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Abstract: The rapid growth of solar photovoltaic (PV) installations worldwide has increased
the need for the effective monitoring and maintenance of these vital renewable energy assets.
PV systems are crucial in reducing greenhouse gas emissions and diversifying electricity
generation. However, they often experience faults and damage during manufacturing
or operation, significantly impacting their performance, while thermal infrared imaging
provides a promising non-invasive method for detecting common defects such as hotspots,
cracks, and bypass diode failures, current deep learning approaches for fault classification
generally rely on computationally intensive architectures or closed-source solutions, con-
straining their practical use in real-time situations involving low-resolution thermal data.
To tackle these challenges, we introduce SlantNet, a lightweight neural network crafted to
classify thermal PV defects efficiently and accurately. At its core, SlantNet incorporates an
innovative Slant Convolution (SC) layer that utilizes slant transformation to enhance direc-
tional feature extraction and capture subtle thermal gradient variations essential for fault
detection. We complement this architectural advancement with a thermal-specific image
enhancement augmentation strategy that employs adaptive contrast adjustments to bolster
model robustness under the noisy and class-imbalanced conditions typically encountered
in field applications. Extensive experimental validation on a comprehensive solar panel
defect detection benchmark dataset showcases SlantNet’s exceptional performance. Our
method achieves a 95.1% classification accuracy while reducing computational overhead
by approximately 60% compared to leading models.

Keywords: photovoltaic fault detection; thermal imaging; image classification; slant transform

1. Introduction

As the global demand for renewable energy continues to surge, solar photovoltaic
(PV) installations, ranging from large-scale ground-mounted farms to rooftop systems, are
expanding at an unprecedented pace. International Renewable Energy Agency (IRENA)
projects that global installed capacity of PV systems will reach approximately 2156 GW
by 2030, reflecting significant growth and highlighting the importance of ensuring system
reliability [1]. One major challenge in maintaining these installations is fault identification,
particularly in vast power plants where manually monitoring individual panels is impracti-
cal. Solar PV modules, composed of silicon-based semiconductors, convert photons into
electrical power when sunlight interacts with the PV cells. The accumulated cells form
a solar array that generates electricity. Over time, various faults and degradations, such
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as micro-cracks, hotspots, soiling, and bypass diode failures, can critically undermine
both energy yield and the long-term reliability of PV systems, with losses due to faults
recorded at approximately 17.4% by the National Renewable Energy Laboratory (NREL) in
2022 [1-5].

Furthermore, studies have pointed to the substantial impacts of faults on PV perfor-
mance; for instance, allowing PV surfaces to remain unclean in dusty environments can
decrease power generation by 18% in just one month of dust accumulation [6]. Addition-
ally, long-term degradation studies show power losses of up to 11% over 20 years due to
factors such as soldering defects, micro-cracks, shading, and hotspots [6]. Faults in critical
components such as the encapsulant and junction box have been identified as particularly
severe, contributing significantly to reliability risks in PV installations [7].

Thermal infrared (IR) imaging has emerged as a vital noninvasive diagnostic approach
for identifying faults such as hotspots, cracks, and bypass diode malfunctions, manifesting
as localized temperature anomalies on the module surface. Figure 1 illustrates examples
of infrared images showing different hotspot defects. Traditionally, fault detection has
relied on time-intensive methods like manual inspection or electrical testing [8,9]. However,
these approaches are unscalable for large solar farms, prompting the growing adoption of
thermal IR imaging techniques for rapid, remote monitoring [10-13]. Recent advancements
in deep learning have substantially enhanced the efficiency and accuracy of classifying
PV faults from thermal images, though many existing solutions utilize resource-intensive
architectures or proprietary codebases, limiting their applicability for real-time or resource-
constrained scenarios [14].

Figure 1. Thermal images of solar panels illustrating various hotspot defects.

Artificial Intelligence (AI) methods, particularly neural networks, have shown signifi-
cant potential for reliable fault diagnosis in complex energy systems. For instance, recent
studies using AI models for predicting nitrogen oxide emissions in thermal power plants
have demonstrated the importance of appropriate feature selection for high predictive
accuracy, emphasizing that there are similar benefits for PV fault detection tasks [15]. De-
spite substantial progress, there remains a clear need for lightweight and computationally
efficient deep learning solutions capable of deployment on low-resolution or mobile imag-
ing platforms. This paper introduces SlantNet, a lightweight neural network designed
to address this gap. SlantNet leverages the Slant Convolution layer to capture critical
directional features and thermal gradients for accurate anomaly detection while employing
thermal-specific data augmentation strategies to mitigate class imbalance and enhance ro-
bustness. Our work contributes to scalable real-time fault detection, promoting integration
into broader renewable energy monitoring systems.

Fast image transforms play an essential role in digital image processing as theoretical
and practical tools for numerous tasks, including image filtering, restoration, encoding, and
analysis [16]. In particular, the multidimensional discrete Fourier transform (DFT) is widely
used for frequency analysis; however, it may not be optimal for purely real data due to its
reliance on complex operations. Consequently, transforms like the discrete cosine transform
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(DCT) and the Slant Transform are often preferred to handle real-value input images [17,18].
The Slant Transform employs a discrete sawtooth-like basis vector, making it incredibly
efficient at representing linear brightness variations along an image line [19,20].

The Slant Transform (SLT) is a fast, orthogonal transform that is well suited for
analyzing piecewise linear data [19-21]. Initially developed for image coding by Enomoto
and Shibata, its key characteristics include an orthonormal set of basis vectors (one constant
and one “slant” basis vector optimized for linear luminance gradients), a sequence property
for frequency analysis, variable size transformation, a fast computational algorithm, and
high energy compaction. The SLT finds applications in various image processing tasks,
including image compression, denoising, enhancement, and restoration. Our proposed
approach uses these strengths by replacing traditional convolutional neural network filters
with SLT filters. This novel integration merges the SLT’s computational efficiency and
directional sensitivity with the learning capabilities of neural networks, resulting in a more
efficient architecture that is particularly valuable for resource-constrained applications like
thermal image analysis.

Concurrently, the push for sustainable energy accentuates solar power as a key renew-
able resource, with PV systems playing a pivotal role in converting sunlight into electricity.
Unfortunately, the operational performance of these systems diminishes over time due to
the faults above, each posing significant consequences for energy yield and module lifes-
pan [2—4]. Thermal imaging is notably effective at detecting hotspots, localized temperature
rises that can lead to severe degradation if left unchecked. Ensuring timely and accurate
fault detection improves maintenance workflows, reduces long-term costs, and preserves
optimal system performance [8,9].

Recent Deep Learning Efforts. Deep learning has opened new possibilities for PV
fault classification, prompting the exploration of architectures tailored to domain-specific
constraints. Approaches include convolutional neural networks (CNNs) with data augmen-
tation [22], multi-scale CNNs leveraging transfer learning [23], and lightweight coupled
UDenseNet models [24] for unbalanced datasets. Enhanced versions of standard architec-
tures, such as a modified MobileNet-V3 [25] and lightweight inception residual networks
like LIR-Net [26], further boost classification accuracy while curtailing computational over-
head. Furthermore, a cascading decision system designed specifically for thermal image
analysis in large-scale PV installations has improved anomaly detection by effectively ad-
dressing data imbalance in UAV-acquired datasets [27]. Collectively, these efforts reinforce
the need for the efficient, scalable classification of thermal imagery. However, many of
these models suffer from significant shortcomings as follows: they are often too resource-
intensive for real-time applications; lack customization for the unique challenges of thermal
images, such as blurriness, low resolution, and low contrast; and are frequently accompa-
nied by limited or unavailable open source code bases, thereby hindering reproducibility
and industrial adoption.

Proposed Approach. Motivated by the inherent challenges in thermal imaging for
solar panel fault detection, namely, blurry, low-resolution and low-contrast images, we in-
troduce SlantNet, a lightweight neural network designed for automatic fault identification
and classification using thermal imagery. This innovative approach enhances PV system
reliability and performance while reducing operational costs through two key technical ad-
vances as follows: (i) a thermal-specific image enhancement and augmentation framework
that employs adaptive contrast improvement and decolorization techniques to mitigate
noise and compensate for low image quality, and (ii) a novel framework incorporating a 2D
Slant Transform layer that leverages a fixed harmonic basis to capture directional features
and subtle intensity gradients essential for IR-based diagnostics, thereby surpassing the
capabilities of traditional CNN architectures.
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The main contributions of this research are as follows:

We developed an innovative Slant Convolution layer that harnesses the power of
the Slant Transform to extract robust directional features from low-resolution ther-
mal images. This specialized layer detects subtle fault signatures that conventional
approaches often overlook.

We created a lightweight, efficient neural network architecture optimized for real-time
deployment on resource-constrained devices. SlantNet achieves 95.1% classification
accuracy compared to state-of-the-art models while reducing computational require-
ments by 60%, making it ideal for field deployment.

We implemented a novel image enhancement and augmentation framework that
combines two complementary, measure-driven contrast enhancement techniques.
The framework employs adaptive contrast stretching and optimal decolorization
to significantly improve image quality and model robustness under challenging
conditions, achieving a 2-5% improvement in fault detection accuracy for noisy and
class-imbalanced scenarios.

We validated a comprehensive dataset for detecting solar panel defects through
extensive experiments. Our benchmarking against top models shows that SlantNet
outperforms others, achieving faster inference times and greater accuracy across
various fault categories while lowering computational overhead.

The remainder of this article is organized as follows. Section 2 presents an overview

of the related work and the evolution of neural networks for thermal PV fault detection.

Section 3 details the proposed SlantNet architecture and the thermal-specific augmentation

strategies. Section 4 provides the experimental results, benchmark comparisons, and a

discussion of the key findings. Lastly, Section 5 concludes the paper and outlines future

research directions.

2. Background

Deep learning has revolutionized image classification across various domains, includ-

ing PV fault detection. However, standard models are often resource-intensive. We briefly

describe the architectures considered in our comparative analysis, as follows:

AlexNet [28]: A pioneering CNN architecture that introduced deep learning to large-
scale image classification. Although effective, it is parameter-heavy.

ResNet50 [29]: Employs residual connections to overcome vanishing gradients, en-
abling very deep networks. Highly accurate but computationally costly.

SqueezeNet [30]: Focuses on parameter reduction using “squeeze” and “expand”
layers, achieving AlexNet-level accuracy with significantly fewer parameters.
ShuffleNetV2 [31]: Improves efficiency through channel splitting and channel shuffle
operations, well suited for mobile and low-power devices.

MobileNetV3 [32]: Optimized for mobile applications, using depthwise separable
convolutions and squeeze—excite modules to reduce computational load.
EfficientNet [33]: EfficientNet introduces a compound scaling method that uniformly
scales network depth, width, and resolution, leading to state-of-the-art performance
while significantly reducing computational cost. This balanced design allows it to
achieve high accuracy on image classification tasks with fewer parameters and FLOPs
compared to traditional architectures.

Vision Transformer (ViT) [34]: Leverages transformer blocks for image classification,
but typically requires large training datasets and more computing.
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*  Swin Transformer [35]: A hierarchical transformer architecture that computes rep-
resentations at various scales, yielding state-of-the-art results with higher computa-
tional overhead.

While these models have advanced the field, most of them often remain challenging
to deploy for real-time PV fault detection on low-resolution, noisy thermal images.

Several studies have addressed the challenges of solar panel fault classification us-
ing deep learning and thermal imaging techniques. CNNs have been a central approach,
as demonstrated by Alves et al. [22], who utilized infrared thermography combined with
data augmentation to classify multiple defect classes in PV modules. Their method effec-
tively handled unbalanced datasets and highlighted the within-class and between-class
variation challenges. Similarly, Korkmaz et al. [23] proposed a multi-scale CNN with
transfer learning, using multiple convolutional branches to improve feature represen-
tation. Their approach employed offline augmentation techniques to address dataset
imbalance and demonstrated robust performance across various fault types, such as
cracks and diode failures.

Building on lightweight architectures, Pamungkas et al. [24] introduced a coupled
UDenseNet model, leveraging geometric transformations and image augmentation using a
Generative Adversarial Network (GAN) to achieve high accuracy, making it suitable for
large-scale solar farms. Another study explores the efficiency of a lightweight convolutional
neural network for classifying thermal images, achieving high accuracy by transforming
low-dimensional images using various feature extraction methods [36]. Tang et al. [25]
proposed modifications to the MobileNet architecture, enhancing preprocessing and data
augmentation to improve performance on noisy and limited datasets, achieving faster
inference and higher recognition rates for diverse fault types. Lee et al. [26] developed
LIRNet. This lightweight inception residual network incorporated hierarchical learning
and K-means clustering to refine datasets and improve fault detection accuracy and speed
compared to EfficientNet.

These advancements collectively emphasize the importance of tailored deep learn-
ing architectures, data augmentation, and preprocessing techniques in improving the
robustness and efficiency of PV fault classification. Our proposed method builds on these
innovations by integrating the Slant Transform, enhancing feature extraction and ensuring
efficient operation on low-resolution thermal images.

3. Proposed Method

In this section, we present our proposed method, which combines Slant Convolution
for enhanced feature extraction, a lightweight model architecture tailored for real-time
thermal image processing, and thermal-specific data augmentation techniques to address
the challenges of PV fault detection in low-resolution thermal images.

3.1. Slant Convolution

Harmonic convolution layers, as introduced in previous studies, replace traditional
convolutional layers by leveraging predefined spectral filters to capture frequency domain
features instead of learning spatial filters from scratch [37-39]. These layers decompose
input features into spectral components using transformations such as the Discrete Cosine
Transform (DCT), allowing networks to learn optimal combinations of preset feature ex-
tractors. This approach reduces the risk of overfitting, decreases computational complexity,
and enhances the extraction of rich frequency domain features. Inspired by this principle,
we incorporate the Slant Transform as a harmonic layer in our network, specifically de-
signed to excel at capturing linear intensity variations and directional patterns in images.
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By incorporating these enhanced filters into convolutional layers, the network can more
effectively emphasize subtle fault signatures that standard kernels may overlook.

The Slant Transform (SLT) is a rapid, orthogonal transform ideal for analyzing piece-
wise linear data. Initially developed for image coding by Enomoto and Shibata in 1971 and
further refined by Pratt et al. and Agaian et al., the SLT provides advantages in computa-
tional efficiency and hardware implementation, sharing properties with cosine and Fourier
transforms [19,20,40]. Its key characteristics include an orthonormal set of basis vectors
(comprising one constant and one “slant” basis vector optimized for linear luminance
gradients), a sequence property for frequency analysis, variable size transformations, a fast
computational algorithm, and high energy compaction.

A significant strength of the SLT is its ability to match basis vectors to areas of constant
luminance slope. This makes it highly effective for capturing directional image features.
Although its energy compaction might be sub-optimal compared to some transforms,
the SLT’s reduced processing time and more straightforward hardware implementation
compared to DCT and DWT make it attractive. This efficiency and directional feature
capture make the SLT well suited for real-time image processing.

The SLT has found applications in various image processing tasks, including image
compression, denoising, enhancement, and restoration. Our proposed approach utilizes
these strengths by substituting traditional convolutional neural network filters with SLT
filters. This innovative integration combines the SLT’s computational efficiency and di-
rectional sensitivity with the learning capabilities of neural networks, resulting in a more
efficient architecture that is particularly advantageous for resource-constrained applications
such as thermal image analysis. We connect classical image processing and deep learning
by incorporating the SLT into the neural network architecture. This synthesis amalgamates
the SLT’s computational efficiency and mathematical properties with the learning power of
neural networks. Ultimately, this approach yields a more effective and efficient solution for
thermal image analysis, especially for applications like solar panel fault detection.

Mathematically, the Slant Transform is defined by an orthogonal transform matrix
applied to image blocks. For N = 2", the transform matrix Sy is constructed as shown in
Equation (1). This matrix generates the basis functions using a recursive method, starting
from a small matrix in the base case and building up to higher dimensions via the following
recursive relationship [20,21]:

1 0 1 0
0 0
an N —ay by
Sy — - 0 I(n/2)—2 0 Iiny2)-2 Sz 0| g
V2| 0 1 0 -1 0 Syp
0 0
—byn an bn an
: 0 Iin/2)—2 0 —Iinj2)-2 |
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where Iy is the identity matrix of order N x N. The primary advantage of the Slant
Transform lies in its effectiveness in representing gradual intensity changes within images,
particularly linear increases or decreases in pixel values. Figure 2 provides visual examples
of the base filters generated using Slant transformation matrices of sizes 2 x 2,4 x 4, and
8 x 8. These filters act as fundamental building blocks for analyzing images, enabling
the extraction of essential features that capture both uniform intensity regions and subtle
intensity transitions. Such transitions are particularly relevant for detecting faults in solar
PV modules, where anomalies often manifest as gradual thermal gradients or distinct

intensity patterns.

I
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Figure 2. Basis images of Slant transformation for N = 8 (a), N = 4 (b), and N = 2 (c).

To further enhance feature extraction, we incorporate the Slant Convolution (SC) layer
into our network. Unlike standard convolutional layers, which directly learn spatial filters
from data, the SC layer first decomposes the input image into a transform domain using a
fixed Slant Transform basis. As illustrated in Figure 2, this fixed basis effectively captures
directional and frequency characteristics inherent in the image, providing a structured
set of preset feature extractors. Because the Slant Transform is linear, the forward pass
through the SC layer closely resembles a conventional convolution operation, enabling
gradients to propagate similarly during backpropagation. Notably, the SC layer maintains
the same number of parameters as a standard convolutional layer, excluding any additional
enhancement parameters (y and «) used for adaptively weighting the fixed harmonic filters.
Specifically, for an 8 x 8 transform, each of the 64 fixed basis filters is associated with these
trainable parameters, allowing the network to learn and emphasize the relative importance
of the predefined harmonic features. Thus, the SC layer can be viewed as a specialized
form of depth-separable convolution, where spatial filters are predetermined, and their
relative contributions are adaptively modulated.

The enhancement is applied via a logarithmic equation, expressed as follows:

M = log(1+ M7)", 4)

where M denotes the magnitude of a given Slant coefficient [41]. After enhancement,
the original sign of each coefficient is restored to form the effective filters. This adaptive
enhancement allows the network to selectively emphasize spectral features and directional
intensity variations, which are crucial for detecting subtle fault signatures.

Figure 3 illustrates a comparison between two distinct processing pipelines. In the
standard convolution pipeline, learned kernels are directly applied to the input image to
extract spatial features. In contrast, the Slant Convolution pipeline first transforms the
input image into a spectral representation using a fixed harmonic basis, then adaptively
modulates these spectral components through trainable logarithmic enhancement parame-
ters. This structured approach leverages a predefined basis to yield a more interpretable
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decomposition of image features, significantly improving the network’s ability to capture
and respond to subtle directional and frequency-dependent patterns in the data.

Standard Convolution

Slant Convolution

Fixed Slant Trainable Coefficient Combined
[ Input Image H Filters }'[ Enhancement H Effective Filters H Output Feature Maps

Input Image Output Feature Maps

Further Processing

Figure 3. Comparison of Standard Convolution and Slant Convolution. Standard convolution learns
arbitrary filters directly from the data, while Slant Convolution first decomposes the input using a
fixed harmonic basis and then applies trainable logarithmic enhancement to generate effective filters
that better capture directional intensity variations.

3.2. Model Architecture

The proposed SlantNet model is designed to effectively classify thermal images into
distinct categories. The architecture incorporates a Slant Transform layer when enabled,
enhancing feature extraction by capturing directional and geometric patterns within the
thermal images. This lightweight architecture is structured to balance computational
efficiency and classification accuracy, making it suitable for low-resolution images of
size 40 x 40.

Figure 4 illustrates the overall structure of the network, comprising two convolu-
tional blocks, max-pooling layers, and a fully connected classifier. Below, we describe the
architecture in detail, along with the parameters and output dimensions for each layer.

[ Input Image H SC H BN H Relu H MaxPool }
[ S(; H BN H Relu H MaxPool }
[ Drop:)ut }»t Linear H Relu H Dropout ]
‘//
‘ Linear H Relu H Linear H (?_:t;);t

Figure 4. Overall architecture of the proposed SlantNet model incorporating the Slant Convolution
(SC) layers.

Slant Convolutional (SC) Blocks. The network starts with two convolutional blocks,
each consisting of an SC layer followed by batch normalization, a ReLU activation function,
and a max-pooling operation, as follows:

*  First SC block: The first layer uses 16 filters with a kernel size of 8 x 8, a stride of 1,
and padding of 4 to maintain the spatial dimensions. Batch normalization is applied
to stabilize training, followed by ReLU activation. A max-pooling layer reduces the
spatial dimensions from 40 x 40 to 20 x 20.

*  Second SC block: The second layer employs 32 filters with a kernel size of 4 x 4, a
stride of 1, and padding of 2. Like the first block, batch normalization, ReLU activation,
and max-pooling are applied, reducing the spatial dimensions from 20 x 20 to 10 x 10.
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Fully Connected Classifier. After the convolutional blocks, the feature map is flattened
to a vector of size 32 x 10 x 10 = 3200. This vector is passed through a fully connected
classifier consisting of the following layers:

¢ A dropout layer with a probability of 0.5, followed by a fully connected layer with
1024 neurons and ReLU activation.

¢ Another dropout layer with a probability of 0.5, followed by a fully connected layer
with 64 neurons and ReLU activation.

¢ A final fully connected layer maps the 64-dimensional vector to the desired number of
classes, producing the output logits.

Layer Details. Table 1 summarizes the parameters and output dimensions of each layer
in the SlantNet model. The architecture leverages the Slant Transform in the convolutional
layers, enhancing the ability to capture geometric and directional patterns within the
input thermal images. With its lightweight design, the model efficiently processes low-
resolution images while achieving high classification accuracy, making it suitable for
real-time deployment on edge devices.

Table 1. Layer-by-layer details of the SlantNet model.

Layer Kernel Size Stride Output Size
Input - - 1 x40 x 40
SC + BN + ReLU 8x8 1 16 x 40 x 40
MaxPooll 2x2 2 16 x 20 x 20
SC + BN + ReLU 4x4 1 32 x20x20
MaxPool2 2x2 2 32 x10x 10
Flatten - - 3200
FC1 + ReLU + Dropout - - 1024
FC2 + ReLU + Dropout - - 64

FC3 (Output) - - num_classes

3.3. Data Augmentation for Thermal Dataset

The dataset used in this study, described in Table 2, comprises 20,000 thermal images
evenly split between anomaly and non-anomaly classes [9]. It includes 11 distinct types
of anomalies, such as hotspots, cracks, and bypass diode failures, which are critical for
detecting the usage of thermal imaging due to their direct impact on energy efficiency and
potential long-term damage. Certain defects, like hotspots, manifest as localized tempera-
ture increases and are particularly amenable to detection via infrared imaging. As shown
in Table 2, the class distribution is imbalanced; the No-Anomaly class has 10,000 images
(half of the dataset), while some anomalies, such as Soiling (205 images) and Diode-Multi
(175 images), are heavily underrepresented. This imbalance poses additional challenges for
training robust models, as fewer samples are available for certain fault categories.

Data augmentation plays a crucial role in enhancing model performance, especially when
working with limited or imbalanced datasets [42], while traditional augmentation techniques
(e.g., geometric flips and brightness adjustments) have been widely adopted to improve
diversity and robustness [23,24], additional strategies are needed to overcome challenges such
as low contrast and the preservation of fine structural details in thermal images.
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Table 2. Summary of the Infrared Solar Module Dataset. Each row represents one of the 12 classes (in-
dicated by its class number), the number of images in that class, a brief description, and representative
grayscale and colored examples [9].

Class Name [Class Number

Number] of Images Description Gray Examples Colored Examples
No-Anomaly [0] 10,000 i\Tommal solar modules without
aults.
Cell [1] 1877 Hot qut occurring with a square ge-
ometry in a single cell.
Cell-Multi [2] 1288 Hot spo.ts occurring with a square ge-
ometry in multiple cells.
. Module anomaly caused by cracking
Cracking [3] o4l on the module surface.
Hot-Spot [4] 251 Hot spot on a thin film module.

Multiple hot spots on a thin film mod-

Hot-Spot-Multi [5] 247 ule.

Sunlight obstructed by vegetation,

Shadowmg [6] 1056 structures, or adjacent TOWS.

. Activated bypass diode, typically af-
Diode 7] 1499 fecting 1/3 of the module.

[ |

. . Multiple activated bypass diodes, typ- |
Diode-Multi [8] 175 ically affecting 2/3 of the module. IS JI
Vegetation [9] 1639 Panels blocked by vegetation.
Soiling [10] 205 Dirt, dust, or other debris on the mod- |

ule surface.

Offline-Module [11] 828 Entire module is heated.
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In our approach, we integrate geometric transformations with thermal quality measure-
based enhancements to effectively augment the dataset, inspired by the strategy described
in [43]. Specifically, the BIE metric introduced in a study by Ayunts et al. [44] guides
the contrast enhancement process, while heatmap decolorization is performed using the
TIA no-reference decolorization quality measure [45]. Such measure-based enhancement
techniques have been successfully utilized in various image processing tasks to boost image
quality and machine learning performance [46]. Our augmentation process comprises the
following steps:

1.  Geometric transformations: The dataset is augmented by applying vertical flips,
horizontal flips, and combined flips. These transformations increase the spatial
diversity of the training data.

2. Contrast enhancement: Each thermal image is subjected to parametric contrast stretch-
ing to improve its overall contrast. The low and high stretching parameters are
selected from the ranges [0,150] and [150, 255, respectively, based on the BIE quality
measure. For each image, the two contrast-enhanced versions (corresponding to the
highest and second-highest BIE values) are added to the augmented dataset along
with the original image.

3. Contrast-preserving decolorization: Thermal images are first converted into heatmaps
using OpenCV’s INFERNO color map. An optimal decolorization process, guided by
the TIA quality measure, is then applied to the heatmaps to enhance contrast while
preserving critical structural details.

Figure 5 shows an example of an augmented thermal image of a faulty solar panel
exhibiting soiling defects, including examples of geometric transformations, contrast-
enhanced versions (via quality measure-based enhancement), and the decolorized heatmap.

Contrast Enhancement

Geometric Transformations ﬂ I

Contrast Preserving Decolorization

BE

Figure 5. Examples of augmented thermal images of solar panels exhibiting soiling defects. The

figure illustrates the application of geometric transformations (left), quality measure-based contrast
enhancement (top right), and contrast-preserving decolorization (bottom right) to thermal images.
The arrows indicate the transformations applied to the original image, highlighting how each method
modifies the thermal image.

To ensure effective training, the original dataset consisting of 20,000 images was split
into 80% for training (16,000 images) and 10% each for validation and testing (2000 images
each). Data augmentation was applied only to the training set as follows: geometric
transformations were performed on the entire training set, while contrast enhancement was
restricted to faulty images. This strategy not only balanced the dataset but also improved
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the visual representation of anomalies, increasing the training set size from 16,000 to 88,000
images and significantly boosting the model’s generalization and fault detection capabilities.
The sizes of the validation and testing sets remained unchanged to prevent any artificial
inflation of accuracy.

4. Results and Discussion

In this section, we present a comprehensive evaluation of the proposed method. The
experimental setup and evaluation metrics are first described, followed by a detailed
analysis of the quantitative results. We also include ablation studies to assess the contribu-
tions of individual components and evaluate the computational efficiency of the proposed
architecture compared to existing methods.

4.1. Experimental Setup

All experiments were conducted on a high-performance workstation equipped with
an NVIDIA GeForce RTX 4070 Ti SUPER GPU featuring 12 GB of GDDR6X memory
(manufactured by ASUSTek Computer Inc., Taipei City, Taiwan), delivering exceptional
computational capabilities for deep learning tasks and high-throughput inference. The sys-
tem was powered by an Intel Core i7-13700K processor (manufactured by Intel Corporation,
Santa Clara, California, USA), which includes 16 cores (8 performance cores and 8 efficiency
cores) with a maximum clock speed of 5.4 GHz, ensuring efficient data processing and rapid
model training. Additionally, the workstation was equipped with 32 GB of DDR5 RAM
(Corsair Gaming, Inc., Milpitas, California, USA), enabling it to handle memory-intensive
operations such as managing large datasets and training complex neural networks. This
setup offered a robust and well-balanced architecture for executing computationally de-
manding tasks, ensuring consistent and reliable evaluations of the proposed model and
its benchmarks.

For training the models, we employed consistent hyperparameters across all experi-
ments. Each model was trained for 50 epochs using the Cross-Entropy loss function, with
the training process monitored via validation loss. Training was halted when an increase in
validation loss was observed (i.e., early stopping), and the model state corresponding to
the best (lowest) validation loss was selected for the final comparisons. The optimization
process was carried out using the Adam optimizer, initialized with a learning rate of 0.001.
To manage overfitting and enhance convergence, a StepLR learning rate scheduler was
utilized, with a step size of 10 epochs and a gamma factor of 0.5 to progressively reduce the
learning rate. The batch size for all experiments was set to 32 to ensure a balance between
computational efficiency and gradient stability.

Additionally, no pretrained weights were used for any of the models; all were imple-
mented using the torchvision module of PyTorch (version 2.0.1, built with CUDA 12.1)
Where necessary, architectures were minimally adapted to accommodate the specific num-
ber of output classes for the classification task.

Due to the lack of available codebases and detailed experimental setups for existing
thermal-specific models, it is challenging to reproduce their results or make fair compar-
isons. Given that our proposed model introduces improved convolution layers designed
specifically for thermal image analysis, we opted to benchmark against popular, well-
established CNN-based and transformer-based architectures. Specifically, we selected the
latest and most lightweight versions, such as MobileNetV3 and the tiny variant of Swin
Transformer, to ensure efficient, fair, and reproducible comparisons.



Electronics 2025, 14, 1388

13 of 20

4.2. Evaluation Metrics

To assess the performance of the proposed fault classification model for thermal im-
ages, we utilized the following four key evaluation metrics: accuracy, precision, recall,
and specificity [47]. These metrics provide a comprehensive evaluation framework, par-
ticularly useful in cases with class imbalances, as they highlight different aspects of the
model’s performance.

Accuracy measures the overall correctness of the model, representing the proportion
of total correct predictions. It is calculated as follows:

TP+ TN
TP+TN+FP+FN

Accuracy = (5)
where TP (True Positives) and TN (True Negatives) represent correctly identified faulty
and non-faulty instances, respectively, while FP (False Positives) and FN (False Nega-
tives) denote incorrect classifications. Although accuracy provides a general indication of
performance, it may not fully reflect model effectiveness in cases of class imbalance.
Precision quantifies the proportion of correctly classified positive cases (faults) out of
all instances predicted as positive. High precision implies a low false positive rate, ensuring
that most identified faults are genuine. Precision is defined as follows:
... TP
Precision = TP+ P (6)
Recall, or sensitivity, measures the model’s ability to identify all relevant instances of
faults. A high recall value indicates that the model successfully detects most actual faults,
minimizing missed detections. It is defined as follows:
TP
Recall = ——— 7
T TPYEN @
Specificity, also known as the True Negative Rate (TNR), evaluates the model’s ability
to correctly identify non-faulty instances, thus reducing false positives. Specificity is crucial
in contexts where falsely flagged non-faulty cases could lead to unnecessary interventions.

It is calculated as follows:
is calculated as follows TN

TN+ FP

Together, these metrics provide a balanced evaluation of the model’s performance,

Specificity = 8)

while accuracy gives an overall measure, precision and recall focus on the model’s capability
to correctly identify true faults without generating excessive false positives or missing
actual faults. Specificity complements these by verifying the model’s effectiveness in
correctly classifying non-faulty instances, providing a well-rounded understanding of the
model’s behavior in a real-world PV fault detection scenario.

4.3. Quantitative Results

Table 3 summarizes the classification performance of various models on the validation
and test sets for binary tasks, while Table 4 details the results for the 12-class classification
tasks. The performance metrics include accuracy (Acc), precision (Pr), recall (Rec), and
specificity (Sp). These metrics provide a comprehensive evaluation of each model’s ability
to detect and classify faults in PV modules effectively.



Electronics 2025, 14, 1388

14 of 20

Table 3. Classification performance on the validation and test sets for binary classification. The best
performing metrics are highlighted in bold.

Test Validation
Model
Acc Pr Rec Sp Acc Pr Rec Sp

AlexNet 9245 9321 91.63 9327 9280 9431 91.11 9449
ResNet50 92.65 9298 9233 9297 92.05 9218 9191 9219
SqueezeNet 89.60 9225 86,55 92,67 8875 92.08 84.82 92.69
ShuffleNetV2 9295 93.02 9293 9297 9220 93.07 9121 93.19
MobileNetV3 93.30 93.07 93.63 9297 9295 9326 92.61 93.29
EfficientNet 9350 94.87 9203 9498 94.05 9537 9261 9550
ViT 88.05 89.80 8596 90.16 8840 90.69 8561 91.19
Swin 9135 9227 9034 9237 9175 9336 8991 93.59
Proposed 95.10 9548 94.72 9548 9435 9540 93.21 95.50

Table 4. Classification performance on the validation and test sets for 12-class classification. The best
performing metrics are highlighted in bold.

Test Validation
Model
Acc Pr Rec Sp Acc Pr Rec Sp

AlexNet 7750 6141 5850 97.61 7795 6540 60.16 97.59
ResNet50 7875 6645 6256 97.68 7835 6732 6094 97.62
SqueezeNet 7670 6246 5741 9746 7785 6720 59.16 97.49
ShuffleNetV2 7930 6643 6259 9778 80.65 7232 6400 97.82
MobileNetV3 8210 6811 6792 9811 81.60 7132 6493 98.05
EfficientNet 8220 6937 71.05 9819 8255 7235 69.51 98.18
ViT 7470 60.60 5476 9717 7565 6526 5757 97.16
Swin 8045 6593 6319 9798 8155 71.61 66.77 98.02
Proposed 82.75 69.52 66.83 98.15 8430 74.06 66.67 98.28

From the results, it is evident that our proposed model outperforms all other models
in binary classification, achieving the highest accuracy (95.10%), precision (95.48%), recall
(94.72%), and specificity (95.48%) on the test set. This indicates the model’s robustness
in distinguishing between anomaly and non-anomaly cases with minimal misclassifica-
tion. Similarly, in the 12-class classification task, our model demonstrates competitive
performance, with an accuracy of 82.75% and the highest precision (69.52%) on the test set.
Although MobileNetV3, EfficientNet, and Swin achieve slightly higher recall in some cases,
our model maintains a strong balance across all metrics.

In comparison, SqueezeNet and transformer-based models ViT and Swin generally
perform less effectively, particularly in the 12-class classification task, where they struggle
to maintain high precision and accuracy. This reinforces the suitability of lightweight CNN
architectures, such as our proposed model, for thermal image classification tasks. AlexNet,
a traditional CNN model, demonstrates moderate performance but surpasses more recent
and efficient architectures like ShuffleNetV2 and MobileNetV3.

In Figure 6, we illustrate the training loss per iteration for the four top-performing
models (ShuffleNetV2, MobileNetV3, EfficientNet, and SlantNet). Meanwhile, Figure 7
presents the confusion matrices for both binary and 12-class classification tasks, provid-
ing a detailed visualization of how these same models distribute their predictions across
different classes. In the 12-class classification case, we observe that Classes 2 (Cell-Multi)
and 11 (Offline-Module) exhibit higher misclassifications, primarily due to their visual
similarities with Class 1 (Cell) and Class 0 (No-Anomaly), respectively. Based on these mis-
classification patterns, we assume that a similar challenge arises in the binary classification
scenario, where faulty samples can be misclassified as non-faulty, mainly, instances of the



Electronics 2025, 14, 1388

15 of 20

Offline-Module class that are frequently mistaken for No-Anomaly. Additionally, classes 4

(Hot-spot), 5 (Hot-spot-multi), and 10 (Soiling) are underrepresented in the original dataset
(see Table 2), resulting in fewer training examples and, consequently, lower recall scores.

Addressing these challenges through alternative sampling strategies and improved data

augmentation techniques will be the focus of our future work.
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Figure 6. Training loss per iteration for the four top-performing models across the following two
classification tasks: binary classification (top row) and 12-class classification (bottom row). The
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modules. For the detailed descriptions of the 12 classes, please refer to Table 2.

4.4. Ablation Studies

In this section, we analyze the contributions of key components in our approach

through ablation studies. Specifically, we evaluate the importance of the Slant Convolution

layer and the proposed dataset augmentation techniques.

Table 5 compares the performance of standard Conv2d layers with the proposed Slant

Convolution layers in terms of test loss and accuracy across epochs for binary and 12-class
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classification tasks. The results clearly highlight the superiority of the Slant Convolution in
capturing directional and intensity-gradient information. For binary classification, the Slant
Convolution achieves a higher accuracy across all epochs compared to Conv2d. Similarly,
for the 12-class task, the Slant Convolution reduces loss to 0.5224 and improves accuracy to
82.39%, demonstrating its effectiveness in handling more complex fault classifications.

Table 5. Comparison of Conv2d and the proposed Slant Convolution (SC) in terms of test loss and
accuracy during the training.

Binary 12 Classes
Convolution
Epochl Epoch10 Epoch30 Epochl Epochl0 Epoch30
L Conv2d 0.3483 0.2026 0.1569 0.9596 0.6361 0.5414
088 sC 03163  0.1803  0.1468  0.8816 0581 05224
Accurac Conv2d 84.7 92.95 94.8 69.6 79.2 82.25
y SC 87.3 93.05 95.1 70.8 79.75 82.39

Table 6 evaluates the impact of the proposed dataset augmentation techniques on
the classification performance of different models. Without augmentation, the models
generally exhibit lower accuracy, precision, and recall across both binary and 12-class
classification tasks. For instance, SlantNet achieves 94.35% accuracy in binary classifica-
tion with augmentation, compared to 93.50% without it. Similarly, in the 12-class task,
augmentation improves the accuracy of MobileNet from 79.80% to 81.60% and SlantNet
from 80.30% to 84.30%.

Table 6. Ablation studies for dataset augmentation. Classification results for the validation set with
and without proposed dataset augmentation. The best performing metrics are highlighted in bold.

Binary 12 Classes
Model Augmentation
Acc Pr Rec Sp Acc Pr Rec Sp

ResNet50 No Aug 90.60 93.11 8771 9349 7895 69.97 5898 97.68
Proposed 9205 9218 9191 9219 7835 6732 6094 97.62
No Aug 9045 9219 8841 9249 77.05 6605 5595 97.36
ShuffleNetV2 b, posed 9220 93.07 9121 9319 7785 6720 59.16 97.49
. No Aug 9235 9435 90.11 9459 79.80 69.87 6219 97.79
MobileNetV3 b, osed 9295 9326 9261 9329 8160 7132 6493 98.05
EfficientNet | NO AUS 93.65 9432 9291 9439 8285 7322 6879 98.14
Proposed 9405 9537 9261 9550 8255 7235 6951 98.18
SlantNet No Aug 9350 9476 9211 9489 8030 70.14 6217 97.83
Proposed 9435 9540 9321 95.50 8430 74.06 66.67 98.28

These results underline the importance of augmentation in improving the generaliza-
tion capabilities of models, particularly for imbalanced thermal datasets. The combination
of geometric transformations and contrast-based enhancements ensures better feature
diversity and improves the models’ robustness.

4.5. Computational Efficiency Evaluation

In this subsection, we evaluate the computational efficiency of various neural network
architectures, including AlexNet, ResNet50, SqueezeNet, ShuffleNet, MobileNet, Efficient-
Net, Vision Transformer, Swin Transformer, and our proposed model. The evaluation
considers multiple metrics as follows: trainable parameter count, floating point operations
(FLOPs), memory usage, and throughput (inferences per second) [48].

The computational efficiency metrics are defined as follows:
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*  Trainable Parameters (P): The total number of parameters in the network that are
updated during training. A lower number of trainable parameters is preferred for
reducing memory usage and computation time, but overly small models may sacri-
fice accuracy.

*  Floating Point Operations (FLOPs): The number of multiply-accumulate (MAC) oper-
ations required for a single forward pass. Lower FLOPs indicate better computational
efficiency, but overly aggressive reduction in FLOPs can affect model performance.

¢ Throughput (T): The number of images processed per second, computed as follows:

N
T =

- 7
ttotal

©)

where N is the total number of images processed and t.,; is the total inference time.
Higher throughput is better, especially for real-time applications.

The performance of the proposed model was compared against several standard
architectures. Table 7 summarizes the parameters, FLOPs, memory usage, and throughput
for each model. The throughput was measured by repeatedly running 100 forward passes
with randomly generated inputs at a batch size of 32, providing a consistent benchmark for
comparing the processing speed of different models.

Table 7. Comparison of model efficiency metrics. The best performing metrics are highlighted in
bold.

Model P (M) FLOPs (MMac) M (MB) T (img/s)
AlexNet 57.01 714.97 217.48 18,976
ResNet50 23.51 4130.00 89.68 1591
SqueezeNet 0.7 298.14 2.76 9069
ShuffleNet 1.26 151.36 4.81 7232
MobileNetV3 2.54 60.91 9.69 7759
EfficientNet 4.01 408.92 15.30 3281
ViT 85.80 17,610 327.30 535
Swin Transformer 27.58 3120 105.21 828
SlantNet 3.36 3.55 12.82 55,431

As seen in Table 7, the proposed model achieves superior computational efficiency
compared to existing models, summarized as follows:

¢  The proposed model has only 3.36 M trainable parameters, significantly fewer than
AlexNet (57.01 M) and ViT (85.80 M), reducing memory requirements while maintain-
ing high accuracy.

¢ Withjust 3.55 M FLOPs, our model is highly efficient, especially compared to compute-
heavy models like ResNet50 (4130 M FLOPs) and ViT (17610 M FLOPs).

¢ Achieving a throughput of 55,431 images per second, SlantNet surpasses all other ar-
chitectures by a substantial margin, nearly tripling the speed of AlexNet (18,976 img/s)
and with a performance that is six times faster than SqueezeNet (9069 img/s). This
high throughput makes it especially well suited for real-time applications.

The proposed model demonstrates a remarkable balance between computational
efficiency and accuracy. Its lightweight design makes it particularly advantageous for
real-time PV fault detection in resource-constrained environments.

5. Conclusions

The growing reliance on photovoltaic (PV) systems requires efficient fault detection
methods to reduce energy losses and maintenance costs. This study presents SlantNet,
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a lightweight neural network designed to classify PV faults based on thermal images.
SlantNet features an innovative architecture that integrates the Slant Convolution layer,
which captures directional features and thermal gradients, along with a thermal-specific
data augmentation strategy utilizing adaptive contrast adjustments for imbalanced datasets.
Compared with existing methods, SlantNet achieves a classification accuracy of 95.1%
while reducing computational requirements by 60%, making it highly efficient for real-time
deployment on resource-constrained devices and valuable for large-scale PV installations
where rapid fault detection is essential. In addition, our results reveal the following two
important conclusions: first, the recall metrics, especially in the 12-class case, indicate a
general challenge in fault classification of solar panel images; second, specific fault classes,
namely Soiling, Hot-Spot, and Offline-Module, are particularly challenging for accurate
classification due to dataset imbalance.

Future research will explore adapting SlantNet for other renewable energy technolo-
gies like wind turbines and hydroelectric systems. Another key research direction is to
integrate SlantNet into IoT-based monitoring frameworks using TinyML approaches, en-
abling continuous, real-time fault detection directly on resource-constrained edge devices.
In addition, we will investigate advanced data augmentation methods and novel model
architectures, including alternative sampling strategies, to address challenging conditions
and rare faults, and improve performance in terms of misclassification and class imbalance.
Finally, the strengths and weaknesses of other fast orthogonal transform-based deep learn-
ing paradigms, like transformers, CNNs, and LSTMs, will be investigated for PV system
fault diagnosis. This work provides a foundation for scalable, real-time fault diagnosis in
renewable energy, contributing to enhancing sustainable energy infrastructure reliability
and efficiency.
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