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Abstract: This paper presents an improved speech enhancement algorithm based on
microphone arrays to improve speech enhancement performance in complex settings. The
algorithm’s model consists of two key components: the feature extraction module and
the speech enhancement module. The feature extraction module processes the speech
amplitude spectral features derived from STFT (short-time Fourier transform). It employs
parallel GRU-CNN (Gated Recurrent Units and CNN Convolutional Neural Network)
structures to capture unique channel information, and skip connections are utilized to
enhance the model’s convergence speed. The speech enhancement module focuses on
obtaining cross-channel spatial information. By introducing an attention mechanism and
applying a global hybrid pooling strategy, it reduces feature loss. This strategy dynamically
assigns weights to each channel, emphasizing features that are most beneficial for speech
signal restoration. Experimental results on the CHIME3 dataset show that the proposed
model effectively suppresses diverse types of noise and outperforms other algorithms in
improving speech quality and comprehension.

Keywords: speech enhancement; microphone array; CNN; GRU

1. Introduction
The core objective of speech enhancement technology [1] is to isolate clear and intel-

ligible desired speech from noisy audio signals, enhance the quality of the speech signal,
and establish a foundation for subsequent tasks such as speech recognition and audio-
visual communication. As technology advances, the applications of speech enhancement
have broadened significantly. From in-car speakerphones and video conferencing systems
to hearing aids [2] and various other electronic devices, speech enhancement technology
plays a crucial role.

Early limitations in technology and hardware resulted in a focus on single-channel
speech enhancement methods, primarily due to their simplicity and minimal hardware
requirements. Notable techniques include Wiener filtering [3], spectral subtraction [4],
and Kalman filtering [5]. These methods demonstrate effective performance when the
sound source is relatively stationary, making them particularly suitable for applications
such as speech communication and recognition.

However, in practical environments, factors such as complex background noise, re-
verberation, and echo can significantly impact the effectiveness of single-channel speech
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enhancement techniques. Consequently, researchers have shifted their focus to microphone
array speech enhancement technologies. A microphone array [6,7], consisting of multiple
microphones arranged in a specific configuration, captures not only time and frequency
domain information but also spatial domain information. This setup provides directionality
toward the target sound source, effectively suppressing interference and ambient noise
from other directions, thereby improving speech quality.

In the early stages of array signal processing, beamforming techniques were widely
utilized. Beamforming leverages spatial information from multiple channels to create a
spatial filter that applies varying gains to signals originating from different directions.
However, practical performance can be influenced by deviations from theoretical models
and localization errors. With advancements in hardware and the emergence of machine
learning and deep learning theories, more sophisticated technologies have been introduced
to improve the quality of output speech from microphone arrays [8].

Neural networks have significantly improved various aspects of traditional meth-
ods for enhancing speech captured by microphone arrays. A popular research direction
involves utilizing deep learning techniques for parameter estimation in beamformers.
For example, Luo et al. [9] introduce a time-domain beamforming model designed for
low-latency scenarios, where frame-level time-domain adaptive beamforming is applied to
selected reference channels, and the results are subsequently computed for all remaining
channels. Sun et al. [10] employ a Convolutional Recurrent Encoder-Decoder (CRED)
structure to extract spectral context and spatial information for accurate beamforming
weight estimation. Additionally, neural networks [11,12] enhance conventional processes
and can yield superior results across various tasks. For instance, Chau et al. [13] proposed
an innovative post-filtering module that converts the preprocessed time-domain signal
into an image, facilitating the extraction of richer features and thereby enhancing in-vehicle
speech enhancement tasks.

Research has also focused on designing multichannel speech enhancement networks
that rely solely on deep learning techniques. These algorithms enhance multi-channel
speech signals directly by employing deep neural networks, either through time-domain
waveform mapping [14,15] or time-frequency domain modeling [16–18]. Innovations
include the integration of Spherical Harmonic Transform (SHT) features as auxiliary in-
puts [19], with separate decoders that extract and fuse SHT and STFT features to estimate
the STFT spectrum of the desired speech signal, thereby utilizing spatial distribution infor-
mation more effectively. Another approach, known as McNet [20], employs a multi-cue
fusion network with modules designed to extract both full-band and narrow-band spatial
information, as well as spectral information, fully integrating these features to enhance
performance. Recent research has also investigated multichannel speech enhancement
algorithms based on graph signal processing [13,21,22], using graph convolutional blocks
to fuse relevant features for target speech estimation.

To further enhance the performance of microphone arrays in managing unknown
noise situations, this paper proposes a deep convolutional neural network architecture
for developing a multi-microphone speech enhancement model. This model consists of
two stages: feature extraction and feature fusion. In the feature extraction stage, time and
frequency domain features that reflect frequency information are extracted from the speech
signal of each channel using a parallel symmetric GRU-CNN structure. In the feature fusion
stage, multi-channel feature maps are integrated through hybrid pooling and channel
attention weighting to more comprehensively capture the spatial domain information of
the microphone array. Experimental results on the CHIME3 dataset demonstrate that
this model offers superior noise reduction and improved speech quality compared to
other algorithms.
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2. Methodology
2.1. Model Structure

To enhance the effectiveness of speech enhancement and improve model robustness,
this paper proposes an array speech enhancement algorithm that integrates Gated Recur-
rent Units (GRU), Convolutional Neural Networks (CNNs), and attention mechanisms.
The proposed model capitalizes on the advantages of CNNs, which offer low computa-
tional overhead and comprehensive feature extraction capabilities for designing the speech
enhancement system. It consists of a parallel GRU-CNN module for multi-channel feature
extraction and an attention-based feature selection and fusion module. The multi-channel
parallel symmetrical GRU-CNN module, based on a convolutional encoder-decoder archi-
tecture, extracts both temporal and frequency domain features from the input multi-channel
speech signals. The feature selection and fusion module, utilizing an attention mechanism,
performs weighted fusion of features from each channel, effectively utilizing frequency
and spatial information to achieve enhanced speech quality from multiple microphones.

The framework of the established microphone array speech enhancement model is
illustrated in Figure 1. First, the STFT is employed to extract the magnitude spectrum
features from the M-channel microphone array signals, where F and T denote the frequency
and time dimensions, respectively. Next, the speech spectral features from each microphone
channel are processed through parallel GRU-CNN feature extraction modules, which
capture the frequency domain feature information and contextual spectral characteristics
of the input signals for each channel. During feature learning, the prediction for the
current frame is generated by inputting a concatenated feature map that includes the
current frame and the previous seven frames. Subsequently, the output features from the
multi-channel feature extraction module are concatenated into M-channel feature maps
and transmitted to the feature selection and fusion module. By utilizing hybrid pooling
and attention mechanisms, the spatial information among the speech signals from each
channel is utilized to dynamically assign weights to the features of each microphone
channel. This process results in attention-weighted multi-channel feature maps, which
are then fused, and the final predicted speech features for the current frame are produced
through a convolutional layer. Finally, the speech signal is reconstructed using the Inverse
Short-Time Fourier Transform (ISTFT) [23], incorporating the phase information from the
reference microphone.

Audio Signal
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GRU

GRU
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Figure 1. Multi-Channel Speech Enhancement Model Utilizing Microphone Arrays. The STFT
is utilized to extract the spectral features of the speech signal [24], while the Inverse Short-Time
Fourier Transform (ISTFT) is employed to reconstruct the speech signal, incorporating the phase
information [23].

2.2. Amplitude Spectrum Feature Extraction

The short-time Fourier transform (STFT) [24] is employed to extract the spectral
features of the speech signal, serving as the foundation for the subsequent audio noise
reduction process. The feature extraction process primarily consists of two steps: applying
a window to the frames and performing the STFT. Let xi(n) be the received signal from the
i-th (i = 1, 2, . . . , N) array element in the microphone array, and let n denote the sample
number. To ensure a smooth transition of the signal, the frame length is set to L, and the
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frameshift is set to l. The channel speech signal xi(n) is divided into multiple single-frame
signals xi(k · l + m), where 0 ≤ k < K, 0 ≤ m < L, k is the frame number, K is the total
number of decomposed frames, and m is the intra-frame sample number. By applying
a Hamming window to the single-channel speech signal, spectral leakage can be further
minimized. The expression for this process is as follows:

w(m) =

0.54 − 0.46 cos[2πm/(L − 1)], 0 ≤ m < L

0, m ≥ L
(1)

The speech signal, after windowing, can be expressed as:

xi(t, m) = w(m)xi(t · l + m) (2)

The STFT of the speech signal from this channel, after subframe and windowing, can
be calculated as:

Xi(t, f ) =
M−1

∑
m=0

xi(t, m)e−j 2πm f
M , f = 0, 1, . . . , M − 1 (3)

Xi(t, f ) reflects the time-frequency characteristics of a single-channel speech signal,
including both amplitude and phase information. The input feature of this paper is the am-
plitude spectrum, which requires a modulo operation. The speech signal, after windowing,
can be expressed as:

Mi(t, f ) = |Xi(t, f )|, (i = 1, 2, . . . , N) (4)

Mi(t, f ) represents the amplitude spectral signature of the i-th microphone channel
based on frame-level input. The model in this paper utilizes a window length of 256 with a
half-frame stack, allowing for the extraction of unique frequency information by selecting
the first 129 points to minimize redundancy.

2.3. Design of Feature Calculation Module

To leverage the respective advantages of CNN and RNN, this paper employs a hybrid
approach that combines CNN and GRU for the extraction of speech spectrum features.
This method aims to fully capture the variations in information reflected in continuous
frames of speech by utilizing the GRU’s memory capabilities in the time-series dimension.
Simultaneously, it capitalizes on the CNN’s robust ability to extract spectral features,
as CNN processes all features uniformly and extracts spatial features through convolutional
kernels. The structure of the feature extraction sub-module for each channel is illustrated
in Figure 2.

STFT
GRU

Encoder Decoder

Skip Connection

Figure 2. Structure of the GRU-CNN Feature Extraction Submodule.

The GRU-CNN feature extraction module extracts effective features from each mi-
crophone channel in parallel. Each convolutional layer is organized into a convolutional
block that includes batch normalization (BN) and ReLU activation layers. The specific
components of the designed feature extraction process are described as follows:

The GRU-CNN feature extraction module processes the input speech signal for each
channel on a frame-by-frame basis. To fully leverage the contextual information of the
input speech signal for enhanced performance, the network model does not limit itself
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to using only the features of the current frame. Instead, it concatenates the current frame
with the features from the previous 7 frames, using this concatenated input to predict the
current frame with the aid of historical information. This approach enables the model to
be trained on a richer set of contextual data, thereby improving the overall efficiency of
information utilization within the model.

The input to the GRU-CNN model consists of a feature map of the noisy speech
spectrum, which is extracted using the STFT over 8 consecutive frames. This feature map
has dimensions of (F, T, 1), where F denotes the frequency dimension and T de-notes the
time dimension. The output of the feature extraction module is a feature map that captures
both the frequency domain and inter-frame information of the speech signal in the current
frame, with dimensions of (F, 1, N), where N denotes the number of filters in the last
convolutional layer of the GRU-CNN.

The original 8 consecutive frames of noisy speech are subjected to STFT to extract
spectral features. After obtaining the spectral features for each frame, they are organized
into a three-dimensional spectral feature map with dimensions (F, T, 1). Since the GRU
layer processes sequential data, the time series features are adapted to meet the input
requirements of the GRU. The number of hidden units in the GRU is set to 64 to effectively
capture long-term temporal dependencies between frames.

To maintain the spatial resolution of the feature map and preserve more details and
fine-grained features of the input speech signal spectrum, the feature extraction module
employs a convolutional self-encoder structure [25]. This structure consists entirely of
convolutional layers and does not strictly adhere to the traditional self-encoder principle of
dimensionality reduction, which typically involves “first decreasing and then in-creasing”.
Instead, a cyclic cascaded convolutional architecture is used to design both the encoder
and decoder, resulting in a lightweight feature learning module. During the processing of
multi-channel speech signals, the spectral feature maps of each channel are independently
processed through the convolutional autoencoder, enabling the model to capture the unique
features of each channel. This parallel convolutional self-encoder effectively learns the
essential spectral feature information from each channel, providing a robust foundation for
subsequent feature selection and fusion to extract spatial information.

The convolutional self-encoder within the GRU-CNN feature extraction module is
structured as a fully convolutional neural network, comprising a total of 12 convolutional
layers. Three of these layers are grouped, with the grouping repeated 4 times, featuring
filter widths of 9, 5, and 9, and the number of filters set at 18, 30, and 8, respectively.
This configuration effectively balances computational load while facilitating the extraction
of intricate details. The GRU module adeptly captures contextual temporal information
from the current frame of the speech signal. Unlike traditional convolutional neural
networks that perform convolution across all dimensions simultaneously, this design
emphasizes convolution along the frequency axis, utilizing a filter width of 1 along the
time dimension for most layers. This approach ensures that important local features in the
frequency dimension of the speech signal are preserved and highlighted during the forward
propagation of the network. Additionally, a skip connection mechanism is incorporated
in certain convolutional network architectures, such as the skip connection between the
5th and 8th convolutional layers [26]. This design provides additional pathways for the
backpropagated gradients, facilitating model convergence.

2.4. Feature Selection and Fusion Module

The multi-channel parallel feature extraction module processes each channel to obtain
distinct speech feature information. Since the correlation between the speech information
received by each microphone and the target speech signal varies, the speech feature infor-
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mation from each channel does not contribute equally to the model. Microphone array
speech enhancement considers not only the speech information from each channel but
also incorporates the spatial information reflected by the cross-channel per-frame features.
To effectively extract the cross-channel spatial information, the feature selection and fusion
module designed in this paper employs a hybrid pooling and attention mechanisms for
feature fusion. This approach allows for more accurate extraction of useful information for
the model. The block diagram of the feature selection and fusion module is illustrated in
Figure 3.

Feature

Concatenation

FC

FC

Conv

Final Features

Figure 3. Speech enhancement module based on channel attention mechanism.

Inspired by the efficient channel attention mechanism of ECA-Net [27], ECA-Net
employs Global Average Pooling (GAP) to downsample multi-channel feature maps and
utilizes one-dimensional convolution to facilitate local cross-channel interactions among
neighboring channels without reducing dimensionality. This approach yields performance
improvements over traditional channel attention while adding very few parameters. How-
ever, global average pooling computes the mean value for each feature map, resulting in the
loss of some feature information. To address this issue, this paper introduces a hybrid pool-
ing method that combines Average Pooling (AP) and Maximum Pooling (MP). This hybrid
approach captures the overall distribution characteristics while emphasizing significant
feature information. First, each microphone channel signal Xi ∈ RF×1×N (i = 1, 2, . . . , M)

that has undergone the feature extraction process is subjected to an inter-channel feature
splicing operation to form the input feature map X ∈ RF×M×N in the feature selection
and fusion module, where F is the frequency dimension, M is the microphone channel
dimension, and N is the dimension of the extracted features. Then, in order to fully uti-
lize the spatial and frequency domain information, two different pooling strategies are
applied in the feature dimension to extract the global features of the signal manifested in
the frequency domain, and the squeeze operation is employed to eliminate the single-size
dimension, resulting in two feature maps with dimensions (F, M). The output feature
maps from the two pooling layers are dimensionally replaced and subsequently passed
through a fully connected layer to yield feature maps with dimensions (M, 1), which reflect
the importance measures of the frequency features for each channel. The feature maps from
the two branches are summed and then processed through the Softmax activation function
to obtain the normalized microphone channel weights am (m = 1, 2, . . . , M) for the current
frame. The specific process can be defined as follows:

s1, s2, . . . , sM = f (AP(X)) + f (MP(X)) (5)

am = SoftMax(sm) =
esm

∑M
i=1 esi , (6)

where f (·) denotes the fully connected layer, AP and MP denote average pooling and
maximum pooling, respectively. am denotes the importance of each channel in the over-
all characterization.

The attentional mechanism flexibly adjusts the weight allocation for each channel
based on the varying characteristics of the input speech signal. Through this process,
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critical feature mappings are assigned higher weights, while relatively less important
feature mappings receive lower weights. Ultimately, these weights are applied to the
corresponding channels to dynamically adjust their activation states, further refining the
feature representation.The weighted multichannel speech feature maps, derived from
the attention mechanism, are then connected to a convolutional layer for dimensionality
reconstruction, resulting in the final predicted speech feature for the current frame, i.e.,
X ∈ RF×1.

2.5. Loss Function

The loss function of the proposed model comprises two distinct components: the
complex compression spectral mean square error (MSE) loss and the scale-invariant signal-
to-distortion ratio (SI-SDR) loss. The former can be expressed as follows:

LMSE = βMSE(XC, X̂C) + (1 − β)MSE(|X|C, |X̂|C) (7)

where MSE(·) denotes the MSE function, the superscript C denotes the spectrogram com-
pression factor, and β denotes the loss weighting factor. X̂ and X denote the enhanced
speech signal and the target speech signal, respectively.

The SI-SDR loss can be expressed as follows:

LSI-SDR = −10 log10
∥X∥2

2

∥αX̂ − X∥2
2

, (8)

where α =
∥X∥2

2
⟨X̂,X⟩ is used to ensure scale invariance by normalizing X̂ and X to zero mean

before computation. The total loss for the SE model is defined as follows:

LSE = γLMSE + (1 − γ)LSI-SDR (9)

3. Experimental Setup and Analysis
3.1. Experimental Datasets

The experiments presented in this paper utilize the widely recognized far-field mul-
tichannel dataset CHIME3. The microphone array configuration in the CHIME-3 dataset
consists of six omnidirectional microphones, arranged in a typical planar array structure.

The recordings for the CHIME3 dataset were made by 12 native American English
speakers aged between 20 and 50. Initially, the recordings were conducted in a near echo-
free booth environment using a corpus selected from the WSJ0 corpus. Subsequently, record-
ings were carried out in four different noisy environments: buses (BUS), cafeterias (CAF),
pedestrian streets (PED), and regular streets (STR). The CHIME-3 dataset includes both
actual recorded speech and simulated speech, which was created by mixing clear speech
from the WSJ0 corpus [28] with background noise from the aforementioned environments.

In this paper, experiments will be conducted using a simulated speech dataset.
The training set consists of 7138 multichannel noisy speech samples, while the validation
and test sets contain 1640 and 1320 multichannel simulated speech signals, respectively.

3.2. Experimental Setup

The experiments were conducted using the Python 3.8 programming language on
the Windows 10 operating system. A neural network architecture was built using the
TensorFlow framework, and the training process was accelerated with the NVIDIA GeForce
GTX 1070Ti graphics card.

In this paper, the grid search technique is employed to select hyperparameters for the
proposed model. An iterative selection of combinations within the predefined value space
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for each parameter is conducted to identify the parameter values that yield the best results.
Ultimately, the learning rate of the proposed network model is set to 0.001. Additionally,
a Dropout operation with a coefficient of 0.2 is applied between the GRU layer and the
convolutional layer, as well as between the feature fusion layer and the convolutional layer.
This ensures that 20% of the neurons are randomly selected to have their outputs set to zero
during each training iteration, thereby excluding them from the weight update process in
backpropagation. During the training phase, 100 iterations were performed with a batch
size of 64. The network was optimized using the MSE loss function and the Adam [29]
algorithm, with the exponential decay parameter for the first-order moment estimation β1

set to 0.9, and the exponential decay parameter for the second-order moment estimation β2

set to 0.999.
The performance evaluation metrics for the algorithm are the Perceptual Evaluation

of Speech Quality (PESQ) [30] and the Short-Time Objective Intelligibility (STOI) [31].
In order to evaluate the performance of the proposed model, assess the effectiveness

of its constituent modules, compare the experimental results with those of other state-of-
the-art algorithms, and to clarify the speech enhancement effects of the model, this paper
conducts the following three experiments:

Experiment 1: The designed model is trained and tested on the CHiME3 dataset,
and the performance of the algorithm is compared and analyzed with that of the traditional
beamforming algorithm.

Experiment 2: Comparison experiments are conducted on the same dataset by either
retaining or removing the GRU module to verify its validity within the model. Additionally,
experiments are performed by selecting different feature fusion module structures to
evaluate the impact of these structures on the speech enhancement performance.

Experiment 3: The proposed model is compared and analyzed against other deep
learning algorithms using the same dataset. The effectiveness of these three experimental
tasks will be evaluated based on two objective evaluation metrics: PESQ and STOI.

3.3. Performance Comparison with Competing Algorithms

The experiments were initially conducted using the CHIME3 dataset to evaluate
various beamforming algorithms, with the results presented in Figure 4. The algorithms
compared include the traditional generalized collateral phase cancellation (GSC), the GSC
algorithm based on joint speech feature adaptive control (GSC-SPP), the GSC with a
cascaded posterior GRU network (GSC-GRU) and the proposed model. As illustrated in
the figure, the proposed model outperforms both the traditional GSC algorithm and the
enhanced GSC algorithm, demonstrating improvements in the PESQ and STOI metrics
across all noisy environmental scenarios. This indicates a significant enhancement in
both speech quality and intelligibility. The primary reason for this improvement is that the
proposed model effectively reconstructs the spectral details of speech in noisy environments
and excels at suppressing residual noise. The proposed model successfully eliminates
noise signals in the low-frequency band while a providing superior suppression of high-
frequency noise in the non-speech segments, resulting in enhanced speech quality and
improved intelligibility.
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Figure 4. Comparison of algorithm processing effect under different types of noise.

3.4. Ablation Study
3.4.1. Impact of the GRU Module on Model Performance

To verify the impact of the GRU module on temporal feature extraction, this paper
presents a validation experiment comparing the performance of the algorithm with and
without the GRU module. The experimental results are summarized in Table 1, where
CNN_NoGRU denotes the network model with the GRU network removed. The table
indicates that the proposed model incorporating the GRU module improves the PESQ and
STOI scores by 0.6278 and 0.0352, respectively. When the front GRU network is omitted,
the results of the two objective evaluation metrics decline. This decrease is primarily due to
the GRU’s effectiveness in capturing long-term dependencies in time series data, which
is particularly crucial for extracting features from speech signals, as they often contain
significant information that spans multiple time steps. Since the feature extraction module
in this paper processes data on a frame-by-frame basis, the convolutional layer in the
convolutional self-encoder is specifically designed to capture frequency domain feature
information solely along the frequency axis. The incorporation of a memory function for
time-series features, following the addition of the GRU, enhances the comprehensiveness of
the features extracted by the model’s feature ex-traction module. Additionally, the design
of the GRU network remains relatively straightforward, resulting in a smaller number
of parameters.

Table 1. Comparison of PESQ and STOI with and without gated cyclic cell networks.

Model PESQ STOI

CNN_NoGRU 2.2378 0.7493
Proposed 2.8656 0.7845

3.4.2. Impact of Speech Enhancement Module on Model Performance

To verify the contributions of hybrid pooling and attentional weighting to the model’s
effectiveness, this section discusses the feature selection fusion module in a categorized man-
ner. This includes the convolutional self-coder (GRU-CNN) without the speech enhance-
ment module, as well as models that incorporate simple speech enhancement modules:
Maximum Pooling (GRU-CNN-MP) and Average Pooling (GRU-CNN-AP). Additionally,
the model that integrates the Attention Mechanism feature selection fusion module is
referred to as the Proposed model. Each model with different feature selection fusion mod-
ules was trained and tested, and Figure 5 presents the results of the objective evaluation
metrics set for the various speech enhancement modules.
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Figure 5. Performance comparison of different speech enhancement modules.

The experimental results indicate a significant improvement in both speech quality and
intelligibility due to the speech enhancement module in the proposed model. Specifically,
the PESQ score increased by 0.5813, and the STOI score is improved by 0.05 compared to
the model without the speech enhancement module. This enhancement can be attributed
to two main factors: (1) global features are obtained by hybrid pooling, which improves
the index results compared with that of the single-pooling approach. The reason is that
single pooling is too absolute for the feature selection of the feature channel and does
not fully consider the balance of average and significant features; (2) adding the attention
mechanism can dynamically assign weights to the spatial dimension of the convolutional
output feature map, and focus on the feature fusion according to the attention weights,
which improves the ability of the neural network for spatial feature information. Therefore,
adding the hybrid pooling module and attention mechanism to the network model can
further acquire cross-channel spatial information and improve the multichannel speech
enhancement performance.

3.5. Performance Comparison with Neural Network Algorithms

In order to further validate the effect of the proposed model presented in this paper,
this section compares the proposed model with other deep learning methods [32,33].
The different deep learning models were trained and tested on the CHIME3 multichannel
speech dataset. The experimental results are shown in Table 2.

Table 2. Performance comparison of different deep learning algorithms, where the bold number
indicates the best score.

Model PESQ STOI GFLOPs Parameter Quantity (M)

Noisy 1.2133 0.6585 12.28 46.42
CRN [32] 2.1823 0.7645 12.48 48.24
CAU-Net [34] 2.3956 0.7722 13.73 46.28
FT-JNF [35] 2.5656 0.7755 12.16 44.85
McNet [20] 2.6856 0.7845 11.85 44.18
SpatialNet [36] 2.8356 0.7915 14.55 52.22
DeFT-AN [37] 2.8256 0.7805 11.55 44.36
Proposed 2.8656 0.7845 11.30 43.85

As shown in Table 2, within the same dataset, compared with the noisy speech
signal, the PESQ and STOI of the proposed model are improved by 1.6523 and 0.126,
respectively. The PESQ and STOI of the processed speech are improved by 0.03 than that of
the SpatialNet model, and the STOI of the proposed model is slightly less than that of the
densely-connected SpatialNet model, and the perceived quality of the speech is slightly
insufficient, the reason is analyzed that the proposed model has better suppression effect
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on noise, which makes the speech suffer some loss in some frames where speech and noise
coexist. However, the SpatialNet model based on the channel attention mechanism has a
large number of dense connections, and during the training and calculation process, as the
network layer deepens, the dimension of the channel will also be expanded, which will
result in a relatively large amount of computation, while the proposed model has a good
performance in terms of performance and computation.

In addition, as shown in Table 2, the proposed method demonstrates a reduction
in both computational cost and the number of parameters. Compared to other methods,
the approach presented in this study achieves a more favorable balance between perfor-
mance and computational cost. These superior results can be attributed to the integration
of multiple pooling strategies that effectively extract key features, as well as the implemen-
tation of an attention mechanism that captures global contextual information. This enables
the model to achieve better outcomes without requiring extensive computational resources.

4. Conclusions
In this paper, we propose an improved multichannel speech enhancement model

based on a deep learning network. The model incorporates a convolutional self-encoder
and a feature selection and fusion module, creatively embedding hybrid pooling and
attention mechanisms to fully utilize the detailed frequency-domain characteristics of
the microphone array speech signals and achieve better noise reduction. Experiments
conducted on the CHIME3 dataset demonstrate that the algorithm excels in leveraging the
unique frequency information of each channel and the related spatial domain in-formation
between channels, outperforming traditional algorithms in mitigating the impact of non-
smooth and non-coherent noise on speech signals. Compared to conventional methods, our
algorithm significantly improves speech quality and intelligibility, offering a more robust
array speech enhancement effect.
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