is a hierarchical component composed of
components described by another GNR module with their connections. The datapath of a NISC
architecture can have several instances of each component type. A component instance should have
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a unique name and a type name that refers to a component description in the library. The datapath
description also includes netlist connections.

The NISC compiler is then provided by the high-level description of the application and the GNR
description of the datapath. The compiler maps the C code directly on the devised datapath and
generates a finite state machine (FSM), which specifies the behavior of the datapath in each clock cycle.
Then, the compiler runs netlist-constrained resource scheduling and binding techniques and later uses
the FSM to generate the stream of control signals.

Corresponding to each control signal of each component in the datapath, a field is added to the
control words. The NISC compiler produces “0”, “1” or “don’t care” values for the bits of the control
words. A “don’t care” value (denoted by “X”) indicates that the corresponding unit is inactive at
a given cycle, and its control signal can be assigned to “0” or “1” without affecting execution behavior.
The structural information of the datapath is also processed (validated and completed) and then
translated automatically by the tool set RTL generator into a synthesizable RTL design described in
hardware description language (HDL)that is used later for simulation and synthesis.

After simulation, synthesis and placement and routing (PAR), the accurate timing, power and
area information can be extracted and used for further datapath and/or application refinement.
The NISC tool set generic design flow is shown in Figure 6. The flow enables the designer to iteratively
refine and improve the results. The designer can initially start with a certain description of the
application and use a specific datapath in order to execute the application and generate initial results.
Later, the designer can modify iteratively the chosen application and/or the datapath and then
utilize the NISC tool set to generate new results. In each iteration, the designer can concentrate
separately on one quality metric, such as implementation area, clock frequency, parallelism, power
consumption, etc. Finally, the designer can choose from multiple studies the design that best fits with his
or her desired requirements.
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Figure 6. NISC tool set generic design flow.

4. Adopted Design Flow

To implement the NISC-based architectures dedicated for MMSE equalization and Max-log-MAP
demapping, we used the NISC approach related design flow and tools. In this context, the typical direct
compilation of C codes describing the functionality using the NISC tool set gives inefficient hardware
results. In order to achieve high performance and efficient resource utilization, the direct control
of hardware resources is devised using pre-bound functions, which are C-like functions mapped
by the compiler to specific hardware resources [22]. For a specific module, a pre-bound function
is defined by declaring the proper control values and the utilized input/output ports. Moreover,
the scheduling information, such as the dependency, the execution stages and the timing, are specified.
The PreboundCGenerator in the NISC tool set is later used in order to generate C definitions of pre-bound
functions. These definitions are listed in the C application prior to the compilation on the given
datapath. Figure 7 shows an overall presentation of the prototyping flow adopted in this work.
The flow is divided into two levels: the NISC abstraction level and the FPGA implementation level.
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Figure 7. Adopted design flow.

4.1. NISC Abstraction Level

The first step towards design development is to describe the datapath of the proposed architecture.
The datapath is captured in (GNR). Using HDL description (i.e., Verilog), all basic components, such as
multiplexers, adders, subtractors, multipliers, registers and converters, are first defined. In GNR, basic
components are simply described by indicating their types, ports, parameters and aspects. Hierarchical
modules (such as computational unit, multiplexing unit, storage unit and the EquaNisc module in the
equalizer architecture; and Euclidean distance unit, the a priori LLR summation unit, inter-subtraction
unit, minimum finders unit, output unit and the DemaNISC module in the demapper architecture)
are built in GNR. A hierarchical module can be composed of basic component(s) and/or module(s)
of lower hierarchical level. Figure 8 presents the GNR description of a minimum finder block used
in minimum finders unit (MFU) of the DemaNISC module (Figure 5a). The figure illustrates the
construction of the “MinFinder” module from basic blocks, such as multiplexers, subtractor, registers
and logic gates, in addition to its internal netlist. The module has seven ports and is parametrized by
three parameters (BIT_WIDTH, Mid_WIDTH and Initial), which are used as internal specifications and
are defined by higher hierarchical level components. In each architecture, all required components
and modules are allocated, and their attributes and interconnections are assigned. The automatic
completion of the GNR description is exploited to reduce the datapath modeling. In addition, syntax
checking and rule validation, which are provided by the tool set, are used to quickly detect and fix
connection errors.
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 <Module type="MinFinder"> 
    <Params> 
      <Param n="BIT_WIDTH"/> 
      <Param n="Mid_WIDTH"/> 
      <Param n="Initial"/> 
    </Params> 
    <Ports> 
      <Clock n="clk" bitWidth="1"/> 
      <InPort n="D" bitWidth="{@BIT_WIDTH}"/> 
      <InPort n="v" bitWidth="1"/> 
      <CtrlPort n="load_Reg" bitWidth="1" default="0"/> 
      <CtrlPort n="reset" bitWidth="1" default="0"/> 
      <OutPort n="min0" bitWidth="{@BIT_WIDTH}"/> 
      <OutPort n="min1" bitWidth="{@BIT_WIDTH}"/> 
    </Ports> 
    <Netlist> 
      <Components> 
        <!-- ### Mux ###--> 
        <Instance n="Mux_0" type="Mux2" lib="MainLib"> 
          <SetParam n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
        </Instance> 
        <Instance n="Mux_1" type="Mux2" lib="MainLib"> 
          <SetParam n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
        </Instance> 
        <Instance n="Mux_min" type="Mux2" lib="MainLib"> 
          <SetParam n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
        </Instance> 
        <!-- ### Registers ###--> 
        <Instance n="Reg_min0" type="Register_SyncReset" lib="MrComponents_Lib"> 
          <SetParam n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
          <SetParam n="READ_DELAY" val="0"/> 
          <SetParam n="SETUPTIME" val="0"/> 
          <SetParam n="DATA_TYPE" val="short"/> 
          <SetParam n="Initial" val="{@Initial}"/> 
        </Instance> 
        <Instance n="Reg_min1" type="Register_SyncReset" lib="MrComponents_Lib"> 
          <SetParam n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
          <SetParam n="READ_DELAY" val="0"/> 
          <SetParam n="SETUPTIME" val="0"/> 
          <SetParam n="DATA_TYPE" val="short"/> 
          <SetParam n="Initial" val="{@Initial}"/> 
        </Instance> 
        <!--### SignExtend ###--> 
        <Instance n="SEx_min" type="SignExtend" lib="MrComponents_Lib" > 
          <SetParam n="INPUT_WIDTH" val="{@BIT_WIDTH}"/> 
          <SetParam n="OUTPUT_WIDTH" val="{@Mid_WIDTH}"/> 
        </Instance> 
        <Instance n="SEx_D" type="SignExtend" lib="MrComponents_Lib" > 
          <SetParam n="INPUT_WIDTH" val="{@BIT_WIDTH}"/> 
          <SetParam n="OUTPUT_WIDTH" val="{@Mid_WIDTH}"/> 
        </Instance> 
        <!--### AndBitWise ###--> 
        <Instance n="And0" type="AndBitWise" lib="MrComponents_Lib" > 
          <SetParam n="BIT_WIDTH" val="1"/> 
        </Instance> 
        <Instance n="And1" type="AndBitWise" lib="MrComponents_Lib" > 
          <SetParam n="BIT_WIDTH" val="1"/> 
        </Instance> 
        <!--### NotBitWise ###--> 
        <Instance n="Not" type="NotBitWise" lib="MrComponents_Lib" > 
          <SetParam n="BIT_WIDTH" val="1"/> 
        </Instance> 
        <!-- ### Subtracters ###--> 
        <Instance n="subtracter" type="Subtracter_unsigned" lib="MrComponents_Lib"> 
          <SetParam n="BIT_WIDTH" val="{@Mid_WIDTH}"/> 
        </Instance> 
         

         <!--### Bit_Selector ###--> 
        <Instance n="LastBitSelect" type="Bit_Selector" lib="MrComponents_Lib" > 
          <SetParam n="INPUT_WIDTH" val="{@Mid_WIDTH}"/> 
          <SetParam n="OUTPUT_WIDTH" val="1"/> 
          <SetParam n="Select_H" val="27"/> 
          <SetParam n="Select_L" val="27"/> 
        </Instance> 
      </Components> 

      <Connections> 
        <!-- ### Mux ###--> 
        <Conn src="And0" srcPort="o" dest="Mux_0" destPort="sel"/> 
        <Conn src="" srcPort="D" dest="Mux_0" destPort="i1"/> 
        <Conn src="Reg_min0" srcPort="o" dest="Mux_0" destPort="i0"/> 
        <Conn src="And1" srcPort="o" dest="Mux_1" destPort="sel"/> 
        <Conn src="" srcPort="D" dest="Mux_1" destPort="i1"/> 
        <Conn src="Reg_min1" srcPort="o" dest="Mux_1" destPort="i0"/> 
       <Conn src="" srcPort="v" dest="Mux_min" destPort="sel"/> 
        <Conn src="Reg_min1" srcPort="o" dest="Mux_min" destPort="i1"/> 
        <Conn src="Reg_min0" srcPort="o" dest="Mux_min" destPort="i0"/> 
        <!-- ### Registers ###--> 
        <Conn src="Mux_0" srcPort="o" dest="Reg_min0" destPort="i"/> 
        <Conn src="" srcPort="load_Reg" dest="Reg_min0" destPort="load"/> 
        <Conn src="" srcPort="reset" dest="Reg_min0" destPort="reset"/>     
        <Conn src="Reg_min0" srcPort="o" dest="" destPort="min0"/> 
        <Conn src="Mux_1" srcPort="o" dest="Reg_min1" destPort="i"/> 
        <Conn src="" srcPort="load_Reg" dest="Reg_min1" destPort="load"/> 
        <Conn src="" srcPort="reset" dest="Reg_min1" destPort="reset"/> 
        <Conn src="Reg_min1" srcPort="o" dest="" destPort="min1"/> 
        <!--### SignExtend ###--> 
        <Conn src="Mux_min" srcPort="o" dest="SEx_min" destPort="i"/> 
        <Conn src="" srcPort="D" dest="SEx_D" destPort="i"/> 
        <!--### AndBitWise ###--> 
        <Conn src="LastBitSelect" srcPort="o" dest="And0" destPort="i0"/> 
        <Conn src="Not" srcPort="o" dest="And0" destPort="i1"/> 
        <Conn src="LastBitSelect" srcPort="o" dest="And1" destPort="i0"/> 
        <Conn src="" srcPort="v" dest="And1" destPort="i1"/> 
        <!--### NotBitWise ###--> 
        <Conn src="" srcPort="v" dest="Not" destPort="i"/> 
        <!-- ### Subtracters ###--> 
        <Conn src="SEx_D" srcPort="o" dest="subtracter" destPort="i0"/> 
        <Conn src="SEx_min" srcPort="o" dest="subtracter" destPort="i1"/> 
        <!--### Bit_Selector ###--> 
        <Conn src="subtracter" srcPort="o" dest="LastBitSelect" destPort="i"/>  
      </Connections> 
    </Netlist> 
 
    <Annot_verilog> 
      <Synthesis topModuleName="MinFinder"> 
        <VerilogParams> 
          <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
          <Param n="Mid_WIDTH" val="{@Mid_WIDTH}"/> 
          <Param n="Initial" val="{@Initial}"/> 
        </VerilogParams> 
      </Synthesis> 
      <Simulation topModuleName="MinFinder"> 
        <VerilogParams> 
          <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 
          <Param n="Mid_WIDTH" val="{@Mid_WIDTH}"/> 
          <Param n="Initial" val="{@Initial}"/> 
        </VerilogParams> 
      </Simulation> 
    </Annot_verilog> 
    <Annot_compiler> 
    </Annot_compiler> 
  </Module> 

Figure 8. “MinFinder” module generic netlist representation (GNR) hierarchical description.

The following step after datapath description is to declare pre-bound functions defining the
functionality of the EquaNISC/DemaNISC module. All control values that should be applied to control
ports of hardware resources in a definite clock cycle are enumerated in a specific pre-bound function.
All independent operations are merged into single pre-bound function in order to maximize the
exploitation of hardware resources and to decrease the execution time. Figure 9 shows a pre-bound
function sample, which merges several operations (four data transfers (move), one data loading from
ChMem and setting a new address) into one pre-bound function “PreBoundSample”. As shown in the
figure, in addition to scheduling information, all required control values of all incorporated resources
and ports are specified explicitly. When all pre-bound functions are described, the PreboundCGenerator
tool is utilized to process the structural description of all pre-bound functions and to generate their
corresponding C definitions. A C code application is easily developed by listing the sequence of
C definitions related to all pre-bound functions involved in MMSE equalization/Max-Log-MAP
demapping. Figure 10a presents the list of C definitions that are related to pre-bound functions
defining the functionality of the DemaNISC module. Figure 10b shows the GNR description of the
pre-bound function “QPSK1”, which declares the control values that should be applied at the first
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step of demapping for the QPSK modulation scheme. The C application is verified by checking the
code syntax and the availability of used C definitions of pre-bound functions. The last step in NISC
abstraction level is to compile the datapath and the C code application. The tool set compiler is used to
generate the control words, which are arranged automatically in the output memory file. The RTL
generator in the tool set produces the HDL code, which describes the whole design architecture
benefiting from the compiler information and the datapath structure.

<Function n="PreBoundSample"  

stateDependency="all" 

stages="1" 

delay="0" 

setupTime="0" 

holdTime="0"> 

<!-- MoveG000toV000 --> 

<Ctrl port="Eq_Mux_iV000_sel" val="000"/> 

<Ctrl port="Eq_V000_load" val="1"/> 

<!-- MoveG001toV001 --> 

<Ctrl port="Eq_Mux_iV001_sel" val="001"/> 

<Ctrl port="Eq_V001_load" val="1"/> 

<!-- MoveG010toV010 --> 

<Ctrl port="Eq_Mux_iV010_sel" val="00"/> 

<Ctrl port="Eq_V010_load" val="1"/> 

<!-- MoveG011toV011 --> 

<Ctrl port="Eq_Mux_iV011_sel" val="00"/> 

<Ctrl port="Eq_V011_load" val="1"/> 

<!--LoadMemtoV12X--> 

<Ctrl port="Eq_Mux_iV120_sel" val="1"/> 

<Ctrl port="Eq_Mux_iV121_sel" val="1"/> 

<Ctrl port="Eq_V120_load" val="1"/> 

<Ctrl port="Eq_V121_load" val="1"/> 

<!--MemAddr9--> 

<Ctrl port="MemAddr_sel" val="01001"/> 

</Function> 

Figure 9. Pre-bound function sample that merges multiple operations.

<Function n="QPSK_1"  

stateDependency="all" 

stages="1" 

delay="0" 

setupTime="0" 

holdTime="0"> 

<Ctrl port="load_PL1" val="1"/> 

<Ctrl port="load_PL2" val="1"/> 

<Ctrl port="incrAddrConstellationLUT" val="1"/> 

</Function> 

void NiscMain() 
{  

 __$DemaNISC0_QPSK_1(); 

 __$DemaNISC0_QPSK_2(); 

 __$DemaNISC0_QPSK_3(); 

 __$DemaNISC0_QPSK_4(); 

 __$DemaNISC0_QPSK_5(); 

 __$DemaNISC0_QPSK_6(); 

 __$DemaNISC0_QPSK_7(); 

 __$DemaNISC0_QPSK_8(); 

 __$DemaNISC0_QPSK_9(); 

 __$DemaNISC0_QPSK_10(); 

 __$DemaNISC0_QPSK_11(); 

 __$DemaNISC0_QPSK_12(); 
} 

(a) 

(b) 

Figure 10. (a) List of C definitions related to pre-bound functions defining the functionality of the
DemaNISC module and (b) GNR description of the pre-bound function “QPSK1”, which declares the
control values that should be applied at the first step of demapping for QPSK modulation scheme.
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4.2. FPGA Implementation Level

At the FPGA implementation level, Xilinx ISE tool suite is used to implement the designed
architectures. For each architecture design, the HDL generated by NISC tool set describing the
EquaNISC/DemaNISC module is imported into a new Xilinx ISE project. Furthermore, the simple
architecture of the control unit, which is required to load the control words from control memory to
the functional module, is provided in HDL. The Xilinx project is assumed to integrate the functional
module (EquaNisc/DemaNISC), the control unit and the input memory blocks. The only missing
elements, at this level, are the synthesizable memories. IP synchronous block memories of suitable
parameters (type, depth, width) are generated by means of the Xilinx Core Generator. Block memories
are chosen to be utilized in this prototype not to impose additional logic utilization rather than
that occupied by the actual architecture in the final synthesis. Block memories are implemented
in dedicated blocks in the FPGA. Adequate interface modules are constructed in order to realize
the connection between memories and the architecture modules. The used memories are initialized
by memory-content files. A fixed-point software reference model is used to generate automatically
the contents of input memory blocks. Concerning control memory (CMem), the CWs generated by
the compiler are utilized. The NISC tool set imposes a basic NISC architecture with supplementary
hardware resources, such as the interrupt unit, data memory and combinational logic devices. Thus,
the generated control words include extra control bits. In addition to control words related to the
desired functions, the NISC compiler would generate control words that are responsible for the startup
addressing, jump and call/return operations of C functions. These control words and the extra control
signals do not impact the desired functional operation and form an additional overhead in terms of
memory size. In our work, neither the added control words nor the control signals of the additional
resources are taken into account. Only the sequence of control signals, which are related to the real
functionality of the architecture, are extracted from the generated memory file and imported to control
memory CMem.

With this complete model, sufficient simulations are conducted in order to confirm the proper
functionality of the architecture for various system configurations. The simulations are performed to
cover separate case studies with multitude characteristics concerning antenna dimensions, channel
fading types, modulation schemes and mapping styles. Running simulations enables detecting
the state of all internal signals and inspecting the flow of input and output data at each time
slot. Figure 11 presents the simulation window of the equalizer architecture using Xilinx ISE.
The simulation window shows the output signals of the equalizer architecture for 2 × 2 block fading
mode. For this mode, the estimates relative to two successive symbol vectors (ẋ and ẍ) are generated
concurrently. The figure shows the real and imaginary parts of the estimate symbols ˜̇x0, ˜̇x1, ˜̈x0 and˜̈x1 relative to the input symbols ẋ0, ẋ1, ẍ0 and ẍ1. In addition, the figure shows signals, such as
“FrameDone” and “SymbolOutReady”, which indicate respectively that the whole frame is processed and
that estimated symbols are ready at the output.

Logic synthesis is conducted targeting a Xilinx Virtex-7 FPGA. The simulation and synthesis
results (logic utilization, frequency and critical path) may imply feedback in NISC modeling to further
refine or modify the datapath and/or C code application. Iterative refinement can be exploited to
concentrate separately on one design metric (frequency, flexibility, parallelism, implantation area, etc.)
and then finally choose among several designs the one that meets the design requirements. Once results
are validated, the last step towards FPGA configuration is the place and route. The mapping of the
FPGA on the board (operation frequency, input/output pins, etc.) is indicated in the user constraints
file (.ucf). Finally, the programming file (.bit), which is used to configure the FPGA using iMAPCT,
is generated.
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Figure 11. Xilinx ISE simulation window showing equalizer architecture output signals.

5. FPGA Prototyping

Hardware prototyping is a crucial stage that enables one to demonstrate the feasibility, resolve
any eventual system and/or environment issue and measure the exact performance.

5.1. System Description

The system is prototyped using the VC707 evaluation board integrating the Xilinx Virtex-7
XC7VX485T FPGA. The selected device includes 75,900 configurable logic block slices, where each slice
contains four LUTs and eight flip-flops, in addition to 2800 DSP slices and 27,000-KB block RAM blocks.

5.2. On-Chip Validation

On-chip validation is an important step in order to evaluate the functionality of the prototype
and verify resultant performance for all use case scenarios. Xilinx ChipScope Pro Analyzer is utilized
in order to record the output results of the architecture. ChipScope [23] is a set of tools that allows
easily probing the internal signals of the design inside the FPGA, much as would be done with a logic
analyzer. ChipScope inserts internal the logic analyzer (ILA), system analyzer and virtual input/output
(VIO) software cores directly into the design, allowing one to view any internal signal. Additionally,
the integrated controller (ICON) core is inserted to provide an interface between the Joint Test Action
Group(JTAG) boundary scan (BSCAN) interface of the FPGA device and the ChipScope cores.

Signals are captured in the system at the speed of operation and brought out through the tool
interface. Using the ChipScope Pro software tool, these signals are later displayed to be analyzed.
In order to use the ChipScope internal logic analyzer in our existing design project, ChipScope core
modules, which perform the trigger and waveform capturing functionality on the FPGA, are generated
first. Afterward, these modules are instantiated in the design and connected to target signals that
are required to be monitored. The complete design is then recompiled. The ChipScope application is
used to configure the FPGA instead of loading the resulting .bit file onto the FPGA using iMAPCT.
The ChipScope Pro Analyzer tool interfaces directly to the internal logic analyzer cores and shows
the waveforms representing the activity of target signals. This allows inspecting the data flow and
checking operation results leading to verifying the functionality of the on-chip implementation.

5.3. Equalizer FPGA Prototype and Validation

To measure the exact performance of the designed equalizer architecture, on-chip validation
is performed for all system configurations. This step requires, after building the complete system
prototype, setting input memories with the right content. Besides the CMem, ChMem and 1

x LUT,
a new module, the so-called MapMem, is established. The MapMem module integrates memory blocks,
which are required to contain mapper output information. The contents of the ChMem and MapMem
memory blocks are generated automatically from the fixed-point software reference model along with
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a reference result file containing the output of the equalizer. Concerning the control memory CMem,
the CWs produced by the compiler are utilized. Only the sequence of control signals that are related to
the equalizer architecture are extracted and imported to CMem. The contents of 1

x LUT are positive
16-bit inverse values represented in the two’s complement format. A software model is developed to
compute the reciprocal of all possible positive numbers. The generated values are stored such that each
memory location contains the quantized inverse value of its address. Figure 12 shows the structure of
1
x LUT. The implementation of 1

x LUT requires a memory size of 64 kB. Figure 12 shows the structure
of 1

x LUT. Since 1
x LUT stores positive values, then the most significant bit (MSB) in all stored values is

zero. A 4-kBreduction in the size of the 1
x LUT memory block can be achieved by eliminating the MSB.

When retrieving an inverse value, the output should be extended by padding a zero in the MSB.

0 7FFF 

1 7FFF 

2 7FFF 

3 5555 

∙ 
∙ 
∙ 

32767 0002 

Address 

16 

/ LUT_r0 

15 

/ 

Figure 12. 1
x LUT structure.

After generating input memory blocks, ChipScope cores are inserted to the design. The ChipScope
Pro Core Inserter tool is used to place cores into the design. Internal logic analyzer units are instantiated.
In each unit, the trigger and capture parameters are set. Furthermore, net connections are established
to link data, trigger and clock channels to required nets in the architecture design. The design is
then placed and routed with the Xilinx ISE implementation software tools. As shown in Figure 13,
the generated bitstream is downloaded into the device, and the design is analyzed using a host
computer with ChipScope Pro Analyzer software.
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𝒙
 LUT 15 

16 

MapMem 8 
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ChMem 14 
24 

USB JTAG 
interface 

Host computer with 
Chipscope Pro 

software 

Figure 13. NISC-based MMSE MIMO turbo equalizer architecture on-chip prototype.
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Figure 14 shows the waveform window of ChipScope Pro Analyzer software displaying the
waveforms of captured data signals representing the equalizer outputs in the case of 2 × 2 block fading
mode. The definitions of these signals are discussed previously for Figure 11.

ℜ𝑥 0  

ℑ𝑥 0  

ℜ𝑥 1  

ℑ𝑥 1  

ℜ𝑥 0  

ℑ𝑥 0  

ℜ𝑥 1  

ℑ𝑥 1  

Figure 14. ChipScope Pro Analyzer software waveform window.

5.4. Demapper FPGA Prototype and Validation

Using the same methodology adopted for equalizer architecture, the NISC-based demapper
architecture has been prototyped and validated. Figure 15 shows the on-chip prototype diagram of
the designed demapper. The contents of input memory blocks are generated from the fixed-point
reference software module. The output results are captured using ChipScope and are compared to
reference software output results.
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𝜌 Mem 12 
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CMem 9 
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𝜎2Mem 12 
8 

Figure 15. NISC-based demapper architecture on-chip prototype.
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Among all CWs generated by the NISC tool set, only those composed of bits controlling
the demapper resources are chosen to be loaded into CMem. The depth of CMem relies on the
number of constellation symbols involved in determining the LLRs associated with one input symbol.
This number depends on the adopted system configuration (modulation type, mapping style and
constellation sub-partitioning). The contents of the YMem, ρMem, σ2Mem and AprMem memory blocks
are generated automatically from the fixed-point software reference model along with a reference
result file containing the output of the demapper. Constellation LUT is composed of three memory
blocks. The first block is proposed to store the binary mapping of constellation symbols, whereas the
other two blocks are proposed to store I and Q components of these symbols (xI and xQ). The depth
of YMem, ρMem, σ2Mem, AprMem and Constellation LUT depends on the number of input modulated
symbols in each data block. Similar to 1

x LUT presented in previous subsection, the contents of 1
2x

LUT are generated by the software model. The content values represent the halves of reciprocals
corresponding to all positive numbers.

6. Results and Comparison

6.1. Performance Results

From all monitored signals, the outputs of the equalizer and demapper modules are exported
and recorded. The saved results corresponding to all frame symbols are then compared with reference
results. For all system configurations, the results acquired from the FPGA prototypes have been
verified to match exactly the performance of the corresponding reference software model. Figure 16
and Figure 17 show, respectively, the receiver bit error rate (BER) performances obtained after on-chip
evaluation of the designed equalizer and demapper. Furthermore, the figures show the equivalent
reference software model of 1536 source bits, using 4 × 4 MIMO over a fast fading Rayleigh channel
for different numbers of iterations with code rate Rc = 1

2 and considering the QPSK and 16-QAM
modulation schemes. The hardware-measured BER shows acceptable performance degradation when
compared to floating-point C simulations.

(a)   QPSK (b)   16-QAM 

Figure 16. Comparison between the simulated reference BER and measured BER after on-chip
evaluation of the designed equalizer for 1536 source bits, a 1

2 code rate, 4 × 4 MIMO and a fast fading
Rayleigh channel.
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(a)   QPSK (b)   16-QAM 

Figure 17. Comparison between the simulated reference BER and measured BER after on-chip
evaluation of the designed demapper for for 1536 source bits, a 1

2 code rate, 4 × 4 MIMO and fast
fading Rayleigh channel.

6.2. Synthesis Results

The Xilinx ISE tool set has been used to conduct logic synthesis of the generated RTL description on
FPGA. Table 1 summarizes the synthesis results of the proposed equalizer and demapper architectures.
The table shows the logic utilization and maximum clock frequency when targeting a Xilinx Virtex-7
XC7VX485T FPGA. The obtained synthesis results show that a low number of slices is utilized to
implement the NISC-based equalizer and demapper architectures. Furthermore, it shows that the
designed equalizer can achieve a maximum operating frequency of 202.67 MHz corresponding to a
minimum period of 4.93 ns. Additionally, the designed demapper can achieve a maximum operating
frequency of 293 MHz corresponding to a minimum period of 3.41 ns.

Table 1. FPGA synthesis results of the proposed NISC-based equalizer and demapper architectures
targeting Xilinx Virtex-7 XC7VX485T.

Logic Utilization and Timing Equalizer Demapper

Slice Registers 2029 out of 607,200 1290 out of 607,200

Slice LUTs 5942 out of 303,600 1517 out of 303,600

DSP48Es 12 out of 2800 6 out of 2800

Max Clock Frequency 202.67 MHz 293 MHz

Furthermore, the HDL descriptions, generated by the NISC tool set, of the proposed architectures
have been synthesized on the ASIC target using the Design Compiler tool from Synopsys. Table 2
summarizes the synthesis results of the proposed architecture targeting 65-nm STMicroelectronics
(ST)CMOS technology. The obtained results show that the proposed NISC-based equalizer and
demapper architectures occupy a reasonable area. Furthermore, the equalizer can achieve a maximum
operating frequency of 529 MHz; whereas the demapper architecture can achieve a maximum operating
frequency of 520 MHz.
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Table 2. Application-specific integrated circuit (ASIC) synthesis results of the proposed NISC-based
equalizer and demapper architectures targeting 65-nm STCMOS technology.

Logic Utilization and Timing Equalizer Demapper

Operating conditions nominal case (1 V; 25 ◦C)

Area 0.126 mm2 0.048 mm2

Maximum operating frequency 529 MHz 520 MHz

6.3. Throughput Results

The throughput of the proposed architectures is recorded for various system configurations.
Table 3 presents the measured throughput for 2 × 2 and 4 × 4 MIMO considering block and fast fading
channels at the maximum operating clock frequency. For FPGA implementation, in the case of block
channel fading, 115.8 mega symbolsper second for 2 × 2 MIMO and 62.4 mega symbols per second for
4 × 4 MIMO throughputs are achieved for the FPGA implementation at an operating frequency of
202.67 MHz. In the case of fast fading, the throughput is reduced. At the same operating frequency,
throughputs of 6.4 mega symbols per second and 4.7 mega symbols per second are achieved for 2 × 2
and 4 × 4 MIMO, respectively.

Furthermore, Table 3 shows the throughput of the ASIC implementation of the designed
NISC-based equalizer architecture. Using the ST 65-nm CMOS technology, with the
CORE65GPHVTlibrary at the nominal case operating conditions (1 V; 25 ◦C), the architecture can
achieve a maximum throughput of 302.3 mega symbols per second in the case of MIMO 2 × 2
transmission over the block fading channel. Note that higher throughput can be achieved by using
newer technologies, such as 28-nm technology and beyond. In fact, the throughput in bits per
second depends on the adopted constellation. For the 16-QAM and 64-QAM modulation schemes,
the designed NISC-based processor dedicated for MIMO equalization can achieve 1.2 giga bits
per second and 1.8 giga bits per second, respectively. Recall that the most recent LTE-Advanced
standard [4] imposes a throughput of 1 giga bit per second for the down-link and 500 mega bits per
second for the up-link. Hence, for the current achieved throughput, the receiver implementing the
designed application-specific processor can satisfy the requirements of throughput imposed by the
LTE-Advanced standard for both constellations in the down-link and up-link.

Table 3. Throughput of the proposed NISC-based equalizer architecture. SM, spatially-multiplexed.

Implementation Fading Type
Throughput (Mega Symbols per Second)

2 × 2 MIMO SM 4 × 4 MIMO SM

FPGA @202.67 MHz Block fading 115.8 62.4

Fast fading 6.4 4.7

ASIC @ 529 MHz Block fading 302.3 162.8

Fast fading 16.8 12.2
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On the other hand, Table 4 summarizes the achieved throughput of the proposed demapper
design for different modulation schemes. For the FPGA implementation, the demapper architecture
enables a maximum throughput of 234.6 mega LLRs per second adopting the 16-QAM modulation
scheme when operating at a clock frequency of 293.242 MHz. In addition, Table 4 shows the throughput
of the ASIC implementation of the designed NISC-based demapper architecture. Using the ST 65-nm
CMOS technology, with the CORE65GPHVT library at nominal case operating conditions (1 V; 25 ◦C),
the architecture can achieve a maximum throughput of 416 mega LLRs per second in the case of the
16-QAM modulation and 347 mega LLRs per second in the case of the 64-QAM modulation.

Table 4. Throughput results of the proposed NISC-based demapper architecture.

Modulation Type
Throughput (Mega LLRsper Second)

FPGA @ 293 MHz ASIC @ 520 MHz

QPSK 195.5 347

16-QAM 234.6 416

64-QAM 195.5 347

256-QAM 138 244.7

6.4. Results Comparison

6.4.1. Equalizer Module

Table 5 presents a comparison in terms of utilized resources and the performance of the
proposed equalizer architecture with relevant state-of-the-art implementations, which provide
complete solutions to generate estimated symbols. It is worth noting that most published works
present partial implementations of MIMO equalization (for example, limited only to matrix inversion).
The implementations of [24] and [25] are dedicated for 2 × 2 pre-coded and 4 × 4 spatially-multiplexed
(SM) MIMO systems, respectively. In [26], a specific instruction set processor (ASIP) dedicated to
MIMO MMSE-IC equalization is introduced. Compared to our proposed architecture, the ASIP
architecture so-called EquASIP has identical computational resources and supports the same flexibility
parameters as our design. In order to make a fair comparison, our design has been synthesized with
the same target technology in the implementation being compared.

Table 5. Comparison summary of the proposed equalizer with relevant state-of-the-art implementations.

System
Configuration Reference

Target
Device

Operating
Frequency

(MHz)

FPGA Resources
Clock
Cycles

Throughput
(mega Operations

per Second)Registers LUT
Dedicated

Multipliers

2 × 2 SM [25] Virtex-II 140 14166 103 388 17.31

Block Fading This work 91 4604 12 784 5.57

4 × 4 SM [26] Virtex-V 130 3174 11299 14 13 10

Block Fading This work 146 2029 6536 12 13 11.23

4 × 4 SM [26] Virtex-V 130 3174 11299 14 234 0.56

Fast Fading This work 146 2029 6536 12 173 0.84

2 × 2 [24]
Virtex-V

60 817 2715 60 1 120

Precoding This work 146 2029 6536 12 3.25 45Quasi-Static

2 × 2 SM [26] Virtex-V 130 3174 11299 14 89 1.46

Fast Fading This work 146 2029 6536 12 63 2.32

2 × 2 SM [26] Virtex-V 130 3174 11299 14 8 16.25

Block Fading This work 146 2029 6536 12 7 20.86
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Starting with the architecture design in [25], which implements a 4 × 4 MIMO SM detector for the
802.11n standard with a throughput of 17.3 M vectors, when comparing with our work, its throughput
outperforms by 3.1-times. However, this increased throughput comes at the cost of more than three-times
more FPGA slices and 8.6-times more multipliers. Moreover, in contrast to our architecture, the design
in [25] is not flexible for variable antenna dimensions, channel selectivity and iterative equalization.

In [24], 2 × 2 MIMO equalization includes the pre-coding stage, where the channel coefficient
matrix is converted into the 4 × 4 matrix. Applying this technique using our architecture imposes
more operations and, hence, lessens the computing speed of the equalization coefficients. Indeed, for
the quasi-static channel, where coefficients are computed once for a data frame, the throughput is not
greatly affected. The recorded throughput is 2.6-times less than that achieved by the implementation
in [24], knowing that the latter uses five-times more multipliers and almost 2.5-times less FPGA
registers and LUTs.

When comparing to our proposed architecture, EquASIP [26] almost requires 1.6-times more
registers, 1.7-times more LUTs and 1.2-times more dedicated multipliers to be implemented.
The comparison is conducted targeting the same device (Xilinx Virtex-5 LX330 FPGA) and using
the same synthesis options and tools. Moreover, its throughput is less for all system configurations.

6.4.2. Demapper Module

Table 6 summarizes the comparison of the proposed demapper architecture with relevant
state-of-the-art implementations in terms of utilized resources and performance. The presented
demapper architectures in [27] and [28] are dedicated to certain wireless communication standards.
In [27], where the conventional RTL design approach has been used, DVB-T2is the target standard;
hence, the architecture design supports the QPSK, 16-QAM, 64-QAM and 256-QAM modulation
schemes for non-GrayDVB constellation with rotation. Similarly, the architecture described in [28]
has been designed to fulfill the requirements of the DVB-S2 standard. Four modulation schemes are
supported (QPSK, 8-PSK, 16-PSK and 32-PSK) with Gray mapping constellation, as specified in [29].
Both architectures do not support iterative demodulation. In [26], an application-specific instruction set
processor (ASIP) dedicated to the Max-Log-MAP demapping algorithm has been presented. The ASIP
architecture, so-called DemASIP, provides full flexibility and can be utilized in multiple wireless
communication standards (WiFi, WiMax, LTE and DVB) with the support of iterative demodulation.
Compared to our proposed architecture, DemASIP has the same computational units and supports the
same flexibility parameters as our design. To compare fairly, our proposed architecture design has
been synthesized with the same target technology used in the implementation being compared.

When comparing to our proposed architecture, the demapper architecture in [27] almost requires
3.33-times more dedicated multipliers, 3.1-times more LUTs, but 2.2-times less registers to be
implemented. Whatever the modulation type is, the demapping of one symbol lasts for 10 clock
cycles with a maximum reached frequency of 62 MHz. In contrast, the number of required clock
cycles to demap one symbol varies according to the modulation scheme in our proposed architecture.
For the selected device, our proposed demapper can operate 3.1-times faster, and it outperforms the
described design in [27] when adopting QPSK, 16-QAM and 64-QAM modulation modes. In case
of 256-QAM, the latter design provides better throughput. In fact, the demapper architecture in [27]
exploits demapping metric level parallelism. It can calculate nine Euclidean distances in parallel
by using nine computational units; hence, high throughput is achieved in the case of high-order
modulation schemes. Whereas in the case of lower modulation schemes, the computational units are
not fully exploited to perform the computations related to one received symbol.
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In [28], the timing information about the hardware implementation is not available. Only device
utilization is presented. Although the architecture is optimized targeting the M-PSK modulation
schemes for Gray mapping constellation, the presented logic utilization summary reveals the
need of 1.8-times more logic devices and 2.67-times more multipliers compared to our proposed
demapper design.

Regarding DemASIP [26], although it has a tailored instruction set, the architecture design has
to integrate an instruction decoder. The comparison is conducted targeting the same device (Xilinx
Virtex-5 LX330 FPGA) and using the same synthesis options and tools. From the implementation view,
DemASIP almost requires 1.44-times more slice registers and 2.1-times more slice LUTs compared to
our proposed demapper architecture. In addition, the critical path of DemASIP includes 24 levels of
combinational logic, and it is related to the fetch program counter register. DemASIP can achieve a
maximum operating frequency of 186 MHz; whereas the proposed architecture can achieve a maximum
operating frequency of 240 MHz and, thus, it is 1.29-times faster than DemASIP. On the other
hand, fetching and decoding the instructions impose additional pipeline stages. As shown in
Table 6, the proposed demapper architecture achieves better throughput than DemASIP in all system
configurations and all combinations of mapping styles, modulation types and SSD.

In both designed NISC-based architectures, the comparison results in terms of performance
and implementation area confirm the feasibility of adopting the proposed design and prototyping
flow. This approach combines the conventional NISC tool set flow and direct controlling of hardware
resources to ensure both productivity and implementation efficiency, in designing flexible, yet efficient
application-specific processors in the application domain of digital communications.



Electronics 2016, 5, 50 23 of 27

Table 6. Comparison summary of the proposed demapper with the relevant state-of-the-art implementations. SSD, signal space diversity.

Mapping Style Reference Iterative/Non-Iterative Target Device Operating FPGA Resources Modulation Type Clock Throughput
and SSD Demapping Frequency (MHz) Registers LUT Dedicated Multipliers Cycles (mega LLR per Second)

[27] 62 791 4667 20

QPSK

10

12.4

non-iterative 16-QAM 24.8

Virtex 64-QAM 37.2

II 256-QAM 49.6

This work iterative and non-iterative

Pro

194 1740 1523 6

QPSK 5 77.45

non-Gray XC2VP3 16-QAM 10 77.45

with 64-QAM 26 44.68

SSD 256-QAM 82 18.89

[26]
iterative and non-iterative

186 1918 3201 6
64-QAM 27 41.33

Virtex5 256-QAM 83 17.93

This work
XC5VLX330

240 1328 1524 6
64-QAM 26 55.27

256-QAM 82 23.37

[28] non-iterative - 1826 16
QPSK, 8-PSK - -

Virtex 16-APSK, 32-APSK - -

This work iterative and non-iterative

II

160 1005 6

QPSK 4 80.13

XC2-V6000 8-PSK 9 53.42

16-APSK 17 37.71
Gray 32-APSK 33 24.28

without

[26] 186 1918 3201 6

QPSK 4 93

SSD 16-QAM 6 124

iterative and non-iterative

64-QAM 10 111.6

Virtex-V 256-QAM 18 82.67

This work

XC5VLX330

240 1328 1524 6

QPSK 3 159.67

16-QAM 5 191.6

64-QAM 9 159.67

256-QAM 17 112.71
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Table 6. Cont.

Mapping Style Reference Iterative/Non-Iterative Target Device Operating FPGA Resources Modulation Type Clock Throughput
and SSD Demapping Frequency (MHz) Registers LUT Dedicated Multipliers Cycles (mega LLR per Second)

[26] 186 1918 3201 6

QPSK 6 62

8-PSK 10 55.8

16-QAM,16-APSK 18 41.33

32-APSK 34 27.35

non-Gray

iterative and non-iterative

64-QAM 66 16.91

without Virtex-V 256-QAM 258 5.77

SSD

This work

XC5VLX330

240 1328 1524 6

QPSK 5 95.8

8-PSK 9 79.83

16-QAM ,16-APSK 17 56.35

32-APSK 33 36.29

64-QAM 65 22.1

256-QAM 257 7.46
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7. Conclusions

The development and prototyping flow of NISC-based architectures dedicated to MMSE turbo
equalization and Max-Log-MAP turbo demapping have been presented. The described designs are
efficient, flexible and support different communication modes defined in the WiFi, WiMAX, DVB-RCS,
LTE and LTE-Advanced wireless communication standards. The proposed designing flow is detailed
starting from architecture specification till FPGA implementation. Using this flow, the NISC-based
architectures of the equalizer and demapper are prototyped targeting the Xilinx Virtex-7 XC7VX485T.
The proper functionality of both architectures has been verified, and their corresponding performances
have been evaluated for different system configurations by conduction on-chip validation. The FPGA
prototype of the proposed equalizer architecture achieves a throughput of 115.8 mega symbols per
second for 2 × 2 and 62.4 mega symbols per second for 4 × 4 spatially-multiplexed (SM) MIMO systems
when operating at a clock frequency of 202.67 MHz. Moreover, the FPGA prototype of the proposed
demapper architecture enables a maximum throughput of 234.6 mega LLRs per second adopting the
16-QAM modulation scheme when operating at a clock frequency of 293.242 MHz. The two proposed
architectures are compared to relevant state-of-the-art implementations. The comparison results
illustrate the effectiveness of the proposed design approach, which allows shortening development
cycles, while ensuring high implementation efficiency.
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