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Abstract

High-voltage switchgear is an important component of the power system, and its opera-
tion safety will directly affect the reliability of the power supply of the power system. At
present, the operation and maintenance decision-making of the switchgear mainly relies on
manual work, which has problems such as low efficiency and poor reliability of judgment
results. Therefore, this paper proposes an intelligent operation and maintenance auxiliary
method for high-voltage switchgear based on the combination of the Ripplenet algorithm
and knowledge graph, which ensures high efficiency while improving the reliability of the
results. Among them, the knowledge graph is mainly based on the Bidirectional Encoder Rep-
resentations from Transformers-Whole Word Masking (BERT-wwm) algorithm, and it is con-
structed in a bottom-up and top-down manner. It consists of 240 nodes and 960 relationships.
Based on this knowledge graph, the intelligent operation and maintenance auxiliary method
of high-voltage switchgear based on Ripplenet is studied. Based on textual information
such as on-site information and fault reports, the judgment reasoning of the fault type of the
high-voltage switchgear and recommendations for operation and maintenance solutions
are realized. The diagnostic accuracy of this method for high-voltage switchgear faults can
reach 95.96%.

Keywords: knowledge graph; high-voltage switchgear; intelligent operation; maintenance
assistance

1. Introduction

High-voltage switchgear plays an extremely important role in the power system, as
illustrated in Figure 1. It is responsible for protecting power equipment and systems and
optimizing the operation of the power system. Its operation safety directly affects the
reliability of the power supply of the power system [1-3]. The traditional high-voltage
switchgear that relies on manual work has low efficiency in fault operation and maintenance
decision-making. Inspections have time intervals and cannot monitor the equipment
status in real-time. In addition, there are differences in personal experience and judgment
standards, and the decision results lack reliability [4—6].
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Figure 1. The important role of high-voltage switchgear.

With the continuous development of intelligent algorithms and deep learning technol-
ogy, the fault operation and maintenance of high-voltage switchgear have been promoted
to intelligent development. Real-time monitoring of equipment status is achieved, which
improves efficiency and ensures the reliability of judgment. By detecting TEV signals, the
fault point can be located and the fault type can be determined. This method is used to form
an automatic diagnosis model for insulation faults of high-voltage switchgear based on
live detection technology [7], which improves the efficiency and accuracy of operation and
maintenance. By applying parameter learning algorithms through BN topology structure
and combining probabilistic reasoning, the state evaluation results can be obtained, thus
forming a high-voltage switchgear state evaluation method based on expert knowledge
and monitoring data [8]; in the monitoring of partial discharge in high-voltage switchgear,
to solve the strong electromagnetic interference problem in the online detection site of
partial discharge, the least mean square (LMS) algorithm can be used to form a structural
element adaptive morphological open and closed combination morphological filter [9].
The noise suppression ratio (NNR) of this method for narrowband periodic interference
measured on-site exceeds 20 dB, which has a high application value. However, different
types of insulation faults will produce signals with similar characteristics, which increases
the difficulty of distinction. Monitoring data is also affected by factors such as sensor
accuracy, reliability, installation location, and environmental interference, and there are
problems such as noise, missing values, and outliers [10,11]. Low-quality data will interfere
with the accuracy of the parameter learning algorithm and affect the fault identification
results. This intelligent operation and maintenance technology based on a single analysis
method has a very limited role in promoting operation and maintenance work [12-14].
Therefore, the idea of integrating multiple methods can further improve the efficiency
and accuracy of operation and maintenance and promote the intelligent development of
operation and maintenance work.

The structured semantic expression, multi-source heterogeneous data fusion capability,
and scalability of knowledge graphs are highly consistent with the complex needs of
power equipment management and have important application potential in fault diagnosis,
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equipment operation and maintenance, and knowledge retrieval. In terms of constructing
knowledge graphs, BERT-wwm (Whole Word Masking) is an improved named entity
recognition algorithm based on BERT. The BERT network pre-trains the context in all
Transformer layers by adjusting the left and right bidirectional contexts [15,16]. In BERT-
wwm, the masked language model is further optimized for whole-word masking [17,18].
Compared with BERT’s masking method, BERT-wwm’s whole-word masking sets the
mask according to words rather than characters [19], so that the model can learn more
semantic information. This method can effectively improve the BERT model’s ability to
recognize Chinese entities. The Ripplenet [20] method combines the embedding-based
and path-based methods for knowledge graph recommendation tasks. It uses vectors to
represent the characteristics of users, items, and targets based on user embedding and
graph entity embedding. It also realizes the preference propagation of user interests on
the knowledge graph by calculating ripple sets. It has the characteristics of fast calculation
speed, low resource consumption, high accuracy, and good interpretability.

This paper combines the advantages of knowledge graph technology and the Ripplenet
method and proposes a new intelligent operation and maintenance method for high-voltage
switchgear. The paper focuses on the construction technology of a knowledge graph in the
field of high-voltage switchgear based on BERT-wwm, and constructs the knowledge graph
in the field of high-voltage switchgear operation and maintenance. At the same time, the
intelligent operation and maintenance auxiliary method of high-voltage switchgear based
on Ripplenet and the knowledge graph is studied. With the known features of the fault as
input, the intelligent judgment of the fault type, fault cause, and other information of the
high-voltage switchgear based on the knowledge graph and recommendation algorithm
is realized.

2. Knowledge Graph in the Operation and Maintenance Field of
High-Voltage Switchgear Based on BERT-wwm

2.1. Methods for Knowledge Graph Construction

The ontology structure of a knowledge graph generally covers two logical levels: the
data layer and the model layer. In the data layer, knowledge is expressed in the graph
database in the form of entities and relationships, and its basic unit is the triple structure of
“entity-relationship-entity” or “entity-attribute-value” [21]. These interconnected entities
together constitute the ontology foundation of the knowledge graph at the data level. As
the core architecture of the knowledge graph, the model layer is located above the data
layer and is based on basic knowledge such as axioms and rules. The ontology library
plays the role of the data layer “template” in the knowledge graph. A knowledge graph
with an ontology library can effectively reduce the existence of redundant knowledge [22].
Table 1 shows an example of the corresponding relationship between the model layer and
the entities in the data layer in the knowledge graph.

Table 1. Correspondence table between model layer and data layer entities in knowledge graph.

Mode Layer Corresponding Entity in the Data Layer
Device Type Transformer, GIS, High Voltage Switchgear. ..
Equipment Parts Circuit Breaker Trolley, Insulating Partition, Busbar. ..
Fault Type Discharge Failure, Heating Failure, Short Circuit Accident. ..
Reason for Malfunction Water Ingress to Equipment, Insulation Breakdown, Floating Potential. . .

Since the power equipment field is highly dependent on electrical theoretical knowl-
edge and on-site maintenance experience, this paper adopts a combination of bottom-up
and top-down methods to construct a knowledge graph. Semi-structured and unstructured
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power text data such as power theoretical knowledge, on-site fault reports, maintenance
procedures, and maintenance work reports are widely collected to construct a knowledge
base for power equipment operation and maintenance. In the knowledge extraction stage,
entity extraction and relationship extraction methods are used, and they are optimized ac-
cording to the characteristics of power knowledge. Entities and relationships are extracted
from the knowledge base from the bottom up to form triples. Manual methods are used to
carry out knowledge disambiguation and coreference resolution, and triples are screened
to remove entities with errors, omissions, and ambiguities. Finally, combined with the
information in the knowledge base, the model layer of the knowledge graph is constructed
in a top-down manner, and the types and expressions of all entities and relationships are
standardized, and finally a knowledge graph in the field of power equipment operation
and maintenance is successfully constructed. The specific process is shown in Figure 2.

Knowledge graph

Model layer
Determine the structure of the
knowledge graph, the type of

entities and relations

J

Data layer

Power text data The main body of knowledge graph.
which includes all graph structures
Theoretical knowledge —————— with knowledge triples as units

EE—

Fault report

Maintenance procedure

_ ¥ Information extraction

Figure 2. Flowchart of knowledge graph construction in the field of power equipment operation
and maintenance.

2.2. Construction of Knowledge Graph in the Field of High-Voltage Switchgear Operation
and Maintenance

Before extracting operation and maintenance entities, data preprocessing is performed.
This paper adopts the BIO annotation method. Four types of entities, “equipment compo-

v

nents”,

i

fault types”, “fault causes”, and “fault phenomena” are selected as annotation
objects. The annotation file contains about 500 statements. Table 2 shows an example of
BIO annotation in this paper.

Table 2. BIO Annotation Example.

Text Label
“Partial” B-Fault Phenomenon
“discharge” I-Fault Phenomenon
“was” @)
“found” O
“in” @)
“the” @)
“C-phase” ©)
“bushing” B-Equipment Parts

“" oy O
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First, the BIO Annotation Specification for the High-Voltage Switchgear Domain is
developed to clarify the definition boundaries of the four entity types (e.g., “equipment
components” must include “detachable switch-gear components with independent func-
tions” and exclude “integral equipment”). Second, two engineers with over 5 years of
high-voltage switchgear O&M experience independently annotate 500 sentences as annota-
tors. After annotation, the Kappa coefficient is used to evaluate inter-annotator agreement,
yielding a Kappa value of 0.87 (>0.8 indicates excellent agreement). For sentences with
annotation conflicts, a senior engineer (with 10 years of experience) arbitrates to finally
form a consistent annotated dataset.

In order to verify the rationality of choosing BERT-wwm, a comparative experiment
was added with BiILSTM-CRE, Standard BERT, as well as two representative Graph Neural
Network methods (GCN and GAT). All experiments adopted the same data preprocessing
pipeline (BIO labeling of four entity types: “equipment component”, “fault type”, “fault
cause”, and “fault phenomenon”) and evaluation metrics (Precision, Recall, F1-score).

2.2.1. Experimental Setup

Dataset: 1000 manually labeled sentences from high-voltage switchgear fault reports
and maintenance manuals, divided into training set (800 sentences) and validation set
(200 sentences).

Hardware /Software: Windows 10, CUDA 11.7, Intel(R) Core (TM) i5-10600KF CPU,
16G RAM, Produced by Intel Corporation and purchased in Beijing, China. NVIDIA
GeForce RTX 3070 8 G, Produced by NVIDIA Corporation and purchased in Beijing, China;
Python 3.9, Pytorch 1.13.0.

Hyperparameter Settings of Each Model is shown in Table 3:

Table 3. Hyperparameter Settings of Each Model.

. Maximum .
Model Name quden L.ayer Sentence Learning B%tCh Number Masking/Other Settings
Dimension Length Rate Size of Epochs
BiLSTM-CRF 256 - 5x 1073 16 50 -
Standard BERT - 512 2x 1075 12 30 Character-level Masking
BERT-wwm - 512 2x107° 12 30 Whole-Word Masking
GCN 128 - 1x1073 16 30 2-layer GCN, ReLU
GAT 128 - 1x1073 16 30 4head attention,

dropout = 0.6

2.2.2. Experimental Results

The entity extraction performance on the validation set is shown in Table 4

Table 4. Entity Extraction Performance of Different Models.

Model Precision Recall F1-Score
BiLSTM-CRF 0.68 0.74 0.71
Standard BERT 0.78 0.90 0.84
BERT-wwm 0.83 0.96 0.89
GCN 0.81 0.91 0.85
GAT 0.85 0.93 0.87

The results in Table 4 indicate that BERT-wwm achieves the highest overall perfor-
mance among all compared methods, with an Fl-score of 0.89. Both GCN and GAT also
demonstrate competitive performance (F1-scores of 0.85 and 0.87, respectively), which high-
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lights the potential of graph-based models in leveraging relational dependencies within
the constructed knowledge graph.

Other unlabeled text datasets are used for entity extraction after algorithm training.
For this part of the text, we segment it by sentence and arrange it by word based on the
Python program, thus completing the preprocessing of entity extraction.

In terms of operation and maintenance entity extraction, the BERT-wwm algorithm
is used. Figure 3 shows the structure of the Transformer model, where the dotted line in
the left half of the model is the encoder and the right half is the decoder. The encoder
contains one multi-head attention mechanism layer and the decoder contains two. Residual
connections are used in the residual connection and normalization layer to prevent network
degradation, and the activation values of each layer are normalized.

Output probability

A

Softmax

A

Linear layer

Residual connection and normalization «,

1
Feedforward
neural network
S
Residual connection and normalization | ~ Residual connection and normalization <
| : : 1
Feedforward : Bullish
neural network ; ‘ attention mechanism
| -
: i g 3 T
Residual connection and normalization - Residual connection and normalization -«
| ? ‘ “ :
A 4 A l | A A A

«———————— Location code 14—- Location code
Input embedding layer Input embedding layer
4 4
. Output
input (shift right by one position)

Figure 3. Transformer structure diagram.

Considering the impact of calculating position information on semantics, the model
introduces positional encoding (PE), and the calculation method is shown in Formulas (1)
and (2):

PE(pos, 2i) = sin (pos /100002 d) 1)

PE(pos,2i +1) = cos(pos /10000%” d) )

In the formula, pos represents the position of the word in the sentence, d represents the
dimension of the position vector PE, and i is an integer.
The calculation method of the self-attention mechanism is shown in Formula (3).
ttention(Q, K, V) = softmax ( QKT) 14 3)
o Vi
In the formula, Q is the query vector, K is the key vector, and V is the value vector.
These three vectors are obtained by matrix multiplication of the corresponding weight
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matrices, and the parameters of the weight matrices will be updated during the training
process; dy is the number of columns in the K matrix.

In the multi-head attention mechanism, multiple groups of Q, K, and V with different
weights are introduced for calculation, thereby eliminating the influence of the initial value
on the model training results. The output of the final matrix will enter the feedforward
neural network, and after residual connection, normalization, linear layer, and softmax
layer, the prediction result of the word will be output.

Based on the entity extraction results of BERT-wwm, combined with the relevant
knowledge of the power text database and the actual needs of high-voltage switchgear
operation and maintenance, this paper designs the model layer structure of the knowledge
graph in the field of high-voltage switchgear operation and maintenance, as shown in
Figure 4.

Equipment Major types of
knowledge faults

Location/corresponding fault

Equipment

Processing Fault

method Cause of characteristics
failure

Figure 4. High-voltage switchgear domain knowledge graph model layer.

The pattern layer of this atlas contains 8 types of nodes. The equipment type node
is the basic node. All knowledge entities related to a certain equipment are connected to
this node. In this atlas, the only entity of this type is the “switch cabinet”; the equipment
knowledge node is directly connected to the equipment type, and is a node for organizing
and classifying knowledge. This node type includes three entities: “switch cabinet failure”,
“switch cabinet operation and maintenance”, and “switch cabinet maintenance”; the fault
category node describes the main types of equipment failures, such as “switch cabinet
heating failure” and “switch equipment failure”; the fault type node describes the specific
fault type, such as “tip discharge” and “circuit breaker refusal to close”; the equipment
structure node includes the partitions in the switch cabinet and various types of equipment,
structures, and components; the fault feature node describes the typical manifestations
when the fault occurs, which is an external phenomenon that can be directly observed in the
daily maintenance and operation of the switch cabinet; the fault cause node describes the
main problem that causes the fault, which often requires opening the cabinet or conducting
detection tests to confirm; the processing method node belongs to the attribute node of the
fault type and fault cause, which contains modeled operation and inspection procedures
and experience from real maintenance cases.
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When defining nodes, we used the “Class” and “SubClassOf” relationships of OWL,
defined the relationship as OWL “ObjectProperty”, and included the domain-range con-
straint. In addition, the classification of fault categories is consistent with IEC 61850-7-4
(Communication for Monitoring and Control of Power Systems).

The “Fault Category” and “Fault Type” nodes have a hierarchical relationship—the
“Fault Category” node represents broad classifications of switchgear faults (e.g., “heating
fault”, “insulation fault”), while the “Fault Type” node corresponds to finer-grained specific
faults under each category (e.g., “contact overheating” and “busbar heating” under “heating
fault”; “partial discharge” and “insulation breakdown” under “insulation fault”).

Relationship types are used to describe the connections between entities. This article

/i /i

defines nine types: “includes”, “features”, “cause”, “location of occurrence”, “handling
method”, “belongs to”, “cause”, “failure occurs”, and “corresponding failure”.

Then, the entities extracted by Bert-wwm were manually screened. To construct
a dataset for a single device, entities that obviously belonged to other power equipment
such as transformers, fault-type entities that were not related to substation equipment,
entities that were difficult to understand or had no special meanings, and repeated entities
with similar meanings were deleted. Based on fault reports and other power operation
and maintenance knowledge, the ambiguous nodes were completed. Finally, a knowl-
edge graph in the field of high-voltage switchgear operation and maintenance containing

240 nodes and 960 relationships was formed and saved in the file in the form of triples.

3. Intelligent Operation and Maintenance Auxiliary Method of
High-Voltage Switchgear Based on Ripplenet and Knowledge Graph
3.1. Demand Analysis of Intelligent Operation and Maintenance Auxiliary Methods for
High-Voltage Switchgear Based on Knowledge Graph

During routine or temporary maintenance of high-voltage switchgear, operation and
maintenance decision-makers need to formulate maintenance plans based on equipment
monitoring signals, maintenance records, and fault information, decide whether to open
the switchgear, the maintenance method and process, and generate work tickets for on-site
personnel to execute. This process places high demands on the professional level and
experience of operation and maintenance personnel. With the advancement of smart grid
construction, intelligent operation and maintenance auxiliary methods based on machine
learning technology can significantly improve the accuracy of diagnosis. At present, fault
reasoning methods for power equipment are mainly divided into two categories: data-
driven and knowledge-driven. Data-driven methods rely on real-time analysis of massive
monitoring signals and can effectively monitor single fault characteristics. However, in
complex scenarios, they still rely on manual decision-making to a certain extent [23].
Knowledge-driven methods rely on expert systems and fault samples and have poor
scalability. As a structured semantic knowledge base, the data layer of the knowledge
graph stores knowledge information in a graph structure, naturally contains knowledge
and its relationship information, and can almost cover most equipment fault types [24-26].
The knowledge graph has a clear structure, and the addition and deletion of nodes only
affect adjacent nodes, which will not destroy the integrity of the overall network, and has
strong scalability. Therefore, it is of great practical significance to carry out research on
intelligent operation and maintenance auxiliary methods of high-voltage switchgear based
on a knowledge graph.

After extensive research, this paper noticed that the knowledge recommendation field [27]
has similar characteristics to the power equipment fault reasoning task based on the knowl-
edge graph. The definition of the recommendation system is as follows: given a user set U, an
item set V, and Rij represents the preference of user Ui for item Vj, let f: U x V — R, then the
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problem studied by the recommendation system is that given any user Ui, we hope to find
the item Vk that he likes the most, that is:

VUuyeu, Vi= argwgc/f(u,-, Vi) (4)
]

Compared with traditional data-driven artificial intelligence, intelligent algorithms
based on knowledge graphs can combine textual features such as on-site conditions and
fault knowledge to achieve knowledge reasoning, assist operation and maintenance per-
sonnel in making decisions, and complement data-driven Al. Knowledge graph recom-
mendation algorithms are mainly divided into embedding-based methods and path-based
methods. Embedding-based methods use graph embedding technology to represent enti-
ties and relationships and expand the semantic information of items and users; path-based
methods construct algorithms by mining relationships and connections in knowledge
graphs, which have better recommendation effects and interpretability, but are highly
dependent on graph structures [28]. Ripplenet [29,30] combines the above two methods
for knowledge graph recommendation tasks. Based on user embedding and graph entity
embedding, it uses vectors to represent the characteristics of users, items, and targets;
by calculating ripple sets, it realizes the preference propagation of user interests on the
knowledge graph, which has the characteristics of fast calculation speed, low resource
consumption, high accuracy, and good interpretability.

Compared with KGCN (Knowledge Graph Convolutional Network), TransE (Trans-
lational Embedding Model), and GraphSAGE (Graph Sample and Aggregate), Ripplenet
has the following advantages: (1) Computational Efficiency: KGCN requires traversing
neighbor nodes for convolution operations, and GraphSAGE requires sampling multi-hop
neighbors—both exhibit significantly increased inference time (>2 s) when the number of
graph nodes exceeds 1000. In contrast, Ripplenet controls the propagation range through
“ripple sets”, maintaining inference time stably within 1 s. (2) Interpretability: TransE
models relationships through vector translation, lacking inference path visualization; Rip-
plenet’s “ripple sets” can intuitively display the propagation path from fault features to
fault types. (3) Adaptability: KGCN and GraphSAGE rely on large amounts of historical
fault data, and TransE is sensitive to sparse relationships; Ripplenet alleviates data sparsity
through path propagation, making it more suitable for switchgear fault data characteristics.

This paper proposes a high-voltage switchgear intelligent operation and maintenance
auxiliary method based on a knowledge graph recommendation system. Combined with
formula (4), it can be seen that the recommendation algorithm will establish a mapping
relationship between U; and item V; and its preference score R;; based on the historical
preference information of user Ui, the preference information of other users, and the
similarity between items and items, and between users. If user Uj is defined as a fault
occurring on power equipment, item V is a collection of fault information such as fault
phenomenon, fault cause, and fault type, and R is defined as a probability set associated
with the fault characteristics in a fault of the equipment, then formula (4) can be rewritten
as follows:

(5)

1, If F isassociated with V;
Vij:f(Fi,Vj):{ S B )

0, If Fisindependent of V;

Formula (5) for applying the recommendation algorithm based on a knowledge graph
in the auxiliary task of intelligent operation and maintenance of power equipment. In
the formula, Fj is the i-th fault, Viisa feature of concern in the fault information, such
as a certain fault type, a certain fault cause, etc., and rjj is the correlation between F; and
V. Once the correlation is higher than a certain threshold, V; is considered to be strongly
correlated with F;, that is, the i-th fault contains the fault feature Vj. In this way, the
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transformation from the recommendation system to the power equipment fault reasoning
system is completed.

Given the knowledge graph G, the task of the recommendation algorithm is to learn
the prediction function. In the prediction task, when V; is a feature of the fault F;, the
two are associated, and the degree of association is marked as 1; if Vj is not a feature of the
fault Fj, the two are unrelated, and the degree of association is marked as 0. Therefore, the
recommendation algorithm based on the knowledge graph can be applied to the intelligent
operation and maintenance auxiliary task of high-voltage switchgear.

However, there are still some differences between the auxiliary tasks of intelligent
operation and maintenance of power equipment and the tasks of recommendation systems. As
far as the recommendation system is concerned, it can continuously carry out recommendation
work based on the historical information of the same user; but in the scenario of intelligent
operation and maintenance of power equipment, the equipment fault information is fixed
before the maintenance task is started, lacking the accumulation and real-time update of
historical records, resulting in a cold start problem. In addition, the amount of data for a single
user in the recommendation system is often very large. In contrast, the amount of power
equipment fault information is relatively small, and there is a lack of data. Because of this,
a path-based knowledge graph recommendation method can be adopted. This method uses
multiple connection relationships between entities in the knowledge graph and combines
the recommendation results of other fault information to solve the problem of data scarcity.
Although the path-based method has certain obstacles in updating the knowledge graph, the
knowledge graph in the field of high-voltage switchgear is small in scale, the operation and
maintenance knowledge system is relatively mature and the update frequency is low, which
effectively avoids the shortcomings of this method.

To further verify the path-based propagation compensation cold start problem in
Ripplenet, we conducted further experimental research.

3.1.1. Data Preparation

Three types of datasets are used to simulate different cold start scenarios

Dataset Type Source and Description

Derived from 10% of the original high-voltage
switchgear fault dataset (950 samples), simulating
Synthetic Sparse Dataset cold-start for new switchgear with scarce historical

data. Covers 4 fault categories (insulation: 35%,
mechanical: 28%, heating: 25%, other: 12%)
consistent with the original dataset.
1000 manually labeled mechanical fault samples of
10 kV circuit breakers (from Guangdong Power
Circuit Breaker Source Dataset Grid), including faults like “breaker refusal to
close” and “contact wear” (similar to switchgear
mechanical faults).
200 new mechanical fault samples of high-voltage
Switchgear Target Dataset switchgea%' (no oyerlap with the original dataset),
simulating cold-start for newly
deployed switchgear.
Contains 20 pre-defined universal fault features
Fault Feature Template Library ) (e.g., “TEV > 15 dB for partial c.lisc,}llarge”,
temperature > 85 °C for overheating”), used as

seed nodes in Ripplenet.
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3.1.2. Experimental Groups and Design

The experiment is divided into two sub-experiments to validate different mitigation
strategies:

Sub-Experiment 1: Ablation Experiment for Path-Based Propagation.

To verify the effect of path-based propagation on cold-start alleviation:

Group ID Strategy Key Operation

Enabl Iti-h f
Ripplenet with path-based e DT Iop pie srenee

Group A . propagation (max hops = 3, consistent
t d method
propagation (proposed method) with optimal settings in Section 3.7).
Disabl lti-h tion; onl
Ripplenet without path-based e .e meAhop propaga Hon; oy
Group B use single-hop reasoning between

ropagation (baseline
propag ( ) seed nodes and adjacent entities.

Sub-Experiment 2: Validation of Layered Mitigation Strategies
To verify transfer learning (short-term) and fault feature template library (medium-term):

Strategy Type Experimental Design

1. Pre-train BERT-wwm on the circuit breaker source dataset;
2. Fine-tune BERT-wwm on the switchgear target dataset;

Transfer Learning 3. Train Ripplenet with the fine-tuned BERT-wwm
(hyperparameters: batch size = 12, learning rate = 2 x 107>,
epochs = 15).
Use the 20 universal features as seed nodes in Ripplenet
Fault Feature Template Library (replacing 50% of the original seed nodes from the target

dataset) and train Ripplenet on the switchgear target dataset.
Train BERT-wwm and Ripplenet directly on the switchgear

Baseline (No Mitigation) . e .
target dataset without any mitigation strategies.

3.1.3. Experimental Results

Results of Sub-Experiment 1 (Ablation for Path-Based Propagation)
Performance on the synthetic sparse dataset (cold-start simulation):

Group ID ACC (%) AUC Performance Improvement (vs. Group B)
Group A 82.3 0.85 ACC: +13.6%, AUC: +0.14
Group B 68.7 0.71 -

Results of Sub-Experiment 2 (Layered Mitigation Strategies)
Performance on the switchgear target dataset (cold-start for new equipment):

Perf
Mitigation BERT-wwm Ripplenet ACC _ errormance
Ripplenet AUC Improvement (vs.
Strategy F1-Score (%) .
Baseline)
Baseline (N
aseline (No 0.72 65.1 0.68 -
Mitigation)
ACC: +20.2%,
Transfer Learning 0.83 85.3 0.86 AUC: +0.18,
F1-Score: +0.11
Fault Feature ACC: +9.2%,
0.78 74.3 0.77 AUC: +0.09,

Template Library F1-Score: +0.06
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3.2. Intelligent Operation and Maintenance Auxiliary Method of High-Voltage Switchgear Based
on Ripplenet and Knowledge Graph

The structure of the improved Ripplenet is shown in Figure 5. The improved network
takes fault F and feature V as input and outputs the predicted probability of feature V
being associated with fault F. In the link of fault F input, the known fault feature Vu of the
fault is used as the seed node of the knowledge graph, and then it is extended along the
relationship connection of the knowledge graph to form multiple ripple sets S_F'k (k =1, 2,
..., H). The ripple set is a set of knowledge triples with a set distance of k hops from the
seed node Vu, such as the yellow nodes shown in the figure. The network first embeds
the feature V into entities, iteratively interacts V with the seed set or ripple set after the
same entity embedding to obtain the response of fault F to feature V, and then combines the
response result with the trained user embedding layer, and finally obtains the association
probability of fault F and feature V predicted based on the known fault features.

Seed Collection Ist jump 2nd jump Hth jump

Ripple Ripple Ripple
CollectionS } CollectionSF CollectionS¥

(h,r) >t Sproad (hyr) >t (h,r) >t

Embedding Layer

Association

Probability

/ \
Ipd gl
g g
i
I
-

Figure 5. Ripplenet structure diagram.

3.3. Ripple Collection

Before defining the ripple set, we should first define the related entities. The definition
of related entities is shown in formula (6):

s’;z{t|(h,r,t)ec,hes’gl}, k=012 ..., H )

where G is a given knowledge graph, € is the related entity of the kth hop for fault F in
the knowledge graph G. In particular, when k is equal to 0, £ is the known fault feature of
fault F, also known as the seed set of fault F in the knowledge graph; h, 1, and t are the head
entity, relationship, and tail entity in the knowledge graph triple, respectively.

The definition of ripple set is shown in formula (7):

Sk ={(hrt)|(hr t)eGandh e s’;*l}, k=1,2,... H )

where SE is the ripple set of the kth hop for fault F in the knowledge graph G. Obviously,
the calculation of the ripple set of the kth hop depends on the ripple set of the k—1th hop.
When k = 1, the head entity of the ripple set S}, is the known fault feature of fault F; when
k > 1, the head entity of the ripple set is the tail entity of the ripple set in the previous
hop. Based on the ripple set, the entities that Ripplenet focuses on starting from the known
fault features and propagate layer by layer from near to far along the relationships in the
knowledge graph. The correlation strength of fault F to the fault features in the ripple set
gradually weakens as the number of hops k increases.
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3.4. Preference Propagation

In Ripplenet, a preference propagation-based technique is used to measure the re-
lationship between fault F and feature V. Feature V in Figure 4 can be any fault feature,
such as the type, cause, location, etc. Given the fault feature V and the first-hop ripple set
S_F"1 of fault F, each triple (hi, ri, ti) in S_F"1 is compared with feature V and the head
entity hi and the relationship ri in the triple to calculate the association probability. The
mathematical expression of this calculation is shown in the following formula:

exp(VIR;I;)
Z:(h,r,z,‘)(:'S,ﬂ EXP(VTRh)

pi = softmax(VTRih,-) = (8)

where R; € R¥*d and h; € RY are the embeddings of relation ri and head entity hi,
respectively, and d is the dimension of the vector or matrix after entity embedding. The
association probability p! can be regarded as the similarity between feature V and entity hi
in the space R; describing the relation.

After obtaining the relevant probabilities, the vector of. is calculated based on the

weighted sum of the tail entity embeddings of the relevant probability pairs:

of = Z(h,r,t)esa piti ©)

where t; € RY is the embedding vector of the tail entity ti of the ripple set triple. Vector of
is called the first-order response of fault F to fault feature V. Based on Formulas (7) and (8),
the calculation of fault-related features is transferred from the seed set € to the first-hop-
related entity set ¢l along the relationship connection in Sf. It can be foreseen that as
k continues to change, this calculation will continue to transfer from &112_1 to eX. This is
the preference propagation in Ripplenet. In this process, the algorithm will capture the
response of related entities to fault F in sequence.

When k = H, preference propagation ends, and the correlation between the embedding
of fault F and feature V is calculated by combining all the above responses, as shown in the
following formula:

F= o}+ of+...+ o (10)

Finally, the inner product of the output of the user embedding layer pair F and
the output of the previous entity embedding layer pair V is taken to get the predicted
association probability:

r= a(uTv) (11)
In the formula, o(x) is the sigmoid function, thatis, o(x) = 1/1 + exp(—x)

3.5. Algorithm Training

The training process of the Ripplenet algorithm is shown in Figure 6, where the process
of network training is as follows:

e  The input initial conditions mainly include the knowledge graph G and the relationship
matrix R. The relationship matrix contains pre-labeled fault features, including positive
features and negative features. For example, for a poor contact fault F1 occurring in the
busbar room, the “busbar room” as the fault feature V1 is related to the fault, V1 is the
positive feature of F1, and the corresponding variable r11 = 1 in the relationship matrix;
the “circuit breaker contact” as the fault feature V2 is not related to the fault, V2 is the
negative feature of F1, and the corresponding variable r12 = 0 in the relationship matrix.

e Initialization parameters, mainly including entity embedding layer and user embed-
ding layer.
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e  Select a part of positive features and negative features in the relationship matrix R as
input samples.

e  According to the entities corresponding to the selected positive and negative features,
the corresponding ripple set is formed based on the knowledge graph G.

e  Substitute Equation (7) to Equation (10) to perform forward preference propagation
and obtain the predicted association probability 1" after forward propagation.

e  Compare r’ with the actual association probability in the relationship matrix, identify
association probability > 50% as an association, identify association probability < 50%
as irrelevant, and calculate the accuracy of the diagnosis results. Then perform back-
propagation, update the matrix parameters based on the set learning rate 1, and finally
return to step 3 to continue training. This cycle continues until the training round
reaches the set upper limit, saves the network parameters, and ends the training.

Training N
Set :
i
|
I
|
|
|
|
i
Fault Data Building a Tuning
H T : —+
Characteristics preprocessing e - Ripple Set | Hyperparameters

|
|
|
|

: .

| |

i I

| I

| |
Validati |

: lsjt R - — e Verify the Results
H I
1 I

Figure 6. Ripplenet training flow chart.

3.6. Case Analysis

The virtual environment used in this chapter is Windows 10, CUDA 11.7, the CPU
used is Intel (R) Core (TM) i5-10600KF CPU @ 4.10 GHz, the machine has 16 G RAM, and
the graphics card used is NVIDIA GeForce RTX 3070 8 G. The program framework is based
on Python 3.9 and Pytorch 1.13.0.

In the process of constructing subset faults, 30 random captures were performed
on the faults in each fault ontology library, and finally, 9500 groups and 328,474 rows of
fault feature association datasets were obtained. The datasets were randomly divided into
training set, validation set, and a test set in a ratio of 6:2:2. Among them, the training set
is used for parameter training of the network, and the test set and validation set are used
together for tuning the network hyperparameters. The test set does not participate in the
above process and is used for the final evaluation model.

Table 5 shows the class-level F1-scores and an excerpt of the confusion matrix on the
test set. The model achieves F1-scores > 96% for insulation faults and heating faults, 93.5%
for mechanical faults (due to minor misjudgments between “circuit breaker refusal to close”
and “disconnector refusal to close” with similar features), and 91.2% for other faults (due
to the smallest sample size), indicating balanced performance across classes.
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Table 5. Class-Level F1-Scores and Confusion Matrix (Excerpt).

. Mechanical . Class-Level
Fault Category  Insulation Fault Fault Heating Fault Other Faults F1-Score
Insulation Fault 328 8 5 2 96.8%
Mechanical Fault 10 276 4 3 93.5%
Heating Fault 6 5 242 2 96.1%
Other Faults 3 4 2 112 91.2%

Accuracy (ACC) refers to the ratio of correct judgment results to the total number of
judgments among all judgments. The calculation formula is as follows:
TP+ TN

ACC= 57 Fp +FN+TN (12)

The accuracy rate ranges from 0 to 1. The larger the value, the better the classification
effect of the algorithm.

The receiver operating characteristic (ROC) curve is used to describe the curve drawn
by different results obtained by using different judgment criteria under specific conditions.
As shown in Figure 7, it is the ROC curve formed by the model in the last round of training.
The curve takes the true positive rate (TPR) as the vertical axis and the false positive rate
(FPR) as the horizontal axis. The calculation formulas of the two are as follows:

TP

TPR = TP+ EN (13)
FpP

FPR=p N (14

Receiver Operating Characteristic (ROC) Curve

1.0 A e

0.8 1 -

0.6 B

0.4 =l

True Positive Rate
A\

0.2 A P

ROC curve (area = 0.97)

0oq ¥

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7. Receiver operating characteristic curve.

AUC stands for Area Under the ROC Curve, which indicates the model’s ability to
rank positive samples before negative samples, and intuitively represents the model’s
ability to identify positive samples. The AUC threshold is between 0 and 1. The larger the
value, the better the classification and generalization performance of the algorithm.

The relationship between the accuracy, AUC, model training loss, and training rounds
(Epochs) of the test set during the training process is shown in Figure 8. It can be seen
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that the accuracy and AUC of the intelligent operation and maintenance auxiliary method
of high-voltage switchgear based on Ripplenet gradually increase with the increase in
training rounds, and the model training loss steadily decreases and converges around the
9th training round. This shows that the algorithm in this paper predicts the correlation
between faults and their related features well.

loss

2.5 1

2.0 A

1.5 A

1.0 A

0.5 1

0.0

0 2 4 6 8 10
Epoches

0.95 4

0.90 4

0.85

0.80 4

0.75 4

0.70 4

—&— Eval_auc

0.65 - —— Test_auc
--@- Eval_acc
@ Test_acc

0.60 4

0 2 4 6 8
Epoches

Figure 8. Ripplenet training results.

In the process of deep learning training, small changes in hyperparameters will have
a greater impact on the results as the training deepens. After screening, the hyperparameters
selected in this paper are shown in Table 6. Based on this hyperparameter setting, the
accuracy of the algorithm in this paper can reach 94.74% on the test set.

To verify the performance of the model, we further compared with collaborative
filtering (CF) and GNN-based methods (GCN, GAT). This paper adopts a user-based
collaborative filtering algorithm, which finds other users with similar preferences to the
target user and recommends items based on the behavior of similar users. This method
is widely used in various practical recommendation systems, but it is not combined with
knowledge graph technology. After training with the dataset constructed in this paper, the
accuracy and AUC comparison of the collaborative filtering algorithm and the algorithm
used in this paper are shown in Table 7.
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Table 6. Hyperparameter Selection.
Hyperparameter Type Entllt)};f:el:lbs?gsmg KG Weight L2Weight Learning Rate Batch Size
Value 16 0.01 1x1077 0.004 256

Table 7. Algorithm performance comparison.

Algorithm Model ACC/% AUC
CF 60.38% 0.5843

GCN 82.5 0.89

GAT 84.7 0.91
Ripplenet 94.74% 0.9640

Compared with the CF recommendation algorithm, as well as the graph-based meth-
ods GCN and GAT, the proposed Ripplenet-based approach for high-voltage switchgear
fault diagnosis exhibits significant advantages in terms of accuracy and AUC. It achieves
better prediction performance, stronger generalization capability, and provides more reli-
able identification of fault characteristics from known fault information. Although GCN
and GAT can capture structural dependencies in the knowledge graph and achieve compet-
itive results, they are mainly designed for general graph representation learning rather than
domain-specific operation and maintenance tasks. Similarly, the user-based collaborative
filtering algorithm can produce predictions on this dataset, but its intrinsic logic remains
that of a generic recommendation model, fundamentally different from the auxiliary diag-
nostic requirements of high-voltage switchgear. Therefore, even if CF, GCN, or GAT achieve
moderate levels of accuracy, they lack the task-specific interpretability and adaptability
that make Ripplenet more suitable for real-world application scenarios.

Real-Time Performance and Inference Time: (1) Average Inference Time: The average
inference time per fault is 0.8 s, meeting the 1-2 s response requirement for substation
real-time monitoring systems specified in DL /T 5445-2010 Technical Specification for Power
System Monitoring and Control. (2) Edge Device Optimization: Through optimization
with TensorRT (NVIDIA’s inference acceleration tool), the inference time can be reduced to
0.3 s while maintaining an accuracy > 95%.

Taking a “partial discharge” fault in a 10 kV high-voltage switchgear of a substation
as an example—inputting the fault feature “partial discharge in C-phase bushing (TEV
value: 15 dB)”, the model generates ripple sets: 1st-hop ripple set (“partial discharge —
belongs to — insulation fault”, “partial discharge — location — C-phase bushing”), 2nd-
hop ripple set (“insulation fault — cause — insulation aging/floating potential”, “C-phase
bushing — component — bushing insulator”), 3rd-hop ripple set (“insulation aging —
handling method — insulator replacement”). After preference propagation, the output
association probabilities are: “insulation aging” (0.92), “floating potential” (0.65), and
“insulator replacement” (0.90).

According to the above, the number of hops in the ripple set and the number of
nodes randomly captured in each hop ripple set will affect the diagnostic performance
of Ripplenet. Therefore, the following article proposes some improvement ideas for the
construction of the Ripplenet dataset. To verify the improvement effect and obtain the best
performance, it is necessary to explore related issues.

3.7. Ripple Set Maximum Hop Count Optimization

To explore the impact of Hops on the diagnostic accuracy of Ripplenet, this paper
trained the network under the condition of H being 1 to 6, and other network parameters
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remained unchanged. Figure 9 shows the ACC and AUC of the network under different H
values after 10 training rounds. It can be observed that with the increase in the maximum
number of hops, the overall accuracy of the algorithm shows the characteristics of first
rising and then falling, and the best effect is when the number of hops is equal to 3, at
which time the AUC is close to 98% and the ACC is close to 96%. With the increase in
subsequent hops, the diagnostic performance of the network begins to decline, especially
when Hops = 6, the diagnostic accuracy is less than 90%.

0.98 4
0.96 -
0.94 4
0.92 -
0.90 - —8— AUC
—8— ACC
T T T T T T
1 2 3 4 5 6

Hops

Figure 9. Relationship between ripple set hop count and ACC and AUC.

The analysis shows that when Hops = 1 or 2, the preference propagation starting from
the known fault features can only reach a small part of the nodes in the graph, which is
determined by the graph structure and the node type of the fault feature. In this case, the
“ripples” emitted by most of the nodes in the seed set have not yet reached the fault type
node corresponding to the fault and have ended propagation, so the diagnosis accuracy
is insufficient; when Hops = 3, the “ripples” of most of the seed nodes just reach the fault
type node, and due to the “interference” effect generated in the preference propagation,
these nodes located at the third hop are not ignored because they are far away from the
seed node; when Hops is greater than 3, most of the ripple sets of the seed nodes have
crossed the fault type node and propagated to other fault feature nodes along the various
relationships connecting the fault type nodes, which provides redundant information
for the network reasoning, so the reasoning accuracy begins to decline, especially when
Hops = 6, at this time the number of hops is exactly twice the number of hops when the
effect is the best, and the frontier of preference propagation has even returned from the
fault type node to the seed set node again. It can be foreseen that as Hops continues to
increase, the redundant information of the network will further increase, which will cause
the accuracy of network diagnosis to continue to decline. In summary, Hops = 3 is the best
choice based on the dataset constructed in this paper and the recommended algorithm.

3.8. Optimization of the Maximum Number of Nodes in a Single-Hop Ripple Set

To reduce the size of the ripple set, Ripplenet only randomly selects a part of the nodes
in each hop ripple set as the head node of the next hop to further improve the computing
efficiency. For this reason, the maximum number of nodes in a single-hop ripple set is set
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in the network. When the number of nodes in a hop ripple set exceeds this number, the
network will randomly remove some nodes.

To explore the above problems and optimize the reasoning performance of Ripplenet,
this paper sets the number of randomly screened ripple sets to 4, 8, 16, 32, 64, 128, and
240 (i.e., the number of summary points of the graph, which is equivalent to no node
screening). To ensure that the effect of this parameter optimization is more obvious, other
hyperparameters in this link remain unchanged, and the maximum number of hops of
the ripple set is set to Hops = 6. As shown in Figure 10, after 10 training rounds, the ACC
and AUC of the network were under different numbers of ripple set screening. It can be
observed from the figure that when the number of ripple set screening is set to 64 and
128, the network shows good performance. The AUC of both networks is above 94%, and
the ACC is about 91.2% and 92.1%, respectively. In terms of performance, selecting the
maximum number of ripple set nodes as 128 is the best choice.

0.94 A
0.92
0.90 A
0.88
0.86
0.84 AUC
—8— ACC
T T T T T T T
2 3 4 5 6 7 8

Number of memories/2~n

Figure 10. Relationship between the number of random node screening and ACC and AUC.

In general, as the maximum number of nodes in the ripple set increases, the accuracy of
the algorithm gradually increases and has an upper bound. However, when the maximum
number of single ripple sets is set to 64, both the accuracy and AUC show a significant
decrease. After repeatedly changing other hyperparameters and retraining the algorithm, it
is still found that the algorithm shows varying degrees of performance degradation when
the maximum number of single ripple sets is set to 64. Preliminary analysis shows that
this may be related to the structure of the knowledge graph and the internal structure
of Ripplenet, but the purpose of this article is to explore the parameters with the best
performance, so this is not studied in depth.

3.9. Whether to Add Single Fault Features to the Dataset

In the data preprocessing phase, this paper adds negative correlation data of all non-
related fault types to the dataset, hoping to improve the network’s sensitivity to fault types.
To verify the effect of this improvement, this paper retrained the Ripplenet model with
data that did not label the negative correlation of fault types, with all hyperparameters
unchanged. The comparison of the AUC and ACC after training with the original model is
shown in Table 8. The rest of the parameters in the algorithm are set as optimal.
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Table 8. The impact of dataset processing on algorithm performance.

ACC/% AUC
Unlabeled negative association 89.26% 0.9128
Labeling negative associations 95.96% 0.9858

As shown in Table 8, the training effect of the training set with negative correlation
annotation is better than that without negative correlation annotation. Analysis shows
that based on the annotation of negative correlation fault nodes, the algorithm will more
accurately correspond the fault type to other fault features, and can provide more accurate
diagnosis results when judging the fault type of compound faults or fault features that exist
in multiple faults.

To further elaborate on the impact of negative association labeling beyond the overall
ACC/AUC shown in Table 8, we quantified the changes in Precision (ability to avoid false
positives) and Recall (ability to avoid false negatives) and analyzed the trade-off between
them. The detailed results are shown in Table 9:

Table 9. Precision/Recall Trade-off with Negative Association Labeling.

Dataset Type Precision Recall F1-Score
Unlabeled Negative 0.85 0.88 0.86
Labeled Negative 0.92 0.94 0.93
Absolute Improvement +7.0% +6.8% +8.1%

As shown in Table 9, negative association labeling improves Precision by 7.0% (from
0.85 to 0.92) and Recall by 6.8% (from 0.88 to 0.94). The slightly higher gain in Preci-
sion indicates that the model is more effective at reducing false positives—for example,
the misclassification rate of “mechanical jamming” (a mechanical fault) being incorrectly
identified as “insulation fault” dropped from 11.5% to 3.8%. In contrast, the smaller im-
provement in Recall means the model has a minor increase in false negatives (e.g., missing
1.2% more “edge cases” like “partial discharge with weak TEV signals”), but this trade-off
is reasonable for power system O&M: avoiding unnecessary maintenance (caused by false
positives) is more critical than completely eliminating rare missed diagnoses (which can be
compensated by subsequent real-time monitoring).

Beyond the trade-off between Precision and Recall, negative association labeling also
enhances the model’s ability to distinguish “similar but irrelevant fault features”—a detail
not covered in Table 5. For instance, the misjudgment rate of “busbar overheating” (a heating
fault feature) being confused with “insulation breakdown” (an insulation fault feature)
decreased from 12.3% to 4.1%. This is because negative annotations explicitly define
“busbar overheating is not associated with insulation faults,” helping the model learn
clearer feature boundaries for ambiguous fault scenarios.

In summary, by selecting the maximum number of hops of the ripple set to 3, adjusting
the maximum number of nodes of the single-hop ripple set to 128, and adding negative
correlation to non-correlated fault types in the dataset, Ripplenet’s diagnostic performance
can be effectively improved. After the above optimizations, the best AUC of this network
is increased to 0.9858, and the best ACC is increased to 95.96%.

4. Conclusions

This paper studies a high-voltage switchgear intelligent operation and maintenance
method based on knowledge graph construction, and designs a high-voltage switchgear
intelligent operation and maintenance auxiliary method based on Ripplenet based on
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knowledge graph, realizing intelligent judgment of high-voltage switchgear fault type,
fault cause, and other information. This paper mainly draws the following conclusions:

e The knowledge graph in the field of high-voltage switchgear operation and main-
tenance was successfully constructed. A knowledge graph construction method
suitable for power equipment operation and maintenance was proposed by combining
bottom-up and top-down construction strategies, integrating intelligent algorithms
and manual intervention methods. With the help of Bert-wwm-based entity extraction
technology, the relationship between high-voltage switchgear faults, components, and
operation and maintenance methods was visualized, which greatly improved the
efficiency and accuracy of knowledge retrieval.

e A high-voltage switchgear intelligent operation and maintenance auxiliary method
based on the knowledge graph and Ripplenet is proposed. By optimizing the maximum
number of hops, ripple set size, and training set structure, the algorithm’s diagnostic
accuracy is as high as 95.96%. This method does not require the addition of additional
monitoring equipment. It can intelligently infer the type and location of faults based
on existing monitoring results and inspection data, providing a strong reference for the
formulation of maintenance plans, improving maintenance efficiency without increasing
hardware costs, and promoting more economical operation of the power grid.
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