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Abstract: Trapping effects on two AlGaN/GaN Schottky diodes with a different composition of the
AlGaN barrier layer were analyzed by current transient spectroscopy. The current transients were
measured at a constant bias and at six different temperatures between 25 and 150 ˝C. Obtained data
were fitted by only three superimposed exponentials, and good agreement between the experimental
and fitted data was achieved. The activation energy of dominant traps in the investigated structures
was found to be within 0.77–0.83 eV. This nearly identical activation energy was obtained from current
transients measured at a reverse bias of ´6 V as well as at a forward bias of+1 V. It indicates that
the dominant traps might be attributed to defects mainly associated with dislocations connected
predominantly with the GaN buffer near the AlGaN/GaN interface.
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1. Introduction

The GaN-based heterostructure field-effect transistors (HFETs) are promising devices for
high-frequency and high-power applications. Although such devices are commercially produced, their
reliability problems caused by trap-related effects are still under investigation [1,2]. The existence of
defects can result from surface states, point defects, and threading dislocations in the AlGaN/GaN
material structure. Such defects lead to a high leakage current [3], kink effects [4], a current collapse [5],
or capacitance hysteresis [6]. They can all significantly influence the performance and reliability of the
devices. Therefore, the trap-related processes are systematically studied.

Various methods are used to investigate trapping effects in semiconductors, especially in
GaN-based devices. The most popular one is deep-level transient spectroscopy (DLTS), which
can be performed in capacitance-mode (C-DLTS) [7–9] or current-mode (I-DLTS) [10–12]. However,
capacitance or current transient measurement on real HFET devices can be limited to a degree because
of their small dimensions. Resulting inaccuracy might be one of the reasons for a large number
of energy levels being reported on GaN-based devices using DLTS methods (see Table I in Ref. [2]).
To circumvent the limitation, experiments on large-area Schottky diodes (SDs) can be performed [13,14],
provided different electric field distribution between HFETs and SDs are considered. Other commonly
used methods are based on the measurement of frequency-dependent conductance [15], low-frequency
noise [16], transconductance non-linearity [17], and capacitance–voltage characterization concerning
hysteresis [18]. As an extension of the current-mode DLTS, current-transient analysis utilizing a
multiexponential decay fitting was also proposed [19]. However, such a procedure has not been
generally used at present due to the necessity of using a more complicated fitting technique. These
studies are aimed at the identification of trap states energies and their origin. Trap states with energies
between 0.43 and 0.50 eV (e.g., [14,17,20,21]) and between 0.71 and 0.82 eV (e.g., [1,9,19,22–24]) were
the most commonly reported. Unfortunately, their origin remains ambiguous. As to the traps with the
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lower energy range, it is supposed that their source is related to the AlGaN barrier below the gate,
surface states, and oxygen related defects in the bulk. However, the origin of those within the higher
energy range is attributed to carbon, Fe, or surface-related defects as well as dislocations connected
predominantly with the GaN buffer near the AlGaN/GaN interface. Some papers report only trap
state energies, leaving their source unspecified.

This study reports on an analysis of trapping effects in two different AlGaN/GaN SD structures.
They differ in the AlGaN barrier composition. The current transients at a constant bias were measured
in a broad range at different temperatures. Data obtained were fitted by three superimposed
exponentials, assuming that the trapping effects had an exponential decay with time. From the
temperature-dependent time constants, corresponding to the larger amplitudes, an Arrhenius plot
was constructed, and the activation energy of the dominant trap states was evaluated. Both samples
exhibited nearly the same activation energy of 0.77–0.83 eV for forward and reverse bias. One can
conclude that the associated trap states might be related to defects near the AlGaN/GaN interface.

2. Experimental

Two types of AlGaN/GaN heterostructure were used in this work. Both were grown by a
metalorganic chemical vapor deposition technique on a 4H-SiC substrate. They differed in the
composition of the AlGaN barrier layer. The structures consisted of an AlN nucleation layer, followed
by a 1.7-µm GaN buffer layer doped by Fe away from the channel. Figure 1 shows that an AlGaN
layer with an AlN mole fraction of 0.25 (Sample A) and 0.29 (Sample B) was grown on top of the buffer.
Sample B contained a 1.25-nm AlN interlayer between GaN and AlGaN. The devices were prepared
with conventional processing steps, which are typically used in the technology of GaN-based devices.
Ohmic contacts were prepared by thermal evaporation of a multilayered Nb/Ti/Al/Ni/Au metal
stack and subsequent rapid thermal annealing at 850 ˝C for 35 s in a N2 atmosphere. Mesa isolation
was then formed by reactive ion etching in a CCl4/He plasma. Ni/Au gate electrodes were finally
deposited and formed by a lift-off process. SDs with a contact area of 100 ˆ 100 and 200 ˆ 200 µm2

were prepared and used in our experiments. The current-voltage (I–V) characteristics and the current
transients in a time range of ~10´3 to ~104 s were measured using a semiconductor parameter analyzer
Agilent 4155C and a microprobe station. Measurement was performed in a temperature range between
25 and 150 ˝C using a heated plate and an ATT Systems A150 temperature controller.
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Figure 1. Schematic cross section description of used AlGaN/GaN heterostructures.

3. Results and Discussion

Figure 2 shows typical I–V characteristics for SD Samples A and B measured at the lowest and
highest temperature. Due to different AlGaN compositions, one example of which being a thin AlN
interlayer, there is a considerable increase inserial resistance in forward I–V characteristics over 1 V, as
visible for Sample B. In addition, the Schottky barrier height at room temperature was evaluated from
the forward bias data using a procedure we have previously described [25]. Values of 1.25 eV (Sample
A) and 1.34 eV (Sample B) were obtained. The Schottky barrier height influences the high temperature
I–V characteristics behavior by increasing the thermionic emission current. This effect is more visible
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for Sample A at 150 ˝C. Similarly, the reverse current at ´6 V was found to be 3.3 ˆ 10´9 A (Sample A)
and 5 ˆ 10´10 A (Sample B), which corresponds to the influence of the AlN interlayer in Sample B.
A capacitance-voltage measurement was used to evaluate the sheet charge density in the channel,
according to the equation ns =

ş

C¨dV. The measurement at 100 kHz yielded values of 1 ˆ 1013 cm´2

and 7 ˆ 1012 cm´2 for Samples A and B, respectively. The difference in AlGaN layer thickness and
sheet charge density shifts the threshold voltage of the HFET structure, which is clearly visible in
reverse I–V characteristic saturation at ~´2.2 V and ~´1 V for Samples A and B, respectively.
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Time-dependent current transients were measured at a constant bias and temperature to evaluate
trapping effects in the structures. After measurements, the sample illumination is needed to recover
the device states. This was performed by commercial white LED (5000 mcd at 20 mA) illumination
for one minute at a zero applied voltage after each transient measurement run. The time-dependent
current transients were fitted by exponential functions, i.e., according to the following equation:
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where Ai is the amplitude, and τi is the time constant which needs to be evaluated. It was assumed that
the trapping effect had an exponential decay with time. An Ai = f (τi) diagram is usually constructed to
show one or more peaks, indicating a trapping effect at a given time constant τpeak. An Arrhenius plot
(τpeak¨T2) vs. 1/kT is finally constructed from the current transients measured at different temperatures.
This allows for the evaluation of the activation energy of dominant trap states. However, usually a
large number of exponentials needs to be used to construct an Ai = f (τi) diagram, e.g., Joh and del
Alamo used 100 exponentials [19], and Hu et al. as many as 400 [14]. As is shown below, we were able
to fit our data satisfactorily with only three exponentials. A similar simple procedure was also used
in Bisi et al. [2]. The activation energy of a dominant trap was obtained simply from evaluated τpeak
data for maximal Ai values at different temperatures. This procedure makes the evaluation of such an
experiment much simpler and faster without compromising accuracy.

The SD current transients were measured in a time range between ~10´3 s and ~104 s and at six
values of temperature between 25 ˝C and 150 ˝C. Two different voltages—a reverse bias of ´6 V, and a
forward bias of 1 V—were used. A typical result of the current transients measured at ´6 V at different
temperatures for both samples used in this study is shown in Figures 3 and 4. A decrease of the
current with time was observed for both samples. The effect became more significant at an increased
temperature. At room temperature, the current decreased to about 83% of its initial value for both
samples at the end of the experiment (after ~40 min). An overall look at the data, mainly measured
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at higher temperatures, indicates that the curves consist of two to three superimposed exponentials.
Therefore, the measured current transients were fitted by a sum of only three exponentials, according
to the aforementioned equation. The resulting fitted curves are shown in Figures 3 and 4 as full lines.
Good agreement between the measured data and fitted curves was obtained for both samples. Similar
current transients at various temperatures were measured on both samples at a forward bias of 1 V.
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Figure 5 shows for comparison the result of current transients fitting for AlGaN/GaN Sample
B using 70 exponentials. Unambiguous temperature-dependent peaks, which shifted to a shorter
time with increased temperature, were identified. Other peaks with negative amplitude are nearly
temperature-independent, i.e., they cannot be used for the activation energy evaluation. Results
obtained from a simple fitting by a “three-exponential” procedure are also shown in Figure 5
(full square marks). Nearly identical τpeak data for maximal Ai values at different temperatures
were obtained.
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Figure 5. Time constant spectrum of an AlGaN/GaN SD structure (Sample B, V = ´6 V) evaluated by
a fitting of the current transients by 70 exponentials. For comparison, data of Ai vs. τi obtained from
simple three-exponential fitting (full square marks) are also shown.

The τi data obtained for maximal Ai values at different temperatures were used to draw a
(τpeak¨T2) vs. 1/kT plot for both SD Samples A and B, and the activation energy of dominant trap
states was evaluated. Other τi data show very low corresponding Ai values, or they did not change
significantly with temperature (they were not useful for the evaluation of the activation energy).
Figure 6 shows a summary of the obtained τpeak data at different temperatures, i.e., an (τpeak¨T2) vs.
1/kT dependence. The activation energy 0.77–0.83 eV as the dominant trap state can be evaluated for
investigated samples. It is of note that the activation energy for the SDs in Sample A, i.e., with a lower
AlN content in the barrier, was evaluated in the lower part of the energy range 0.77–0.83 eV mentioned
above and for the SDs in Sample B the energy was in the upper part. However, there was only a slight
difference (∆x – 0.04) in the barrier composition of the samples investigated. This indicates that nearly
identical trap states are present in both SD Samples A and B. In comparison with published data,
the traps with activation energies in the 0.6–0.8 eV range are usually found to be located in the GaN
buffer near the AlGaN/GaN interface [24], and, in the 0.8–0.85 eV range, the dominant traps might be
attributed to defects mainly associated with dislocations as commonly observed in MOCVD-grown of
undoped and Fe-doped GaN layers [1]. From these results, one can assume that the trap states in the
investigated SDs are connected predominantly with the GaN buffer near the AlGaN/GaN interface
defects associated with dislocations.
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4. Conclusions

In conclusion, trapping effects on AlGaN/GaN Schottky barrier diodes were studied by current
transient analysis at different temperatures. Obtained data were fitted by three superimposed
exponentials. Nearly the same activation energy of observed traps 0.77–0.83 eV was found in
two samples with a slightly different AlGaN barrier composition. This energy range follows from
measurements at forward (+1 V) and reverse (´6 V) bias voltages. This indicates that the observed
trap states might be assigned to the GaN buffer near the AlGaN/GaN interface defects associated
with dislocations.
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