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Abstract: Remote photoplethysmography is a technology that estimates heart rate by
detecting changes in blood volume induced by heartbeats and the resulting changes in
skin color through imaging. This technique is fundamental for the noncontact acquisition
of physiological signals from the human body. Despite the notable progress in remote-
photoplethysmography algorithms for estimating heart rate from facial videos, challenges
remain in accurately assessing heart rate during cardiovascular exercises such as treadmill
or elliptical workouts. To address these issues, research has been conducted in various
fields. For example, an understanding of optics can help solve these issues. Careful design
of video production is also crucial. Approaches in computer vision and deep learning with
neural networks can also be applied. We focused on developing a practical approach to
improve heart rate estimation algorithms under constrained conditions. To address the
limitations of motion blur during high-motion activities, we introduced a novel motion-
based algorithm. While existing methods like CHROM, LGI, OMIT, and POS incorporate
correction processes, they have shown limited success in environments with significant
motion. By analyzing treadmill data, we identified a relationship between motion changes
and heart rate. With an initial heart rate provided, our algorithm achieved over a 15 bpm
improvement in mean absolute error and root mean squared error compared to existing
methods, along with more than double the Pearson correlation. We hope this research
contributes to advancements in healthcare and monitoring.

Keywords: remote photoplethysmography; contactless; heart rate; facial video; fitness
applications; motion-based

1. Introduction

Heart rate (HR) is a crucial indicator of an individual’s health status [1]. HR can
also be measured using contact-based devices that rely on physiological signals, such as
electrocardiography (ECG) and photoplethysmography (PPG) [2,3]. However, remote
photoplethysmography (rPPG) enables noncontact estimation based on the PPG signal [4].
Since its development, rPPG-based algorithms have occupied a prominent position in
remote heart rate estimation [5]. However, accurately capturing heart rate during dynamic
cardiovascular activities, such as treadmill running or elliptical training, remains a per-
sistent challenge. These limitations could potentially be addressed by gaining a deeper
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understanding of the light spectrum [6], or investigating the overlap between computer
vision/neural networks and health monitoring [7-9], or another sensor [10]. We aimed
to explore methods for enhancing the performance of rPPG algorithms, particularly in
environments with regular movement patterns, such as treadmill workouts. To achieve
this, we also conducted an in-depth study of existing algorithms.

The rPPG-based algorithms primarily extract the blood volume pulse (BVP) from skin
pixels in facial video frames for HR estimation [11-15]. The algorithm estimates heart rate
based on changes in skin color caused by variations in capillary blood flow due to the
heartbeat. To concretize this methodology, it is essential to model the light reflected from
the skin. This reflected light can be mathematically represented as follows [5]:

Ct)=uc-lp-co+uc-Ip-co-i(t)+us-Io-st)+up-Io-p(t) 1)

In Equation (1), u. represents the unit vector of skin color. I denotes the stationary
part, and i(t) denotes the time-varying part. The us represents the unit vector of the light
spectrum, and s(f) denotes the component caused by motion. uy, is the unit vector of the
pulse component in the RGB signal, and p(t) represents the pulse signal. The goal of rPPG
algorithms is to separate and extract the pulse component (BVP) from the RGB signal in
Equation (1).

Blind source separation (BSS) is an algorithm that can separate sources from mixed
signals, and it could be used to isolate pulse components from RGB signals that consist
of various types of light reflected from the skin. In particular, independent component
analysis (ICA) is a representative example that can be used with RGB signals to extract
heart rate [11]. If ICA separates the BVP in Equation (1), the GREEN algorithm assumes
that the green channel of the RGB signal contains sufficient information to estimate the BVP
and directly utilizes this channel for heart rate estimation. Research on the characteristics
of the GREEN channel has shown that it has a higher signal-to-noise ratio compared to
other channels and effectively captures subtle BVP variations while minimizing the impact
of motion artifacts [4]. The local group invariance (LGI) algorithm maintains consistent
signal extraction across various facial regions and lighting conditions by analyzing local
pixel groups within predefined regions of interest (ROIs) [12]. This approach reduces the
susceptibility of rPPG signals to external perturbations, ensuring reliable HR estimations
even with changes in facial expressions or minor movements. The Orthogonal Matrix
Image Transformation (OMIT) algorithm specifically addresses the challenge of motion-
induced artifacts by employing adaptive filtering techniques that distinguish between
genuine physiological signals and noise caused by subject movement [13]. Additionally,
OMIT primarily employs a reduced QR decomposition algorithm that utilizes Householder
reflections. Furthermore, the pulse blood volume (PBV) algorithm focuses on accurately
capturing blood volume changes within the microvasculature of facial skin [14]. Analyzing
temporal fluctuations across RGB channels and integrating spatial averaging techniques,
PBV enhances signal quality and reliability even under challenging lighting and movement
conditions. The CHROM algorithm leverages chrominance information to isolate physio-
logical signals from common noise sources like lighting fluctuations and subject movement,
thereby enhancing the stability and accuracy of HR measurements in dynamic environ-
ments [15]. Moreover, the u,, in Equation (1) is separated by projecting the chrominance
signal onto a plane orthogonal to the standardized skin-tone vector. In other words, this
process involves removing the specular reflection component. Following that, alpha tuning
is carried out based on the intensity of the chrominance signal. This tuning is calculated
using a scaling factor that is dynamically determined from the standard deviation of the
signal after the specular reflection has been removed. Through this process, the us and u,,
in Equation (1) are effectively separated. The plane-orthogonal-to-skin (POS) algorithm is a
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state-of-the-art approach that transforms the RGB color space to isolate pulsatile signals
from ambient color variations [5]. POS decomposes u;, using a process similar to that of
CHROM. However, in contrast to CHROM, POS first removes intensity before perform-
ing alpha tuning with the specular reflection component. Furthermore, it is regarded as
a more robust algorithm than CHROM because it defines the projection axis based on
physiological principles.

All of the aforementioned algorithms originate from the concept of extracting BVP
from video by utilizing the subtle color variations in the skin caused by heartbeats and
have been meticulously designed to be robust against motion-induced noise. Many studies
have been conducted to test and improve the performance of rPPG-based algorithms under
relatively static conditions, such as head movements or facial expression changes, compared
to more dynamic exercise scenarios, such as walking [16]. However, in physical exercise
applications, such as treadmill and stepping, these algorithms encounter a greater diversity
and higher levels of movement-induced noise than in controlled laboratory environments.
Furthermore, these exercise conditions adversely affect the performance of rPPG-based
algorithms for remote heart rate estimation.

We specifically focused on running scenarios, such as running—which involves in-
stances where both feet are simultaneously off the ground, inducing faster and more
vigorous movements, unlike other activities such as cycling or stepping. These circum-
stances generate movement noise, which is more difficult to mitigate than that encountered
in other testing environments [16]. We propose the following novel algorithm, which
estimates heart rate by leveraging human motion to overcome these challenges.

2. Materials and Methods
2.1. Experimental Setup

Public datasets containing facial video and heart rate measurements collected dur-
ing treadmill exercise are not publicly available. Although the dataset described in [17]
provides photoplethysmography (PPG) signals and facial images of participants captured
while they were walking, it is unsuitable for our research because the participants held the
camera in their hands, introducing additional motion artifacts beyond their own move-
ments in the video recordings. Furthermore, the existing rPPG datasets are typically
captured under controlled lighting conditions, with subjects instructed to remain as still
as possible. However, only a limited number of datasets provide motion-blurred facial
footage in dynamic scenarios for a benchmark test of rPPG algorithms [16,17]; there are
currently no publicly available datasets that include both treadmill exercise footage and
the necessary PPG signals required for this study. Consequently, we acquired data through
our experimental procedures.

2.1.1. Subject Condition

The participants recruited for the experiment were healthy adults, both males and
females, aged 20-32 years. As the data collection process involved running on a treadmill
for up to 10 min, the participants were instructed to obtain sufficient sleep the night before
the experiment and to refrain from consuming caffeine or taking any medications that
could influence heart rate within 24 h before the testing session. These precautions were
implemented to ensure the accuracy and reliability of heart rate measurements during
the experiment.

2.1.2. Experimental Design

All experiments were conducted on a treadmill fixed at a 0° inclination. The running
protocol was structured into three distinct phases:
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e  First, the participants began with a 30-s rest period, followed by running at speeds of
3 km/h,5 km/h, and 7 km/h, each maintained for 1 min.

e  Second, after maintaining a stationary state for 30 s, participants ran at a speed of
9 km/h for 30 s. It took approximately 15 s for the treadmill to reach the speed of
9 km/h. Therefore, considering this time, the total duration of running after stopping
becomes 45 s.

e  Third, this phase started with a 30-s rest, followed by a series of speed variations at
3km/h,5km/h, 7 km/h, and 9 km/h, respectively. After that, participants proceeded
at speeds of 7 km/h, 5 km/h, and 3 km/h. Running at each speed lasted for 1 min,
and this session was finalized with a 1-min rest period.

This structured approach ensured consistent treadmill conditions while varying the
running speeds and rest intervals. It allowed us to gather detailed data on participant’s
physiological responses across different exercise intensities. This study has been approved
by the Bioethics Committee of Kwangwoon University.

2.2. Methodology
2.2.1. Analysis Dataset

The FaceMesh module from the MediaPipe library [18] was applied to recognize
human faces and extract facial landmarks (Figure 1). Specifically, Landmark 4 was used,
which corresponds to the center point of the nose, as illustrated in the official FaceMesh
documentation [19]. In addition, we focused on the y-coordinates of landmark 4 because
vertical movements are more prominent on the screen compared with horizontal move-
ments. This consideration is due to the inherent properties of treadmill usage and the
biomechanics of human running, resulting in a more significant motion along the y-axis.

Figure 1. The official polygon structure of MediaPipe’s FaceMesh, which utilizes a detailed mesh of
468 points of 3D facial landmarks [19].

Using the coordinate information corresponding to the movement obtained through
the aforementioned procedure, a spectrogram in the time-frequency domain was generated,
as shown in Figure 2. In the spectrogram, the solid red line represents the frequency with
the maximum amplitude for each instance. A comparison of heart rate label data for
Figure 2 reveals a notable similarity between the estimation and true label. The Pearson
correlation coefficient was calculated, yielding 0.74 overall to quantitatively assess this
relationship. Although some variability exists across different instances and running
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speeds, the significant correlation demonstrates a strong positive relationship between the
frequency component-based estimation and the true heart rates.
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Figure 2. (a) A figure displaying the STFT result for one of the data samples and the main frequency
over time indicated by a red line labeled “Max Amplitude Frequency”. (b) This figure illustrates
the similarity between the labeled heart rate and the maximum frequency over time. The red-
colored graph represents the plot of the maximum amplitude frequency over time, which is directly
taken from the maximum frequency identified in (a), and the red tick marks on the left denote the
corresponding y-axis. The blue graph depicts the labeled heart rate, and its y-axis corresponds to the
blue tick marks on the right.

Table 1 presents the Pearson correlation between the maximum frequency and the
labeled heart rate across the entire dataset. The “Full range” refers to a value recalculated
over the entire speed range rather than the average of Pearson correlations calculated for
individual speed segments. Consequently, Pearson correlations for shorter speed segments
tend to be lower, as they are more sensitive to fluctuations in maximum frequency over
short periods. Section 2.1.2 outlines three types of experiments. In the first and second
datasets, treadmill speed and heart rate continuously increase until the end. In contrast, the
third dataset shows an initial increase in speed and heart rate, which is then followed by a
decrease. As a result, these datasets exhibit different trends in Pearson correlation values.
In the first case, where both movement frequency and heart rate consistently increase, the
correlation is close to 1 for the ‘Full range’, as shown in Table 2.
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Table 1. Pearson correlation coefficient values between the main frequency components of facial
coordinate movements and heart rate labels.

Pearson Correlation for Each Treadmill Speed of All Data Types

Speed 3km/h 5km/h 7km/h 9km/h  Full range
Pearson correlation 0.01 0.37 0.63 0.57 0.74

Table 2. The Pearson correlation for data where treadmill speed and heart rate consistently increase.

Pearson Correlation for Each Treadmill Speed of Data Types 1, 2

Speed 3km/h 5km/h 7km/h 9km/h  Full range
Pearson correlation —0.04 0.32 0.60 0.48 0.84

On the other hand, the second case includes segments where movement frequency
and heart rate decrease, leading to a lower correlation of the full range compared to the
first case, as shown in Table 3.

Table 3. The Pearson correlation for data where treadmill speed and heart rate first increase and
then decrease.

Pearson Correlation for Each Treadmill Speed of Data Type 3

Speed 3km/h 5km/h 7km/h 9km/h  Full range
Pearson correlation 0.04 0.49 0.69 0.65 0.32

The analysis demonstrated that the facial movements of individuals during treadmill
exercises could effectively estimate their heart rates. We developed an unsupervised
learning algorithm that leverages the relationship between facial dynamics and heart rate.
This algorithm uses facial landmark information to capture subtle movements associated
with heart rate fluctuations, allowing for accurate estimation without requiring true heart
rate labels.

2.2.2. Preprocessing

MediaPipe’s Face Mesh detects a total of 468 facial landmarks. Among these, we
used landmark number 4, which represents the central point of the nose located at the
center of the face. Each landmark provides 3D coordinates corresponding to the x, y, and
z axes. The x-axis indicates left-to-right movement in the video, the y-axis represents
up-and-down movement, and the z-axis captures movement toward or away from the
camera. As analyzed in Section 2.2.1, we decided to use the y-axis among the three axes:
x, y, and z. The coordinates extracted from each facial image frame were preprocessed
using whitening and the calculation of the first derivatives. Whitening was applied to
eliminate relationships among the data dimensions and standardize the feature set, thereby
enhancing the effectiveness of subsequent analyses (Figure 3).

2.2.3. Proposed Model

The algorithm estimates heart rate while using a treadmill by leveraging motion data.
To set the initial parameters, it requires the heart rate estimated by the rPPG algorithm
during a stationary state or at a slow speed of 5 km/h or less. After this initial setup,
the heart rate is further refined through filters. Before we discuss the specifics of our
algorithm, there are a few key points to cover. A duration of around 6 s is commonly
regarded as sufficient for extracting BVP in many rPPG-related studies [20-22]. For example,
studies [21,22] implemented their pipelines using a 6-s time window. To enable a fair
comparison with other rPPG algorithms, we set the time window of the proposed algorithm
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to 6 s and updated it frame by frame. Many rPPG algorithms utilize FFT to predict the final
BPM [5,21]. Even though the proposed algorithm also empolys FFT, its goal differs from
theirs, which directly yields the heart rate. Specifically, the proposed algorithm applies FFT
to the facial landmark motion data to predict the heart rate.
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Figure 3. (a) Time-series facial coordinate data. (b) Preprocessed time-series facial coordinate data.

Figure 4 demonstrates how the proposed algorithm estimates HR variance. First,
the algorithm performs the fast Fourier Transform (FFT) on the data within the current
window, identifying the dominant frequency, which corresponds to the frequency with
the highest amplitude. The dominant frequency was calculated and stored for each final
frame of the time window. This continuous updating process ensures real-time heart rate
estimation based on the most recent facial movements. The accumulated frequency data
exhibited reduced linearity and noise compared to the previously plotted spectrograms.
We computed motion frequency for the most recent frame using an exponentially weighted
average of over 30 frames (equivalent to 1 s) to mitigate this noise. Subsequently, this
data underwent an additional moving average and smoothing process to determine the
amplitude used for calculating the final heart rate change, as illustrated by the graph labeled
“freq mv” in Figure 5. We calculated the first derivative of “freq mv” and applied a moving
average to this derivative, resulting in “freq diff mv” to incorporate the directionality of
heart rate change relative to the amount of movement, as shown in Figure 5. By multiplying
“freq mv” and “freq diff mv” and applying a scaling factor of 0.3, we obtained the frame-
by-frame heart rate change. The scaling factor of 0.3 is obtained by dividing the variance
of the label by the HR variance. This value enables the proposed model to effectively
estimate the heart rate corresponding to the dominant frequency. Finally, the HR variance is
continuously added to the previous heart rate estimates to estimate the current heart rate.
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Figure 5. A graph of the values of the internal variables of the proposed model. ‘freq mv’ was drawn
at one-tenth of its actual size to be plotted alongside the other variables.

3. Results and Discussion

To ensure a fair comparison, all tests were conducted under identical conditions. The
code was implemented in Python 3.10 using the Spyder IDE. The computer used for testing
was equipped with an AMD Ryzen 9 7950X CPU and 64 GB of memory. We utilized the
rPPG-toolbox to conduct benchmark tests. This is a validated library that implements the
rPPG algorithms we described earlier in the introduction [22]. By using this library, we were
able to reduce the time required to create a pipeline for benchmarking and avoid potential
errors in the implementation of existing rPPG algorithms that could lead to unreasonable
performance degradation.

3.1. Total Comparison

Tables 4-6 present the overall results calculated using Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Pearson’s correlation coefficient. In the tables, the
“Speed” column represents the speed ranges into which the data points were divided,
and ‘Average’ denotes the overall mean. The “rPPG algorithm” indicates that the results
listed from the row immediately below it to the row above ‘Proposed model’ correspond
to the outcomes from rPPG-based algorithms. The specific rPPG algorithms used are
listed immediately below the ‘rPPG algorithm” row. Additionally, beneath the ‘Proposed
model’ row, the names of the respective rPPG algorithms are listed, indicating that the
initial heart rate for the proposed algorithm in this study was set to the estimated values
from rPPG algorithms. In other words, when the treadmill began operating at 3 km/h,
the heart rate estimated by the rPPG algorithm was designated as the initial value for the
proposed algorithm presented in this paper. The accuracy for each velocity category was
assessed based on speed labels. Our algorithm showed higher accuracy than the existing
rPPG algorithms. However, the improvement was attributable to the proposed algorithm
for determining the initial heart rate using a treadmill speed index starting at 3 km/h.
In other words, we included cases where our algorithm established the initial heart rate
when the rPPG algorithm estimates were less accurate. Since our algorithm estimates
heart rate under conditions of significant motion when an initial value is provided, the
accuracy can be improved by using the more precise heart rate values obtained from the
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rPPG algorithm during periods of minimal or no subject movement as the initial input
for the proposed model. Therefore, to evaluate the accuracy of the proposed algorithm
under optimal initialization conditions, rather than an arbitrary initial value determined at
a treadmill speed of 3 km/h, it was necessary to utilize initial heart rate values obtained
when the rPPG algorithm provided accurate estimations. The algorithm provides accurate
estimates. The differences in results between these two scenarios are illustrated in Figure 5.

Table 4. The table shows the heart rate estimates obtained using the rPPG algorithm’s heart rate
estimate at a treadmill speed of 3 km/h as the initial value for the proposed algorithm to predict
subsequent heart rates, along with the calculated MAE.

3 km/h Point Initialization MAE Table (bpm)
rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 40.14 39.27 40.41 40.71 41.85 40.72 39.93
5km/h 55.57 55.51 56.43 56.78 56.95 56.32 56.40
7km/h 68.33 69.05 69.69 69.45 69.13 70.25 69.76
9km/h  105.09 104.39 105.76 105.86 106.46 105.37 104.99
Average  50.51 51.97 53.03 52.84 53.41 52.91 52.68
Proposed Model
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 30.55 29.93 31.88 33.70 30.59 34.74 29.77
5km/h 32.17 31.63 32.39 34.96 30.55 34.58 31.16
7km/h 43.68 44.83 45.84 48.63 46.21 48.63 43.43
9km/h 40.50 40.50 45.09 49.78 40.50 49.78 40.50
Average  31.86 31.73 32.65 34.81 31.93 35.28 31.26

Table 5. The table shows the heart rate estimates obtained using the rPPG algorithm’s heart rate
estimate at a treadmill speed of 3 km/h as the initial value for the proposed algorithm to predict
subsequent heart rates, along with the calculated RMSE.

3 km/h Point Initialization RMSE Table (bpm)
rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 41.29 40.00 41.55 4221 43.90 42.42 40.89
5km/h 56.18 55.89 57.22 57.99 58.56 57.67 57.03
7km/h 68.91 69.43 70.43 70.72 70.68 71.47 70.33
9km/h  105.39 104.46 105.94 106.44 107.06 10591 105.28
Average  53.22 54.79 56.10 56.32 57.07 56.40 55.60
Proposed Model
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 31.38 30.84 32.74 34.51 31.43 35.51 30.65
5km/h 32.79 32.46 33.26 35.74 31.36 35.31 31.98
7km/h 44.50 45.83 46.93 49.62 47.06 49.62 44.46
9km/h 42.61 42.61 46.69 51.23 42.48 51.23 42.61
Average  33.79 33.99 34.86 36.92 34.27 37.34 33.53
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Table 6. The table shows the heart rate estimates obtained using the rPPG algorithm’s heart rate
estimate at a treadmill speed of 3 km/h as the initial value for the proposed algorithm to predict
subsequent heart rates, along with the calculated Pearson correlation coefficient.

3 km/h Point Initialization Pearson Table (bpm)

rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h - - - - 0.00 —0.02 -
5km/h - - - - - - -
7km/h - - - - —0.01 - -
9km/h —0.09 - —0.03 —0.05 0.04 —0.06 —0.08
Average - - 0.00 0.00 0.00 0.01 -
Proposed Model
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 0.41 0.41 0.41 0.41 0.41 0.41 0.41
5km/h 0.69 0.71 0.71 0.71 0.71 0.71 0.71
7km/h 0.64 0.70 0.70 0.70 0.70 0.70 0.70
9km/h 0.36 0.36 0.36 0.36 0.36 0.36 0.36
Average 0.89 0.90 0.90 0.90 0.90 0.90 0.90

3.2. Improved Initialization

When the absolute difference between the output of the rPPG algorithm and the label
is less than 10, please refer to Tables 7-9 for the performance tables detailing the initiation
of heart rate estimation using the proposed algorithm. In this scenario, performance
improved compared to starting the estimation immediately with the proposed algorithm
for a treadmill speed of 3 km/h. Figure 6 illustrates the impact of changes in the initial
value on the overall prediction results.

As shown in Figure 6, the overall appearance of the prediction graphs did not differ
significantly from the previous ones. This finding is because the data used by the proposed
algorithm consists solely of movement data collected from the facial coordinates of indi-
viduals in the video. Therefore, in Figure 6a,b, the frequency variations of the movement
data corresponding to the start of the heart rate estimation by the proposed algorithm
are uniformly applied as negative values. However, since Figure 6b lacks the values that
should be smoothed together with the existing heart rate fluctuations, the predicted heart
rate decreases with a steep downward slope from the initial value.

Figure 7 illustrates the residual distributions for each heart rate estimation algorithm.
The proposed model demonstrates a median value closest to zero, with its interquartile
range (IQR) also concentrated near zero, outperforming other rPPG algorithms in this
regard. However, in the box of the proposed model, the lower bound and the Q1 value are
farther from the median compared to the upper bound and the Q3 value. This contrasts
with other rPPG algorithms, which exhibit a roughly symmetrical distribution around
the median. We believe this result arises from the insufficient modeling of the time delay
between changes in exercise and their impact on heart rate. In reality, heart rate does not
respond immediately to changes in physical activity [23]. To account for this characteristic,
we incorporated filters into the model, as described in Section 2.2.2. Nevertheless, it appears
that this modeling was insufficient to fully capture the actual delay effects on heart rate.
Future research could focus on better modeling the delay in heart rate changes caused by
physical activity.
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Table 7. This table presents the MAE results of heart rate estimations based on the improved

initial values, where the proposed algorithm is initialized using rPPG algorithm estimates with an

MAE < 10.
rPPG bpm MAE < 10 Initialization MAE Table (bpm)
rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 40.53 32.41 41.96 41.42 41.79 41.63 38.73
5km/h 57.05 54.20 56.56 56.93 56.94 54.84 55.27
7km/h 72.82 61.83 72.09 67.64 67.26 64.23 76.72
9km/h  105.09 110.38 105.76 97.00 106.46 101.65 104.99
Average 49.65 45.05 51.93 53.41 52.93 51.25 50.75
Proposed Model
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 12.77 12.40 17.21 15.79 19.02 17.04 15.25
5km/h 20.03 21.17 22.61 19.75 29.43 16.82 21.95
7km/h 24.86 19.95 29.48 25.47 23.39 17.34 28.15
9km/h 22.42 11.55 22.48 22.29 15.89 21.73 25.03
Average 17.21 18.57 19.95 19.91 26.39 18.77 21.11

Table 8. This table presents the RMSE results of heart rate estimations based on the improved

initial values, where the proposed algorithm is initialized using rPPG algorithm estimates with an

MAE < 10.
rPPG bpm MAE < 10 Initialization RMSE Table (bpm)
rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 41.85 33.53 43.51 43.13 43.92 43.56 40.17
5km/h 57.70 54.65 57.33 58.14 58.55 56.29 55.94
7km/h 73.42 62.20 72.74 68.99 68.92 65.45 77.20
9km/h  105.39 110.57 105.94 98.18 107.06 102.20 105.28
Average  52.52 48.95 54.81 56.80 56.51 54.65 53.72
Proposed Model
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h 13.76 13.56 18.29 16.75 20.55 18.45 16.22
5km/h 20.89 22.39 23.59 20.83 30.40 17.89 22.99
7km/h 26.11 21.15 30.52 26.60 24.80 18.82 29.51
9km/h 24.29 12.17 24.56 24.78 18.26 23.28 26.98
Average 1947 21.72 22.36 22.42 29.14 21.61 23.77
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Table 9. This table presents the Pearson correlation results of heart rate estimations based on the
improved initial values, where the proposed algorithm is initialized using rPPG algorithm estimates
with an MAE < 10.

rPPG bpm MAE < 10 Initialization Pearson Table

rPPG algorithm
Speed CHROM GREEN ICA LGI OMIT PBV POS
3km/h - - - - - - -
5km/h  -0.01 - —0.06 0.02 —0.04 - -
7km/h - - - - - 0.01 -
9km/h - - 0.00 - 0.00 —-0.13 0.06
Average  —0.09 —0.15 —0.03 —0.06 0.04 —0.04 —0.08
Proposed Model
Speed - GREEN ICA LGI OMIT PBV POS
3km/h - - - - - - -
5km/h 0.53 0.21 - - - - -
7km/h 0.79 0.61 0.57 0.71 0.67 0.67 0.79
9km/h 0.60 0.81 0.71 0.74 0.75 0.81 0.65
Average 0.36 0.88 0.36 0.06 0.36 0.71 0.36
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Figure 6. (a) Heart rate prediction results of the proposed algorithm when the initial value is set to
the rPPG algorithm’s heart rate estimate at a treadmill speed of 3 km/h. (b) When the initial value is
set to rPPG estimates with an accuracy of MAE < 10. (a) Initialization with the heart rate at the point
when the treadmill speed reaches 3 km/h. (b) Initialization of the proposed algorithm with the heart
rate value when the predicted heart rate MAE of the rPPG algorithm is <10.
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Residuals Box Plot for heart rate prediction models

: |

=
Tl L

Proposed model CHROM GREEN ICA LGI OoMIT PBV POS

Residuals

Figure 7. The graph of residuals plotted as box plots.

3.3. Hardware Usage

The proposed model’s resource usage was as follows: it ran as a single process,
utilizing an average of 93.01% of one CPU core and consuming approximately 348.20 MB
of memory. No GPU was utilized. Since the proposed model’s computations primarily
involve FFT and a few filters, memory consumption remained minimal, except for the
process of extracting RGB signals from skin pixels in the video.

4. Conclusions

This study demonstrated that the heart rate estimation algorithm based on an unsuper-
vised learning approach achieved superior accuracy compared to the existing rPPG-based
algorithms under conditions of significant motion-induced video blurring. However, these
results are based on heart rate estimates from the traditional rPPG-based algorithm. Addi-
tionally, due to the sensitivity of the proposed algorithm to the initial values, the accuracy
of the proposed algorithm increases in tandem with the accuracy of the existing rPPG-based
algorithm. In conclusion, the proposed algorithm outperformed conventional rPPG-based
algorithms for situations involving vigorous treadmill exercises— the intensity of move-
ments increased. Therefore, by using the existing rPPG-based algorithm at lower speeds
and switching to the proposed algorithm as the speed increased, a relatively accurate heart
rate was provided, even when there was more motion noise than traditional methods
during treadmill exercise.
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Abbreviations

The following abbreviations are used in this manuscript:

PPG photoplethysmography
rPPG remote photoplethysmography
ECG electrocardiography
HR heart rate
BVP blood volume pulse
BSS blind source separation
ICA independent component analysis
IOR interquartile range
CHROM  chrominance based rppg
LGI local group invariance
OMIT orthogonal matrix image transformation
POS plane orthogonal to skin
MAE mean absolute error
RMSE root mean squared error
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