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Abstract

Scene Text Recognition (STR) faces significant challenges under complex degradation
conditions, such as distortion, occlusion, and semantic ambiguity. Most existing methods
rely heavily on language priors for correction, but effectively constructing language rules
remains a complex problem. This paper addresses two key challenges: (1) The over-
correction behavior of language models, particularly on semantically deficient input, can
result in both recognition errors and loss of critical information. (2) Character misalignment
in visual features, which affects recognition accuracy. To address these problems, we
propose a Deformable-Alignment-based Dual Correction Mechanism (DADCM) for STR.
Our method includes the following key components: (1) We propose a visually guided
and language-assisted correction strategy. A dynamic confidence threshold is used to
control the degree of language model intervention. (2) We designed a visual backbone
network called SCRTNet. The net enhances key text regions through a channel attention
module (SENet) and applies deformable convolution (DCNv4) in deep layers to better
model distorted or curved text. (3) We propose a deformable alignment module (DAM).
The module combines Gumbel-Softmax-based anchor sampling and geometry-aware self-
attention to improve character alignment. Experiments on multiple benchmark datasets
demonstrate the superiority of our approach. Especially on the Union14M-Benchmark,
where the recognition accuracy surpasses previous methods by 1.1%, 1.6%, 3.0%, and 1.3%
on the Curved, Multi-Oriented, Contextless, and General subsets, respectively.

Keywords: scene text recognition; dual correction; fusion; deformable; alignment

1. Introduction
Text recognition is an important research area in computer vision and natural language

processing. In particular, STR focuses on accurately extracting text information from images.
This task plays a key role in many AI applications, such as automated document processing,
license plate recognition, intelligent surveillance, and autonomous driving [1–3]. In recent
years, with the rapid development of deep learning, STR has achieved remarkable progress
across various fields [4–6].

However, in complex natural scenes, text images often present various challenging fea-
tures. As shown in Figure 1, these include complex fonts, blurriness, occlusion, distortion,
and lack of semantic content. These factors make scene text recognition difficult. As shown
in Figure 2, existing STR methods can be divided into two main categories: visual feature
learning [7–12] and semantic understanding [13–20].
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Figure 1. Various types of scene text images.

Figure 2. Different types of STR methods. From left to right: the pipelines of a pre-processing visual
model, a model with separate visual and linguistic modules, and a vision–language fusion model.

Visual methods mainly use preprocessing to correct distortions and introduce some
spatial variations to enhance the image feature extraction capability [9,13,21]. However,
these methods often fail to accurately model semantic dependencies between characters
when the text is blurry or structurally degraded.

On the other hand, semantic understanding methods [14,15,22–24] introduce semantic
information implicitly or explicitly to address the shortcomings of visual models in the
presence of blurry or incomplete visual inputs. These methods significantly improve the
accuracy of scene text recognition.

Despite these advances, existing methods still have the following limitations: (1) Over-
integration of language models makes it difficult to distinguish between visual and lan-
guage signals, leading to poor interpretability. (2) Over-correction by language models in-
troduces too much semantic information from model architecture or dataset corpus, which
can cause the model to predict text that follows grammatical rules, even for non-semantic
text, such as abbreviations or random combinations of letters, numbers, and symbols.
(3) The lack of targeted correction in language models: some methods’ iterative corrections
negatively impact inference speed.

To address the aforementioned challenges, we propose DADCM, a method designed
from three key perspectives. The overall workflow of our approach is illustrated in Figure 3.
Specifically, DADCM aims to achieve the following: (1) Visual feature extraction is more
accurate, improving the visual model’s fine-grained ability to model complex text and
enhancing its robustness to blurry and distorted characters. (2) Language correction
becomes more intelligent, with visual information as the primary guide and the language
model providing auxiliary correction, avoiding misjudgment of non-semantic text caused
by excessive reliance on language priors. (3) Features and characters are better aligned to
handle various forms of text images.

Figure 3. DADCM. The pipeline of our DADCM, which integrates a deformable alignment module
for bidirectional correction.
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Therefore, the main contributions of this paper are as follows:
(1) We propose a novel visually guided and language-assisted framework that balances

visual predictions and linguistic priors in a structured manner. This framework improves
recognition robustness under noisy, ambiguous, or incomplete visual inputs, and its design
is compatible with potential extensions to more complex STR systems.

(2) To enhance feature extraction, we designed SCRTNet, a lightweight backbone
that integrates channel attention with deformable convolution (DCNv4) [25]. This task-
driven combination strengthens feature discrimination in distorted, curved, or perspective-
deformed text regions, allowing the model to capture complex text patterns more effectively.

(3) We also introduce the Dynamic Anchor-based Alignment Module (DAM), which
combines Gumbel-Softmax-based dynamic anchor sampling, self-attention refinement,
and Gaussian-weighted feature extraction. This module explicitly addresses character–
feature misalignment and significantly improves recognition performance for irregular
text shapes.

(4) Extensive experiments across multiple STR benchmarks demonstrate the practi-
cal effectiveness of our approach. Especially on the Union14M-Benchmark, recognition
accuracy surpasses previous methods by 1.1%, 1.6%, 3.0%, and 1.3% on the Curved, Multi-
Oriented, Contextless, and General subsets, respectively, highlighting both the conceptual
novelty and empirical impact of our method.

2. Methods
The architecture of DADCM is shown in Figure 4. It consists of four main compo-

nents: the Visual Feature Extraction Backbone Network, the Language Correction Module,
the Character Inference Feature Module, and the Vision–Language Joint Optimization.

Figure 4. The architecture of the proposed DADCM. The Offset Prediction module consists of 1 × 1
convolutions, self-attention mechanism, and a fully connected (FC) layer.

2.1. Visual Model

We propose a novel visual feature extraction backbone, named SCRTNet, which inte-
grates local and global information. The detailed structure is shown in Figure 5. SCRTNet
is built upon a hybrid architecture that combines ResNet [20,26] and Transformer-based
modules [22–24,27,28], enabling more powerful and robust visual feature representation.

In the early stage of feature extraction, specifically after the second stage of ResNet, we in-
troduce a channel attention module (Squeeze-and-Excitation Module, SENet) [29]. This module
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models the importance of each channel and reweights the responses accordingly. It enhances
the responses related to text regions while suppressing redundant background information.

Furthermore, in the fourth stage of ResNet, we apply DCNv4 in the second convolu-
tional layer of each residual block. Unlike standard convolutions, DCNv4 samples features
with learnable offsets, allowing the receptive field to adapt to irregular or distorted text pat-
terns. This significantly improves the network’s ability to handle common text variations,
such as rotation, curvature, and perspective distortion in natural scenes.

The Transformer unit has two layers, each incorporating positional encoding, multi-
head self-attention (MHSA), and a feed-forward network (FFN). This design enhances the
model’s ability to capture global spatial structures.

By combining the above modules, we construct a visual feature extractor that integrates
local precision and global context awareness. The detailed formulation of the extracted
visual feature Fvi,j is as follows:

Fvi,j = T(R(X)) ∈ RB×P×C (1)

where X ∈ RH×W×3 denotes the input text image, H and W represent the height and
width, respectively. R denotes the feature representation extracted by SCResNet-46, and T
refers to the output of the Transformer encoder. B is the batch size, and C is the number
of channels. The length of the resulting visual feature sequence is defined P = H

32 × W
8 .

The final visual features Fvi,j subsequently fed into the recognition module for inference.

Figure 5. Structure of the Visual Module. Each ResBlock contains Conv-BN-ReLU layers. For clarity,
batch normalization and activation functions are omitted in the diagram.

2.2. Recognition and Inference Module

To address alignment challenges caused by text deformation, irregular layout, and un-
even character spacing in complex scenes, we propose a Deformable Alignment Module
(DAM). This module is integrated with parallel visual attention (PVA) [14,24] to enhance
the recognition process. The overall structure is illustrated in Figure 4. DAM derives
alignment-enhanced features from Fvi,j by employing Gumbel-Softmax [30] differentiable
sampling, offset refinement, and Gaussian kernel-based feature aggregation. The detailed
process is illustrated in Figure 6.

Figure 6. Architecture of the DAM.

First, at each spatial location of the feature map, we apply a three-layer 1 × 1 convolu-
tional network to predict Nd candidate anchor points (xi, yi), along with their confidence
scores pi. Then, we apply Gumbel-Softmax sampling to select the final anchor point in
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a differentiable manner. Next, we compute character-level geometric relations using a
self-attention-based offset generation module, which dynamically predicts position shifts
and yields the refined anchor locations (∆x, ∆y). Finally, we extract the aligned feature at
(x′, y′). Using a Gaussian kernel-weighted aggregation approach as follows:

(x∗, y∗) =
Nd

∑
i=1

pi · (xi, yi) (2)

∆ = Softmax
(

QKT
√

dk

)
V · Woffset (3)

(x′, y′) = (x∗ + ∆x, y∗ + ∆y) (4)

G(x, y) = exp
(
− (x − x′)2 + (y − y′)2

2σ2

)
(5)

Gt = G(x′, y′) · Fvi,j (6)

where Q, K, and V are obtained through linear projections of the feature map. dk is a scaling
factor, and Wo f f set is a learnable parameter matrix. The parameter σ adaptively controls
the spatial extent of the weighting function. In addition, we obtain the attention map using
the Parallel Visual Attention module as follows:

pt = AttT
t Fvi,j (7)

Att = Softmax
(

G
(

Fvi,j

))
(8)

G
(

Fvi,j

)
= W1 tanh

(
W2Oc + W3Fvi,j

)
(9)

where Att ∈ Rhw×N denotes the attention map, h and w are the height and width of
the feature map, respectively, and d is the feature dimension.N represents the maximum
decoding length. Oc ∈ RT×C is the position encoding of character sequences [31]. W1, W2,
and W3 learnable weights, and t refers to the current decoding time step.

Finally, we use the output of DAM as the Q and take the attention-enhanced features
from PVA as the K and V. The final fusion is performed as follows:

Fa = Softmax
(

QKT
√

d

)
V (10)

The result is passed through a linear layer to produce the visual prediction probability
distribution Pv(yi). Figure 7 shows the visual attention maps generated by the visual
module for recognition.

Figure 7. The visual attention maps generated by the visual module for recognition.

2.3. Language Module

In this work, we decouple the visual and language models by introducing an indepen-
dent language model as a correction module. In our architecture, the context characters
y1:i−1 are directly derived from visual features. To eliminate potential bias during back-
propagation, we apply Blocking Gradient Flow (BGF) [22,23] to isolate learning between
different modalities. This ensures the independence of visual and linguistic representa-
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tions. Within the correction module, the visual model provides predictions P(yi|y1:i−1) for
each character. The visual confidence reflects the reliability of character recognition. Low-
confidence predictions may be caused by blur, occlusion, or noise, while high-confidence
predictions are typically accurate. Based on these confidence scores, we generate a binary
mask that determines whether a character should be corrected. If a character’s visual confi-
dence falls below a predefined threshold, it is masked and refined by the language model
using contextual information. The attention mechanism within the multi-head blocks is
described as follows:

M(yi) =

0 if P(yi) ≥ τ

−∞ otherwise
(11)

Fmha = softmax
(

QKT
√

d
+ M

)
V (12)

where Q ∈ Rt×d denotes either the positional encoding of character sequences from the
first layer or the output of the final layer. The K and V are derived from the visual character
probabilities P(yi). M ∈ Rt×t is the attention mask used to prevent attention to low-
confidence positions. By stacking multiple BCN layers, we obtain a deep architecture that
models the bidirectional representation of text Fl [22,23]. In this design, visual confidence is
used to dynamically generate the attention mask. The language model performs correction
only when necessary, serving as a flexible auxiliary module in scene text recognition.

2.4. Vision-Language Fusion

Scene text contains rich semantic information. Incorporating language models to
guide and fuse with visual models can significantly improve recognition accuracy. How-
ever, in STR, a significant challenge of introducing language models is preventing the
over-correction of originally correct character sequences, especially in cases with weak
or no semantic context. To address this issue, we propose a confidence-based correction
mechanism. Specifically, we combine outputs from both the visual and language models,
and use a predefined confidence threshold τ to dynamically determine which characters
should be corrected by the language model. In this way, only low-confidence predictions
are refined by the language model. Furthermore, the fused features are used to assess the
reliability of the correction.

To integrate features from both visual and linguistic modalities, we adopt a gating
mechanism [14,16,22] to fuse the visual features with the language-corrected representa-
tions. The gating mechanism employs learnable weights to balance the contributions from
each modality. The fusion process is defined as follows:

G = σ([Fa, Fl ])W f (13)

Ff = G ⊙ Fa + (1 − G)⊙ Fl (14)

where W f is a learnable parameter. Fa, Fl , and Ff represent the visual features, language-
corrected features, and fused features, respectively. σ denotes the sigmoid activation
function. G ∈ Rt×d is the gated feature, dynamically selected from Fa and Fl .

2.5. Training Objective

The final objective function is defined as follows:

L = λvLv + λlLl + λ fL f (15)
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L∗ = − 1
N

N

∑
t=1

log(yt | gt) (16)

Lv = Lmain + λLaux (17)

Lcos =

1 − cos(Gt, Fvi,j), if q = 1

max(0, cos(Gt, Fvi,j)− m), if q = −1
(18)

where Lv, Ll , and L f represent the losses from the visual module, the language module,
and the final fusion module, respectively. yt and gt represent the prediction and ground
truth. λv, λl , and λ f are balancing coefficients. Both Ll and L f adopt the cross-entropy loss
as defined in Equation (16). The visual loss Lv follows a stage-wise hybrid training strategy.
The auxiliary loss (Laux) uses cosine embedding loss Lcos to align the features extracted by
PVA and DAM. The main visual loss Lmain employs the cross-entropy loss from L∗.

3. Experiment
3.1. Datasets

To enable a more comprehensive comparison with existing STR methods, we train
our model on two synthetic datasets, SynthText (ST) [32] and SynthText90K (90K) [33],
as well as a real-world training set, Union14M-L [19]. We evaluate DADCM on multiple
benchmark datasets that cover a wide range of STR scenarios. These include (1) six com-
monly used STR benchmarks—ICDAR 2013 (IC13) [34], Street View Text (SVT) [35], IIIT5K-
Words (IIIT5K) [36], ICDAR 2015 (IC15) [37], Street View Text-Perspective (SVTP) [38],
and CUTE80 [39]. Specifically, we use the version of IC13 that contains 857 images. For IC15,
the standard test set with 1811 images is used. (2) The real-world benchmark Union14M-L,
which contains seven challenging subsets: Curved, Multi-Oriented (MO), Artistic, Context-
less (Cless), Salient, Multi-Word (MW), and General. These subsets present more complex
and diverse scene text conditions.

3.2. Implementation Details

The parameter settings used in our experiments are as follows: (1) The feature dimen-
sion d of the recognition model is set to 512. (2) The number of candidate points Nd in DAM
is set to 5. (3) The offset prediction module uses three layers, each with four self-attention
heads. (4) The language model consists of 3 layers, with six attention heads in each layer.
(5) The balance factors λv, λl , and λ f are set to 0.3, 0.2, and 0.5, respectively.

We resize all input images to 64 × 256, and apply the data augmentation strategy from
CDisNet [28]. The model is trained to recognize 94 character classes, including 10 digits,
52 case-sensitive letters, 31 punctuation marks, and one special “END” token. We use
case-insensitive word accuracy as the evaluation metric. All STR models, including our
DADCM, are trained on the same datasets. The training is conducted in two stages using
four NVIDIA RTX 4090 GPUs (NVIDIA, Santa Clara, CA, USA). The operating system was
Ubuntu (Canonical, London, UK), the deep learning framework used was PyTorch (v2.2.0,
Meta Platforms, Menlo Park, CA, USA), and CUDA (v11.8, NVIDIA, Santa Clara, CA, USA)
was employed for GPU acceleration.

In the pretraining stage, we train the visual module separately. We use the AdamW
optimizer [40] with a weight decay of 0.05 to pre-train on SynthText (ST) and SynthText90K
(90 K) for 20 epochs. The batch size is set to 384, and the initial learning rate is 1.5 × 10−4.
We adopt a cosine learning rate scheduler with two epochs of linear warm-up. Additionally,
during the first 6000 iterations, the DAM is frozen, and only the backbone network is
trained to ensure stable feature extraction.
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In the fine-tuning stage, we incorporate a pre-trained language model [22] into the
training process. To keep consistency with the pretraining setup, we continue to use the
AdamW optimizer with a weight decay of 0.01. The model is fine-tuned on the Union14M-L
training set for 10 epochs.The initial learning rate is set to 1 × 10−4, and we use a cosine
scheduler without warm-up. The batch size is set to 256.

All experiments are conducted on large-scale datasets including ST, 90K, and
Union14M-L. Due to the sufficient size of these datasets, training results are stable and not
sensitive to random initialization. In addition, all baseline models were retrained under the
same training settings to ensure a fair comparison, rather than directly adopting results
from the literature.

3.3. Ablation Study on Visual Model
3.3.1. Effectiveness of SCRTNet

To evaluate the impact of different backbone architectures on recognition accuracy,
we compare SCRTNet with ResNet+TFs, ConvNeXtV2 [41], and ViT [42] under the same
experimental settings as pretraining. For a fair comparison, we disable both the language
and alignment modules in all models. The inference process and the overall framework
remain the same. We conduct two sets of experiments: one trained only on synthetic
datasets and another trained only on Union14M-L. Word accuracy on the challenging IC15
and Union14M-L benchmark subsets is used as the evaluation metric.

Moreover, the results in Table 1 indicate the promising effectiveness of the proposed
SCRTNet. We choose SCRTNet as the visual backbone for its balance between feature
extraction capability and computational efficiency. The combination of channel attention
and DCNv4 allows the network to better capture multi-scale and deformable text fea-
tures, which is crucial for downstream DAM-based alignment and recognition. Compared
to general-purpose encoders such as Swin Transformer, SCRTNet achieves competitive
performance while being more lightweight and task-specific. Compared with the other
three feature extraction backbones, SCRTNet achieves higher recognition accuracy on each
benchmark dataset. When trained on synthetic data, real-world data, and a combination
of both, SCRTNet achieves recognition accuracy improvements of 0.8%, 3.3%, and 2.2%,
respectively, compared to using ResNet+TFs as the backbone. These results indicate that
SCRTNet exhibits better adaptability in recognizing curved and multi-oriented text.

Table 1. Ablation study of different feature extraction networks trained with synthetic datasets and
Union14M-L. The Union14M-Benchmark is divided into seven subsets from left to right: Curve,
Multi-Oriented, Artistic, Contextless, Salient, Multi-Words, and General. S denotes training with
synthetic datasets ST and 901 K, while R denotes training with the Union14M-Train dataset. ViT-S
uses six multi-head attention layers, and TF3 indicates the use of three Transformer blocks.

Encoder Train
Data IC15 Curve Multi-

Oriented Artistic Contextless Salient Multi-
Words General Avg

ResNet S 70.2 67.1 59.6 50.8 70.2 59.8 61.2 60.5 62.4
ResNet+TFs S 71.0 68.0 60.5 51.9 71.0 60.9 62.5 62.1 63.5

ConvNeXtV2 S 70.8 67.8 60.6 50.9 71.3 59.9 62.3 61.7 63.2
ViT-S S 69.5 67.7 60.1 50.7 70.1 58.8 61.0 60.1 62.3

SCRTNet (Ours) S 71.6 68.9 61.2 52.6 72.6 61.1 62.8 63.2 64.3

ResNet R 82.3 80.7 68.7 60.1 81.3 70.1 76.0 71.2 73.8
ResNet+TFs R 83.2 81.5 72.6 61.2 82.5 70.9 77.3 72.0 75.1

ConvNeXtV2 R 83.0 81.2 72.2 61.1 82.2 70.7 76.9 71.7 74.9
ViT-S R 83.2 81.0 71.9 60.2 81.4 70.4 76.2 71.5 74.5

SCRTNet (Ours) R 85.9 84.1 76.8 64.9 85.4 73.7 81.9 74.6 78.4
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Table 1. Cont.

Encoder Train
Data IC15 Curve Multi-

Oriented Artistic Contextless Salient Multi-
Words General Avg

ResNet S+R 83.6 82.2 73.1 61.7 83.3 73.2 77.8 73.5 76.1
ResNet+TFs S+R 84.9 83.1 74.8 62.3 84.7 74.6 78.5 75.1 77.3

ConvNeXtV2 S+R 84.3 82.9 74.1 62.9 83.6 73.3 77.4 74.9 76.7
ViT-S S+R 82.7 81.9 73.1 61.6 82.9 72.9 76.6 72.9 75.8

SCRTNet (Ours) S+R 86.1 85.7 77.2 65.1 86.9 75.1 83.2 76.3 79.5

While our primary comparisons are with ResNet, ConvNeXtV2, and ViT, SCRTNet
was selected for its superior trade-off between recognition accuracy and efficiency. Future
work could include comparisons with more recent lightweight CNN-Transformer hybrids
or Swin-based encoders.

3.3.2. Effectiveness of DAM

DAM is designed to address the challenges posed by the diversity of scene text data.
Therefore, it is expected to bring improvements across different types of datasets. To ensure
a fair comparison with SCRTNet, we apply the same training settings from Table 1 to the
visual backbone enhanced with DAM, using both synthetic datasets and Union14M-L.
As shown in Figure 8, the word-level average accuracy improves by 2.3% after integrating
DAM. The overall trend of the results clearly demonstrates the effectiveness of DAM.

Interestingly, the gains from DAM vary across subsets. It provides larger improve-
ments on curved and multi-oriented text because these cases suffer from significant
character–feature misalignment, which DAM is specifically designed to correct. In contrast,
for contextless text, the main challenge is the lack of linguistic cues rather than visual
misalignment, while DAM still improves alignment, its effect is limited in low-context
scenarios. These observations highlight that DAM is particularly effective for addressing
spatial alignment issues in irregular text.

Figure 8. Effectiveness of DAM. Word accuracy comparison between models with and without DAM,
trained using both synthetic datasets and Union14M-L10.

3.4. Vision-Language Fusion
3.4.1. Ablation Study on Vision–Language Fusion

The language model is introduced to complement and correct characters that are
difficult to extract through visual features alone. The fusion between language and vision
also plays a key role in model performance. To evaluate the effectiveness of our dynamic
vision–language fusion, we conduct three comparison experiments: (1) visual-only infer-
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ence, (2) language-only inference, and (3) fused inference. The results are shown in Table 2.
To ensure consistency in evaluation, all three models undergo a two-stage training scheme,
including pre-training and fine-tuning.

To further investigate the contribution of the Deformable Alignment Module (DAM),
we conducted an ablation study by integrating it into the model with VM, LM, and VLM.
As shown in Table 2, adding DAM improves recognition accuracy on the irregular text
subsets, including IC15, Curve, Multi-Oriented, and Artistic, demonstrating its effectiveness
in aligning visual features for challenging text shapes. The performance on Contextless
and general text remains stable, indicating that DAM does not negatively affect simpler
or context-free cases. Overall, the inclusion of DAM yields a slight increase in average
accuracy, confirming its complementary role in enhancing the model’s robustness for
complex scene text recognition.

Table 2. Ablation study of the contributions of different modules (VM: Vision Module, LM: Language
Module, VLM: Visual–Language Module, DAM/Deformable Alignment Module).

VM LM VLM DAM IC15 Curve Multi-
Oriented Artistic Contextless Salient Multi-

Words General Avg

✓ 89.2 87.4 79.9 76.6 86.5 77.7 85.7 77.0 82.5
✓ ✓ 90.9 89.7 83.4 79.3 85.3 79.8 86.1 79.8 84.3
✓ ✓ ✓ 92.1 89.9 85.5 79.8 88.5 81.3 86.5 83.1 85.8
✓ ✓ ✓ ✓ 90.9 89.7 83.4 79.3 85.3 79.8 86.1 79.8 84.3

As shown in Table 2, the Visual–Language Fusion Module (VLM) improves perfor-
mance over using only the Vision Module, with gains of 2.9%, 2.5%, 5.6%, 3.2%, 2.0%, 3.6%,
0.8%, and 6.1% on IC15, Curve, Multi-Oriented, Artistic, Contextless, Salient, Multi-Words,
and General datasets, respectively, and an average improvement of 3.3%. These results
demonstrate that the model effectively integrates visual and language information. To better
understand the contribution of the Language Module itself, we compare it with the Vision
Module alone. The Language Module improves recognition accuracy on most test subsets,
with gains of 1.7%, 2.3%, 3.5%, 2.7%, 0.4%, and 2.8% for IC15, Curve, Multi-Oriented, Artis-
tic, Salient, and Multi-Words, respectively. However, a slight decrease of 1.2% is observed
on the Contextless subset. This is likely because the Language Module may “over-correct”
text that was already correctly recognized, relying on semantic context, while it effectively
aids in correcting semantically meaningful text and complements the visual model on
difficult cases, scene text often contains visually challenging content without semantic cues.
Therefore, the application of the Language Module requires careful consideration.

Therefore, we should not rely solely on language correction, as some scene texts
lack semantic content. On the other hand, visual predictions may also be unreliable.
A robust vision–language fusion strategy is essential for handling complex text in real-
world scenarios. In Table 2, compared to using the visual model alone, the fusion module
brings further improvements of 1.2%, 0.2%, 2.1%, 0.5%, 3.2%, 1.5%, 0.4%, and 3.3% on each
test subset.

Figure 9 shows the character-level confidence predictions from the visual, linguistic,
and fusion modules in DADCM. As each module is added, the confidence scores for char-
acter predictions increase to varying degrees. This indicates that the modules complement
each other and help the model better understand the text images. The fusion module, in par-
ticular, enhances the interaction between visual features and semantic information. As a
result, the overall recognition becomes more stable and accurate. These results demonstrate
the effectiveness of DADCM in handling complex scene text recognition tasks.
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Figure 9. Character prediction results from the visual module, linguistic module, and the final
DADCM output (from left to right). Confidence scores are in the range [0, 1]. [E] denotes the
end-of-sequence (“END”) token. Red indicates incorrect predictions; blue indicates corrected and
accurate characters.

3.4.2. Sensitivity to Confidence Threshold

To further investigate the effect of the language correction confidence threshold τ, we
conducted a sensitivity analysis on the Union14M-Benchmark sub-datasets, as shown in
Table 3. The results indicate that recognition accuracy remains stable across a wide range of
τ values, with fluctuations within ±0.2% for most sub-datasets. This demonstrates that the
dynamic vision–language fusion mechanism consistently enhances performance without
relying on a specific threshold.

Notably, the Contextless subset exhibits slightly lower accuracy and minimal variation
across different τ values, which is consistent with the observation in Table 2 that the
language module may over-correct text lacking semantic content. This suggests that the
model successfully avoids excessive correction on contextless text through the confidence-
based selection.

When τ takes moderate values near 0.5, the resulting performance is similar to that
of the model employing both visual and language branches. Incorporating the complete
visual-linguistic fusion module provides an additional gain in accuracy. These findings indi-
cate that the proposed dynamic fusion strategy effectively leverages complementary visual
and linguistic information, improving recognition accuracy for semantically meaningful
and visually challenging text while mitigating potential errors on contextless text.

Table 3. Recognition accuracy under different language correction thresholds τ on Union14M-
Benchmark sub-datasets, reflecting the effect of dynamic vision–language fusion.

τ Curve Multi-
Oriented Artistic Contextless Salient Multi-

Words General Avg

0.1 89.5 85.2 79.7 85.1 79.7 86.0 79.7 84.0
0.2 89.6 85.3 79.8 85.2 79.8 86.1 79.8 84.2
0.3 89.7 85.4 79.9 85.2 79.9 86.2 79.9 84.3
0.4 89.7 85.5 79.9 85.3 79.9 86.2 79.9 84.4
0.5 89.8 85.5 80.0 85.3 80.0 86.3 80.0 84.5
0.6 89.8 85.5 80.0 85.3 80.0 86.3 80.0 84.5
0.7 89.7 85.4 79.9 85.2 79.9 86.2 79.9 84.4
0.8 89.6 85.3 79.8 85.2 79.8 86.1 79.8 84.3
0.9 89.5 85.2 79.7 85.1 79.7 86.0 79.7 84.2
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3.5. Comparison with SOTA

We evaluate DADCM on six commonly used STR benchmarks and the seven subsets
of the Union14M-L benchmark. The results are compared with three different types of STR
methods. Table 3 shows the accuracy comparison across all 13 test datasets. All methods
are trained under the same settings as our model.

As shown in Table 4, the comparison results with various STR methods suggest that
attention-based approaches and models incorporating language information show better
generalization in challenging scenarios. This demonstrates the effectiveness of attention
mechanisms and language models for complex scene text recognition.

Table 4. Word accuracy comparison with other STR methods on 13 benchmark datasets.

IIIT SVT IC13(857) IC15 (1811) SVTP CUTE Curved Multi-Oriented Artistic Contextless Salient Multi-Word General

Type Method Common Benchmarks Avg Union14M Avg Avg
Param

/(×106)

CTC CRNN [21] 90.8 83.8 92.8 71.8 70.5 81.2 81.8 29.3 12.6 34.3 44.2 16.8 35.6 60.3 33.3 55.7 8.3

Attention

SATRN [43] 97.1 95.2 98.8 87.3 91.0 93.9 93.9 74.9 64.8 67.2 76.3 72.2 74.2 75.8 72.2 82.2 67.0

MGP-STR [44] 97.2 97.9 98.0 91.4 93.0 98.1 95.9 85.9 80.8 73.6 76.1 78.4 72.8 84.4 78.9 86.7 148.0

LISTER [45] 98.1 97.5 98.6 89.6 94.0 97.2 95.8 78.4 65.6 74.7 82.9 73.4 84.1 84.8 77.7 86.1 51.1

MAERec [19] 98.5 97.8 98.3 89.5 94.4 98.6 96.2 88.8 83.9 80.0 85.5 84.9 87.6 85.9 85.2 90.3 35.7

LM

SRN [14] 95.5 89.3 95.6 79.2 83.9 91.5 89.2 49.7 20.1 50.7 61.1 43.9 51.6 62.7 48.5 67.3 51.7

VisionLAN [24] 96.3 91.5 96.1 83.6 85.4 92.4 90.9 70.9 57.2 56.7 63.8 67.6 47.5 74.2 62.6 75.6 32.8

ABINet++ [23] 97.2 95.7 97.9 87.6 92.2 94.5 94.2 75.1 61.5 65.3 71.2 72.9 59.2 79.4 69.2 80.7 36.7

BUSNet [46] 97.6 97.5 97.9 89.3 95.4 97.8 95.9 82.7 79.1 71.8 79.2 77.4 72.9 83.9 78.1 86.3 32.1

CdisNet [28] 98.0 97.1 97.9 88.7 93.6 97.2 95.4 81.4 73.9 73.6 79.1 78.5 81.4 82.4 78.6 86.4 65.5

DADCM 98.3 97.9 98.7 92.1 95.3 98.6 96.8 89.9 85.5 79.8 88.5 81.3 86.5 87.2 85.5 90.7 31.8

The bolded values indicate the best performance within each dataset. The underlined values indicate the second-best performance. The italicized
text in the first row of the table represents the specific sub-datasets corresponding to Common Benchmarks and Union14M, respectively.

In addition, existing STR methods have already achieved strong performance on the
six common benchmarks. Therefore, improvements on these datasets are relatively small.
Our method achieves a 0.4% average gain, with the highest improvement of 0.7% on the
challenging IC15 dataset. On the Union14M-L benchmark, our method performs better,
especially on subsets with irregular layouts, varying orientations, and limited semantic
context. Specifically, accuracy improves by 0.7% on IC15, 1.1% on Curve, 1.6% on Multi-
Oriented, and 3% on Contextless.

However, our method still faces limitations in scenarios involving multi-line or multi-
word text. This may be attributed to the tendency of the offset predictions in the alignment
module to align with dominant visual features. In addition, the model may focus more
on character-level alignment within single words, sometimes treating multiple words as a
single unit.

As shown in Figure 10, the prediction results of the DADCM model from the visual
branch, the linguistic branch, and the visual–linguistic fusion branch are presented. By
comparing the outputs of different modules, we observe that DADCM performs robustly
and consistently in complex and challenging scene text recognition tasks.

For blurry, distorted, or irregularly shaped text images, the visual branch alone can
produce accurate predictions. This suggests that the proposed visual modeling component
has strong representational capacity in capturing visual cues. In cases where some charac-
ters are missing but the overall semantic content remains clear, the linguistic branch helps
correct and complete the text based on context. For example, in the case of “Chang,” the
language model successfully infers the correct result. Moreover, For contextless text images,
such as proper names (“Evelyn”) or short words (“mei”), language-based correction can
actually reduce recognition accuracy. In our experiments, these cases benefit from the
hybrid model, which leverages visual alignment and attention mechanisms to achieve more
accurate predictions than purely language-assisted methods.
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However, some failure cases remain. When severe occlusion occurs, the model some-
times produces incorrect predictions, even though the output confidence scores are high
across all modules. For instance, the prediction of “CAP” under occlusion could not be cor-
rected. This indicates that the current model still has limited robustness in such conditions.
Future work could focus on improving the model’s ability to reason over occluded regions.
Enhancing semantic modeling and context understanding in these cases may help further
improve the generalization performance of the system.

Figure 10. Prediction results of DADCM from the visual, linguistic, and fusion modules. From left to
right and bottom to top, the characters represent: ground-truth labels (GT), visual (VM), linguistic
(LM), and fusion predictions (FM). Red: Incorrect characters, Blue: Corrected and accurate characters.

3.6. Analysis of Inference Speed

As shown in Table 5, we compare the average inference time and FLOPs of the pro-
posed DADCM with several representative scene text recognition models on the seven
subsets of Union14M. The proposed DADCM achieves an average inference time of 19.2 ms
and requires 2.65 G FLOPs. Compared with MAERec, which requires 91.0 ms and 2.97 G
FLOPs, as well as SRN, ABINet++, and BUSNet, DADCM provides faster or comparable in-
ference while maintaining high recognition accuracy. Although slightly slower than CRNN,
which runs at 6.5 milliseconds, and VisionLAN at 17.8 milliseconds, DADCM demonstrates
superior robustness in handling complex scenes and challenging text samples. Overall,
these results indicate that DADCM achieves a favorable balance between recognition
accuracy and computational efficiency, making it well suited for practical applications.

Table 5. Average Inference Time and Computational Cost of STR Methods on the Union14M Benchmark.

Method CRNN MAERec SRN VisionLAN ABINet++ BUSNet DADCM

Time (ms) 6.5 91.0 19.1 17.8 29.6 19.8 19.2
FLOPs (G) 0.69 2.97 4.30 2.73 3.05 2.67 2.65

4. Discussion
This paper presents a scene text recognition method based on a dual-alignment correc-

tion mechanism with deformable alignment (DADCM). The proposed approach integrates
SCRTNet, the DAM, and feature fusion to address challenges such as irregular layouts,
occlusion, and lack of semantic information.

Extensive experiments across multiple benchmark datasets demonstrate the effective-
ness of our method. In particular, ablation studies highlight the importance of establishing
robust visual–language fusion rules in improving recognition accuracy, confirming and
extending findings from previous STR research.

Limitations and Future Work: Although DADCM achieves competitive performance
on benchmarks such as ICDAR2015, Total-Text, and CTW1500, challenges remain under
general, lexicon-free settings. Recognition stability can fluctuate in images with high content
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randomness, complex text layouts, or significant visual distractions. The model also shows
limitations in feature preservation and sequence alignment for long character sequences.

Future research should focus on enhancing model generalization in complex environ-
ments, improving adaptability to multi-scale texts, and achieving a better trade-off between
accuracy and inference efficiency. Exploring model compression or other optimization
techniques may help improve inference speed while maintaining high accuracy.

5. Conclusions
In this work, we proposed DADCM, a scene text recognition method based on a dual-

alignment correction mechanism with deformable alignment. By integrating SCRTNet,
the DAM, and feature fusion, the method effectively addresses challenges such as irregular
text layouts, occlusion, and limited semantic information. Extensive experiments on
multiple benchmark datasets confirm the effectiveness of DADCM, and ablation studies
highlight the importance of robust visual–language fusion for improving recognition
accuracy. These findings provide insights for future development of more accurate and
generalizable scene text recognition models.
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