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Abstract

Border surveillance, as a critical component of national security, places increasingly strin-
gent demands on the target perception capabilities of video monitoring systems, especially
in wide-area and complex environments. To address the limitations of existing systems
in low-confidence target detection and multi-camera collaboration, this paper proposes a
novel visual enhancement method for cooperative control of multiple PTZ (Pan–Tilt–Zoom)
cameras based on hierarchical reinforcement learning. The proposed approach establishes a
hierarchical framework composed of a Global Planner Agent (GPA) and multiple Local Ex-
ecutor Agents (LEAs). The GPA is responsible for global target assignment, while the LEAs
perform fine-grained visual enhancement operations based on the assigned targets. To
effectively model the spatial relationships among multiple targets and the perceptual topol-
ogy of the cameras, a graph-based joint state space is constructed. Furthermore, a graph
neural network is employed to extract high-level features, enabling efficient information
sharing and collaborative decision-making among cameras. Experimental results in simula-
tion environments demonstrate the superiority of the proposed method in terms of target
coverage and visual enhancement performance. Hardware experiments further validate
the feasibility and robustness of the approach in real-world scenarios. This study provides
an effective solution for multi-camera cooperative surveillance in complex environments.

Keywords: hierarchical reinforcement learning; PTZ cameras; graph neural networks;
visual enhancement; cooperative perception

1. Introduction
Border security is essential to a nation’s territorial integrity and social stability. In the

face of threats such as illegal crossings by individuals, vehicles, or goods, the deployment
of video surveillance systems has become a crucial technological means for border security
protection [1]. However, due to the vast geographical span and complex terrain of border-
lines, traditional video surveillance systems still face numerous technical bottlenecks when
dealing with illegal intrusions, making it difficult to achieve efficient, comprehensive, and
blind-spot-free monitoring.

In recent years, cameras with Pan–Tilt–Zoom (PTZ) capabilities have been widely
adopted in the video surveillance field due to their high flexibility [2]. Compared to
traditional fixed-angle cameras, PTZ cameras can dynamically adjust their field of view
(FOV), enhancing the resolution of moving targets and better adapting to monitoring
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demands in complex environments. However, the monitoring capacity of a single PTZ
camera is limited—its viewing angle and coverage area are insufficient for large-scale,
dynamic scenarios. As a result, coordinated control of multiple PTZ cameras has emerged
as a key research direction for enhancing border surveillance capabilities.

Nevertheless, several critical challenges remain in multi-PTZ camera collaborative
monitoring. First, while existing surveillance devices often integrate visual perception
algorithms based on object detection, they largely rely on manual joystick and keyboard
control or on pre-set automatic patrol programs [3]. This leads to a lack of proactive
detection and supplementary information for low-confidence targets, causing potential
threats to go undetected or unconfirmed in time, thereby undermining overall surveillance
performance (as shown in Figure 1a). Second, given the large scale of border areas, multiple
threat targets may appear simultaneously within different cameras’ fields of view. Without
proper allocation of monitoring tasks among the cameras, critical targets may be overlooked,
reducing the overall effectiveness of the surveillance system (as shown in Figure 1b).

Figure 1. Challenges in multi-PTZ camera collaborative surveillance in border scenarios. (a) The
impact of lacking active PTZ camera adjustment on surveillance performance, where a comparison
is shown between poorer and better camera views for detecting low-confidence targets. (b) The
problem of target omission in multi-PTZ camera collaborative surveillance, indicating that even with
multiple camera fields of view, targets may still be overlooked without effective coordination.

Therefore, how to efficiently coordinate multiple PTZ cameras to complete the col-
laborative visual enhancement task aimed at improving the detection confidence of low-
confidence targets in border scenarios has become the core issue of current research.

To address these challenges, collaborative mechanisms among multiple cameras have
become a research hotspot in recent years [4,5]. In particular, multi-agent reinforcement
learning (MARL) provides a technical foundation for distributed coordination [6]. However,
MARL still faces bottlenecks in large-scale scenarios, such as high-dimensional state spaces,
and difficulties in reward allocation [7].

To this end, this paper introduces a hierarchical reinforcement learning (HRL) ap-
proach and proposes a two-level hierarchical framework for collaborative visual enhance-
ment using multiple PTZ cameras, as illustrated in Figure 2. This framework leverages
high-level agents to guide low-level agents, thereby strengthening the communication and
cooperation mechanisms among PTZ cameras. It facilitates information sharing and joint
decision-making, which in turn improves overall monitoring coverage and inter-camera
collaboration efficiency. This architecture is well-suited to support optimal execution of
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visual enhancement tasks in complex border environments, advancing the development of
intelligent border security systems.

Figure 2. Two-level hierarchical framework for multi-PTZ camera collaborative visual enhancement.

The main contributions of this paper are as follows:

1. We design a two-level hierarchical reinforcement learning architecture consisting of a
high-level Global Planner Agent and low-level Local Executor Agents. The high-level
agent assigns optimal attention targets to each PTZ camera from a global perspective,
while the low-level agents autonomously decide on specific control actions to perform
visual enhancement, enabling cross-scale, multi-target collaborative perception to
improve task execution efficiency.

2. To effectively capture the topological relationships between cameras and targets, we
propose a graph-based joint state space and introduce a graph neural network model
to learn complex structural relationships, extract high-level features, and enhance the
learning of inter-node dependencies.

3. We develop a simulation environment that mimics real-world scenarios for training
and evaluation and implement a corresponding hardware interface to validate the
proposed method’s transferability and feasibility in real-world applications.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the proposed method in detail. Section 4 discusses the experimental
setup, results, and analysis. Section 5 concludes this paper with a summary of contributions
and findings.

2. Related Work
2.1. Multi-Agent Reinforcement Learning

MARL has emerged as a significant research direction in artificial intelligence in
recent years. It combines reinforcement learning with multi-agent systems, aiming to
enable multiple agents to learn in complex environments to achieve either collaborative
cooperation or competitive confrontation, thereby reaching their individual or shared goals.
With the rapid advancement of AI technologies, MARL has achieved notable success in
various application scenarios [8,9]. However, the inherent complexity of MARL has also
led to diverse research methodologies and technical challenges.

Current research methods in MARL mainly follow several technical pathways. Inde-
pendent Reinforcement Learning (IRL), as a foundational paradigm, requires each agent to
independently run a single-agent algorithm [10]. Although simple to implement, IRL has
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inherent limitations. Because each agent treats others as part of the environment, this disre-
gard for interactions often leads to unstable learning processes and policy conflicts—issues
that are especially prominent in cooperative tasks [11]. To improve collaborative perfor-
mance, value decomposition methods have been proposed, which aim to decompose the
global value function into local value functions. For instance, Value Decomposition Net-
works (VDNs) [12] use a linear summation for efficient computation, while QMIX [13]
employs a mixing network for nonlinear decomposition. Both approaches seek to approxi-
mate global optima while preserving individual policy autonomy.

Another class of methods emphasizes inter-agent communication. Jiang et al. [14]
proposed a Graph-based Proximal Policy Optimization (GPPO) algorithm that introduces
graph topology matrices to model the communication relationships among agents. This
approach effectively addresses communication coverage issues and enhances inter-agent
information exchange, thereby improving policy learning in reinforcement learning. Al-
though these communication-based methods enhance cooperation, they also face real-world
constraints such as communication costs and noise interference.

The Centralized Training with Decentralized Execution (CTDE) framework aims
to balance training efficiency with execution flexibility. A representative algorithm is
MADDPG [15], which incorporates global state information to handle continuous action
spaces. Its paradigm of “centralized training, decentralized execution” has become the
mainstream architecture. Another notable example is MAPPO [16], which combines the
advantages of the PPO algorithm [17] and improves cooperative performance through
centralized training and decentralized policy execution.

Compared to single-agent systems, MARL faces key challenges, mainly in terms of
environmental dynamics and credit assignment. Due to continuous interactions among
agents, the environment becomes exponentially more complex, necessitating effective
modeling of the evolving policies of other agents to maintain stability in highly dynamic
settings. A more intrinsic difficulty lies in the credit assignment mechanism, how to
accurately decompose global rewards down to the individual agent level, which directly
affects the learning efficiency and convergence of cooperative systems. As the number of
agents increases, these problems evolve into computational bottlenecks: the state space
grows explosively, leading to the curse of dimensionality, while the geometric increase in
communication overhead severely limits system scalability.

To tackle these challenges, two main technical paths have been proposed. Fully
decentralized systems reduce communication overhead via point-to-point messaging,
but because agents’ policies are interdependent, issues like system instability and policy
non-convergence become more prominent. The CTDE framework alleviates some of the
instability during training by leveraging global information, yet it does not fundamentally
solve the mathematical difficulties of credit assignment. Especially in evaluating individual
agent contributions, there remains a lack of a general theoretical framework.

These challenges reflect the dialectical nature of multi-agent systems: ensuring individ-
ual autonomy for distributed decision-making while also establishing effective coordination
mechanisms to handle environmental complexity.

HRL has emerged as a promising solution to some of these problems [18]. HRL
decomposes complex tasks into multiple subtasks, significantly reducing the size of the
state and action spaces that each agent must explore. In multi-agent hierarchical structures,
high-level policies can provide guidance for low-level policies, reducing the complexity
involved in directly assigning global rewards. Furthermore, hierarchical structures simplify
complex tasks into more manageable subtasks, mitigating interference during the learning
process and enhancing both the system’s stability and learning efficiency [19].
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Unlike previous studies, this work further combines HRL with graph neural network
(GNN) modeling. Although this approach has been applied in some related research [20],
here it is specifically optimized for multi-camera target task allocation and collaborative
control in border scenarios, with a particular focus on improving visual perception perfor-
mance for low-confidence targets.

2.2. Reinforcement Learning-Based Autonomous Cooperative Decision-Making for Multiple
PTZ Cameras

In recent years, an increasing number of studies have applied reinforcement learning
to the cooperative decision-making of multiple PTZ cameras, aiming to optimize their
performance in specific tasks. Ci et al. [21] employed a multi-agent reinforcement learning
approach to control multiple cameras for collaborative 3D human pose estimation. They
introduced a cooperative triangulation contribution reward mechanism to address the
credit assignment problem in multi-camera systems. However, their method suffers from
sharply increasing computational costs when the number of agents exceeds five, limiting
its scalability in large-scale scenarios. Masihullah et al. [22] proposed a decentralized PTZ
camera network collaboration strategy based on graph learning, which dynamically learns
and leverages graph structures during vehicle tracking, effectively improving the tracking
performance of multi-camera systems. Darázs et al. [23] utilized MARL to control a network
of PTZ cameras for dynamic intruder detection, behavior tracking, and minimizing sensor
usage costs. Through cooperative optimization, they enhanced the overall efficiency of the
surveillance system. Hou et al. [24] addressed the problem of camera layout optimization
in multi-view pedestrian detection and proposed a Transformer-based configuration gener-
ation method. This approach leverages reinforcement learning to automatically explore
camera positions and viewpoints, aiming to improve coverage and detection accuracy.
Kim et al. [25] proposed a deep reinforcement learning-based cooperative control method
for multiple PTZ cameras, in which control values for each camera are generated based
on recognition information from an object detection model. Yin et al. [26] introduced
a multi-agent reinforcement learning-based system for active multi-camera object track-
ing (Effi-MAOT). This system employs an intelligent switch and attention mechanism to
dynamically select cooperative cameras, significantly reducing bandwidth consumption
and improving tracking performance for high-speed targets. Li et al. [27] developed a
framework that integrates visual and pose information, applying deep reinforcement learn-
ing techniques to enable multiple PTZ cameras to collaboratively perform object tracking
tasks. Wang et al. [28] proposed a CTDE-based multi-agent reinforcement learning method
for face-tracking tasks using a multi-robot camera array. Their approach employs a Soft
Actor–Critic (SAC) model combined with self-attention mechanisms and a cooperative
reward design to enhance multi-camera collaboration efficiency and global state modeling
capability. Veesam et al. [29] proposed a spatiotemporal framework integrating Multi-Scale
Graph Attention Networks with a reinforcement learning-based Dynamic Camera Atten-
tion Transformer, which follows the CTDE paradigm to enable adaptive focus reallocation
across cameras and significantly improve anomaly detection efficiency in crowded urban
scenes. Álvaro et al. [30] proposed a distributed PTZ camera control architecture based
on a multi-agent system, allowing each camera to maintain a high degree of autonomy
and make final task execution decisions within its own management system. Additionally,
their architecture provides a method to coordinate multiple PTZ cameras to achieve better
surveillance performance, such as tracking different targets or collaboratively gathering as
much information as possible about a single target.

Existing research on autonomous cooperative control of multiple PTZ cameras mostly
focuses on optimizing collaboration strategies for specific tasks, with less attention paid
to modeling task hierarchies. This paper enhances the global task allocation capability
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and perception coordination efficiency of multi-camera systems by introducing an HRL
architecture and graph-structured modeling.

3. Multi-Agent Cooperative Algorithm for PTZ Cameras Based on
Hierarchical Reinforcement Learning
3.1. Overall Framework

This section proposes an HRL algorithm framework designed for multi-agent collabo-
ration. It adopts an option-based approach to coordinate multiple PTZ cameras in jointly
performing visual enhancement tasks for multiple targets. The framework decomposes
the overall task into two hierarchical levels: a Global Planner Agent (GPA) responsible for
target allocation and multiple Local Executor Agents (LEAs) responsible for performing
visual enhancement on the assigned targets.

Within this framework, the GPA acts as a high-level policy that centrally plans tasks for
all local agents, while the distributed LEAs serve as low-level policies that independently
execute specific perception enhancement tasks. The process operates as follows: At each
time step t, the GPA collects the observation results ot

i from all LEAs (where i denotes the
index of the local agent) and assigns a target gt

i to each LEA based on the current global
state. Subsequently, each LEA i independently takes actions to enhance the assigned target
based on its own observation and the allocated target gt

i . Once the assigned tasks are
completed, the GPA is reactivated to reassign new targets and dispatch tasks. This process
iterates until all targets are processed.

Through this hierarchical design, the complex task is decomposed into two subtasks
across different temporal scales, allowing the global planning and local execution layers to
be trained independently via single-agent reinforcement learning. This structure not only
reduces interference during training but also improves learning stability. For instance, in
the early stages of training, separating the GPA and LEAs prevents the LEAs from falling
into disordered learning due to receiving invalid goals. Furthermore, the hierarchical
design enhances system scalability, reduces communication overhead, and maintains
high performance.

At each time step t, the joint state is represented as a graph structure composed of all
current targets. Specifically, video frames captured by each PTZ camera are first processed
by an object detection model to extract target features, which are then used to construct a
graph structure based on predefined rules. Meanwhile, the bounding boxes (BBoxes) of
detected targets are used to crop target images, and an appearance feature extraction model
generates a sequence of appearance features for all targets, serving as input for the GPA’s
target allocation.

The GPA takes the graph-structured joint state as input and outputs a probability
matrix, where each entry represents the likelihood that a given PTZ camera will select a
particular global target. Each PTZ camera then selects the target with the highest probability
and extracts the corresponding appearance features, which are used by the respective LEA
for subsequent visual enhancement.

During execution, each LEA first uses a feature comparator to locate the assigned
target within its field of view. It then controls the PTZ camera to perform a series of
actions to complete the visual enhancement. It is important to note that a new joint state is
only generated after a subset of PTZ cameras have completed their current enhancement
tasks. This mechanism ensures the validity of commands and avoids redundant actions,
thereby optimizing resource utilization. The overall algorithmic framework is illustrated
in Figure 3.
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Figure 3. Overall scheme of the hierarchical reinforcement learning-based multi-agent PTZ camera
collaboration algorithm. The blue-shaded numbers indicate targets, the orange-shaded numbers
indicate cameras, and the purple-shaded numbers indicate feature sequences. Matching blue and
purple numbers correspond to a target and its feature sequence.

In hierarchical reinforcement learning, agents at different levels typically operate on
distinct temporal scales. To ensure controllability and facilitate system management, this
study designs appropriate temporal scales for both the GPA and the LEAs, as illustrated in
Figure 4. Specifically, after the GPA completes target assignment, the LEAs sequentially
execute their respective visual enhancement tasks. During each action step, the system
waits for all LEAs to complete their operations before proceeding to the next decision-
making cycle. Although this synchronization mechanism may reduce temporal efficiency
to some extent, it guarantees consistency in inter-agent communication and stability in
cooperative execution.

Figure 4. Agent runtime timescale.

Moreover, when a subset of LEAs complete their current visual enhancement tasks,
the GPA reallocates targets based on the updated global target distribution. However,
if a particular LEA has not yet completed its assigned task, the new allocation will not
take effect for that agent, which must continue executing its original task until completion
before accepting a new assignment. This mechanism not only ensures continuity in task
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execution and optimizes resource utilization but also introduces flexibility for dynamic task
reassignment, thereby improving overall system efficiency.

3.2. Local Executor Agent

It is worth noting that the LEA in this study is based on our previous work [31], where
the core objective is to control PTZ cameras using reinforcement learning strategies. The
LEA performs a series of actions—such as zooming, panning, and tilting—to enhance
the detection confidence of low-confidence targets within the field of view. By jointly
optimizing the type and duration of PTZ actions, the method significantly improves the
agent’s decision-making generalizability across various scenarios. The basic framework is
shown in Figure 5.

Figure 5. The framework of the Local Executor Agent.

The framework designs the action space as a hybrid hierarchical structure consisting
of two levels: the type of action executed by the PTZ camera and its duration. An action is
defined as a = (atype, tduration), jointly specifying both the action type atype and the execution
duration tduration, thereby enabling more flexible and fine-grained control strategies.

In terms of state space design, key features such as the target’s position, size ratio, and
motion trend are selected. The LEA adopts a compact yet informative representation to
characterize the target’s status, and the overall state vector is defined as

St =
[
xo f f set, yo f f set, areatarget, ctarget, at−1, dt−1, xtrend, ytrend

]
(1)

The state components are computed as follows:

xo f f set = xt − xobs, yo f f set = yt − yobs (2)

areatarget =
wt × ht

Wobs × Hobs
(3)

xtrend = xt − xt−1, ytrend = yt − yt−1 (4)

Here, (xt, yt) and (wt, ht) denote the center coordinates and size of the target bounding
box at time t, while (xobs, yobs) and (Wobs, Hobs) represent the image center and frame size
of the camera view. ctarget is the detection confidence, and (at−1, dt−1) indicate the type
and duration of the previous action. This compact formulation provides a discriminative
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and noise-robust description of the target’s dynamics, thereby improving the reliability of
decision-making.

The reward function comprehensively considers detection confidence, positional
information, and target size. It is designed to guide the agent in effectively tracking the
target while enhancing the detection of low-confidence targets.

However, the LEA method is only applicable to visual enhancement at the single-
camera level. When the task is extended to multi-camera systems, the coordination among
different cameras becomes ineffective, making global collaborative optimization diffi-
cult. Therefore, there is an urgent need to introduce a new mechanism based on the
LEA to enable reasonable allocation and coordinated control of global targets across
multiple cameras.

3.3. Global Planner Agent

Based on the constructed LEA, the GPA no longer needs to focus on how to control
the cameras to achieve better visual enhancement. Leveraging the decoupling advantage of
the hierarchical architecture, the core task of the GPA shifts to reasonably assigning global
targets, guiding each LEA to enhance the most suitable target. Under this hierarchical de-
sign, the GPA can also be modeled using a single-agent reinforcement learning framework.
In this work, we adopt DQN (Deep Q-Network) [32] as the implementation method for the
GPA. The following sections will detail the design of the GPA’s action space, state space,
reward function, and network architecture.

3.3.1. Joint Action Space Design

In this task scenario, the action space of the global planning agent is designed to
indicate which target each PTZ camera should select from the global target set. Each PTZ
camera may detect multiple targets within its field of view, while the global target set
T = {t1, t2, . . . , tT} comprises all targets detected across the views of all PTZ cameras.
Correspondingly, the global feature sequence set F = { f1, f2, . . . , fT} contains the appear-
ance feature sequences for all the targets in the global set, where each feature sequence ft

corresponds one-to-one with a target t ∈ T . These feature sequences are generated by a
feature extraction model based on our previous work [31], which incorporates a cropped
feature fusion-based target selection module. Each feature sequence is a 4096-dimensional
vector representing the appearance characteristics of a target.

Assuming there are D PTZ cameras in total, the joint action a = {a1, a2, . . . , aD} corre-
sponds to the set of targets chosen by all cameras. For each camera d, the network computes
a relevance score sd,t between camera d and each target t, which is then normalized via a
Softmax function to yield a probability distribution over candidate targets:

pd(t) =
exp(sd,t)

∑t′∈T exp(sd,t′)
, ∀d ∈ {1, . . . , D} (5)

In practice, each PTZ camera d selects its target by adopting a maximum probability
strategy based on this distribution. That is, the selected target index t∗d is

t∗d = arg max
t∈T

pd(t) (6)

Once the target t∗d is determined, PTZ camera d retrieves the corresponding feature
sequence ft∗d

from the global feature set F :

fd = F[t∗d ] = ft∗d
, ft∗d

∈ Rn (7)
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Here, F
[
t∗d
]

denotes the feature sequence retrieved from the global feature sequence set
F based on the selected target index t∗d . ft∗d

represents the feature sequence corresponding to
the target t∗d selected by PTZ camera d. Through the above-defined action space and target
selection mechanism, the global planning agent can effectively guide the PTZ cameras to
perform rational allocation within the global target set.

3.3.2. Joint State Space Design

To effectively represent target features and characterize spatial relationships among
targets, this study adopts a graph-based joint state space design. Graph data structures
offer topological advantages that enable efficient capture of both local and global relational
information, thereby enhancing the agents’ perception capabilities in complex environments.

During the construction of the state space, video frames within the field of view of each
PTZ camera are first processed by an object detection model to extract features of the de-
tected targets. Based on these features, a graph structure is generated. Considering that the
number of visible targets may vary in real-world scenarios, an input dimension alignment
strategy is employed: if the number of targets is insufficient, special placeholder values
are used to pad the graph nodes. This ensures consistent input dimensions, preventing
mismatches during training and inference.

Nodes in the graph are categorized into target nodes and camera nodes, each represented
by an attribute vector that encodes its positional features. For target nodes, the feature vector
encodes the spatial offset of the detected target relative to the center of the camera’s field of
view in the form of [xo f f set, yo f f set]. For camera nodes, the feature vector is derived from the
normalized spatial distribution of PTZ cameras in the environment.

To accurately model spatial relationships among targets, between targets and cameras,
and between cameras themselves, this study introduces several types of graph edges and
corresponding edge weight computation strategies:

• Intra-camera Target Node Connections: A fully connected structure is applied among
all target nodes detected by the same PTZ camera. This configuration captures local
spatial correlations and reveals spatial distributions and inter-target relationships.
Edge weights are computed as the inverse of the Euclidean distance between target
coordinates, such that closer targets have higher weights. This design encourages the
model to focus on spatially proximate interactions.

• Camera-to-Target Node Connections: Each camera node is connected to the target
nodes it detects. The edge weight is determined based on the relative angular position
of the target within the camera’s field of view. This encoding allows the graph structure
to incorporate directional information, enhancing the model’s perception of spatial
layout between cameras and targets.

• Inter-camera Connections: Fixed-weight edges are established between neighboring
PTZ camera nodes to encode adjacency relationships. This connection facilitates the
modeling of the camera topology and promotes inter-camera information exchange.

• Cross-camera Target Connections: To improve cooperative perception across PTZ cam-
eras, a special connection strategy is introduced to link targets detected by different
cameras. Specifically, the most spatially proximate targets across camera views are
connected. This enables cross-regional information sharing, enhancing the system’s en-
vironmental awareness. Additionally, when a camera fails to detect any targets, these
connections allow it to leverage information from neighboring cameras to support
detection and decision-making.
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Building upon the above edge construction strategies, we further formalize the graph
definition and discuss computational complexity. The node set is defined as

V = {vc}C
c=1 ∪ {vt}T

t=1,

where vc denotes camera nodes and vt denotes target nodes. The edge set is given by

E = Eintra ∪ Ecam-target ∪ Einter-cam ∪ Ecross-target,

The proposed graph-based joint state space design not only enables efficient feature
extraction but also accurately models the spatial relationships between targets and PTZ
cameras in multi-target scenarios. This enhances the agent’s environmental awareness and
improves decision-making efficiency.

3.3.3. Reward Function Design

The reward function in reinforcement learning serves to evaluate the quality of an
agent’s action given a particular state. In this task scenario, the reward function is designed
to simultaneously promote sufficient target coverage and optimize the visual enhancement
effect. Specifically, the reward function consists of two components.

The first component is the target coverage reward, defined based on the coverage rate
of targets. Target coverage is calculated as the ratio of the number of targets covered by
PTZ cameras to the total number of targets. The formula is as follows:

rcoverage
t =

1
m

m

∑
j=1

Ij,t (8)

Here, Ij,t denotes the coverage status of target j at time step t, where 1 indicates that
the target is covered and 0 indicates it is not. m represents the number of targets present in
the current scene.

The second component is the visual enhancement reward, defined based on the
average confidence scores of the targets after LEAs perform visual enhancement on the
targets assigned by the GPA. The formula is as follows:

rcon f idence
t =

1
n

n

∑
i=1

Ci (9)

In this expression, n denotes the number of PTZ cameras in the scene and Ci represents
the confidence score of the detected target for PTZ camera i at the final moment when a
portion of PTZ cameras complete their assigned visual enhancement tasks.

Finally, these two components are combined via weighted fusion to produce the final
reward, as given by

rt = λrcoverage
t + (1−λ)rcon f idence

t (10)

where λ is the weighting coefficient, which is set to 0.5 in this study.
This design embodies the integration of global and local objectives: the target coverage

reward encourages agents to maximize the spatial coverage of potential threat targets, while
the visual enhancement reward ensures that the coverage actions result in meaningful
perceptual gains. This prevents situations where targets are “covered but ineffectively
enhanced,” thereby balancing quantity with quality.

Moreover, the reward function incorporates the confidence feedback from the local
execution agents, enabling the global planning agent to adapt its strategy based on local exe-
cution outcomes. This feedback mechanism facilitates effective cooperation between global
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planning and local execution, which supports better agent collaboration and successful
task completion.

3.3.4. Agent Network Design

The agent network designed in this study integrates GNNs, aiming to enable each
PTZ camera to dynamically select the optimal target of interest from the global target set.
The overall structure is illustrated in Figure 6.

Figure 6. Agent network architecture.

The input graph data, after preprocessing, serves as the representation of the state
space and is first passed through two layers of customized Relational-Aware Edge Convo-
lution (RAEdgeConv) to capture local interaction relationships between nodes. Compared
with traditional Edge Convolution (EdgeConv) [33], RAEdgeConv enhances the modeling
of edge features. While standard EdgeConv mainly treats edges as dynamic local con-
nections to flexibly model the adjacency variation of node features, RAEdgeConv jointly
maps the source node features, neighboring node features, and edge attributes using a
Multi-Layer Perceptron (MLP). This allows it to more precisely capture the high-order
interactive features between PTZ cameras and targets and extract finer-grained details
within node relationships.

When aggregating information from neighboring nodes, this module adopts a Softmax-
based normalized aggregation strategy. Unlike traditional Max Aggregation or Sum Ag-
gregation, the Softmax strategy provides a finer-grained depiction of the influence weight
each neighbor has on the central node. The Softmax normalization dynamically assigns
contribution weights from neighboring nodes to the update of the central node, thereby
enhancing the flexibility and interpretability of message passing. The two-layer RAEdge-
Conv stack strengthens the network’s capacity to extract expressive features, laying a solid
foundation for subsequent global feature fusion.

After capturing local features, the network further employs a customized layer of an
Edge-Aware Graph Convolution Network (EAGCN). This module is built upon traditional
Graph Convolutional Networks (GCNs) [34] but introduces a dynamic edge weight learning
mechanism. Whereas conventional GCNs aggregate node features using fixed weights,
the EAGCN uses an MLP to generate edge weights, allowing edge features to modulate
the message-passing process. This design not only improves modeling of interactions
between targets but also incorporates the relationships between PTZ cameras and targets,
yielding richer global graph representations. The inclusion of the EAGCN enables the
network to aggregate global structural information more effectively, compensating for the
locality-focused nature of RAEdgeConv.

In the final stage of the network, the node features are split into PTZ camera nodes and
target nodes. To determine each PTZ camera’s selection probability over the global targets,
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the network computes the inner product between the feature vectors of each PTZ camera
node and each target node, resulting in a relevance score for each camera–target pair. These
scores are then normalized using a Softmax function to produce a probability distribution
over target selections for each PTZ camera. This mechanism allows the network to dynami-
cally adjust each PTZ camera’s target selection strategy based on global information, thus
adapting to varying decision-making demands in different environments.

For the GNN modules, both the EAGCN and RAEdgeConv follow a weighted message-
passing scheme:

h(k+1)
v = ϕ

(
h(k)

v ,
⊕

u∈N (v)

ψ(h(k)
u , euv)

)
,

where
⊕

is a symmetric aggregation operator. Since the aggregation is independent of the
ordering of neighbors, the model is inherently permutation-invariant.

The computational complexity of the proposed EAGCN/RAEdgeConv stack is pri-
marily determined by the number of nodes N and the number of edges E in the constructed
graph. For intra-camera connections, a fully connected structure among ni targets within
camera i introduces O(n2

i ) edges, whereas camera-to-target connections contribute O(ni)

edges per camera. Inter-camera and cross-camera connections introduce a fixed and sparse
number of additional edges. Overall, the total edge count E scales approximately as
O(∑i n2

i ).
In the EAGCN layers, edge weights are dynamically learned for each edge, which

incurs an additional O(E · d) cost for computing these weights on top of the standard
RAEdgeConv message passing. Therefore, the per-layer computational complexity of the
combined EAGCN/RAEdgeConv stack is approximately O(E · d2 + E · d), where d denotes
the node feature dimension. Here, the first term accounts for feature aggregation, while the
second term corresponds to the computation of dynamic edge weights.

Given the typically moderate number of visible targets per camera in practical sce-
narios, this graph construction and message passing remain computationally feasible for
online inference.

4. Experiments
4.1. Simulation Environment

Training reinforcement learning algorithms typically require frequent interactions
with the environment. However, executing this process on physical hardware often incurs
high time costs and equipment wear, and it is also difficult to construct ideal training
scenarios. To address these challenges, we developed a complete simulation environment
based on the Unity3D (2021.3.21f1) engine, which realistically simulates the control process
of PTZ cameras and their collaborative mechanisms, as shown in Figure 7.

Figure 7. Simulation environment.
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This simulation environment supports real-time preview of each camera’s field of
view and its visual effects. It also allows users to customize various parameters, includ-
ing PTZ camera control settings, target motion trajectories, and environmental weather
conditions. Moreover, the simulation environment is compatible with our re-implemented
Gym interface, enabling the transmission of video frames, action commands, and other
necessary data to support a full reinforcement learning training pipeline.

4.2. Training Settings and Results

As previously mentioned, the model mainly consists of two layers of RAEdgeConv
modules and one layer of an EdgeConv module. During training, Smooth L1 loss is used
as the regression loss to optimize the attention distribution between camera nodes and
target nodes, providing robustness to outliers and improving training stability. Due to com-
munication constraints in the simulation environment, training the model on an NVIDIA
GeForce RTX 3060 GPU (Nvidia Corporation, Santa Clara, CA, USA) takes approximately
12 h, with an average runtime per episode of approximately 43.2 s. Since the LEA directly
adopts results from previous studies, it is used as is during the GPA training phase, without
requiring additional training.

4.2.1. Training Objective and Loss Function

The training of the GPA follows the DQN framework. The joint action a = {a1, a2, . . . , aD}
represents the assignment of targets to all PTZ cameras, where each ad = t∗d is selected according
to the maximum probability strategy from the camera-specific relevance scores.

The Q-network Qθ(s, a) estimates the expected return of taking joint action a in state
s. In this implementation, the Q-values of individual cameras are first gathered for the
executed actions and then averaged across cameras:

Qθ(s, a) =
1
D

D

∑
d=1

Qd
θ(s, ad), (11)

where Qd
θ(s, ad) is the Q-value for camera d choosing action ad and D is the total number

of cameras.
For a transition (s, a, r, s′, d) sampled from the replay buffer, the Bellman target is

defined as follows:

y = r + (1 − done) γ max
a′

Qθ−(s
′, a′) with Qθ−(s

′, a′) =
1
D

D

∑
d=1

max
a′d

Qd
θ−(s

′, a′d), (12)

where γ ∈ (0, 1) is the discount factor and θ− denotes the parameters of the target Q-
network.

The temporal difference (TD) error is

δ = Qθ(s, a)− y, (13)

and the Smooth L1 (Huber) loss is applied:

L(θ) = E
[
ℓ(δ)

]
, ℓ(δ) =

 1
2 δ2, if |δ| < 1,

|δ| − 1
2 , otherwise.

(14)

This loss function is often considered suitable for TD error optimization in DQN
training, as it combines the advantages of both L1 and L2 losses: it behaves like an L2 loss
for small TD errors, ensuring smooth gradients for stable learning, while behaving like an
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L1 loss for large TD errors, which helps reduce the influence of outliers or occasional large
Q-value deviations. This property can enhance training stability, particularly in scenarios
with varying target detection confidence and multiple interacting cameras.

4.2.2. Episode Initialization and Termination

At the beginning of training, the model’s network parameters are initialized and
copied to their respective target networks. The agent updates the network parameters
every five steps. Targets are randomly generated within the map. Each episode terminates
under either of the following conditions:

• The average confidence of all observed targets reaches 0.8 or above for two consecu-
tive steps;

• The total number of steps taken by the agent reaches or exceeds 10.

The detailed hyperparameter settings are shown in Table 1.

Table 1. Hyperparameter design.

Hyperparameter Name Value

Learning Rate 0.001
Discount Factor 0.90

Replay Buffer Capacity 5000
Batch Size 256

Number of Iterations 1000
Optimizer Adam

Target Network Update Frequency 5
ϵ-Greedy Strategy linear decay to 0.1 over first 150 episodes

During the training process over 1000 episodes, the average reward curves under
three random seeds for the proposed method are shown in Figure 8. As illustrated, the
reward curves eventually converge.

Figure 8. Average training reward.
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4.3. Evaluation Metric

To evaluate how well the GPA guides the LEAs to control PTZ cameras in covering
global targets, we introduce the Average Cover Rate (ACR). This metric reflects the average
of the per-step coverage rates across all episodes. It is defined as follows:

ACR =
1
N

N

∑
i=1

C̄i =
1
N

N

∑
i=1

(
1
Ti

T

∑
t=1

C̄i,t

)
(15)

where N is the number of experiments, Ti is the number of steps in the i-th experiment, and
Ri,t is the coverage rate at step t in the i-th experiment.

To assess how well the GPA and LEAs collaborate to complete the visual enhancement
tasks on all global targets, we introduce the Visual Enhancement Ratio Achieved (VERA).
This metric indicates the proportion of all targets in the experiment for which visual
enhancement has been successfully completed (i.e., the target detection confidence reaches
0.9 or above). It is defined as follows:

VERA =
Nenhancement

Ntarget
(16)

where Nenhancement is the number of targets that have completed visual enhancement and
Ntarget is the total number of targets in the experiment.

To evaluate the effectiveness of the proposed method in collaboratively enhancing the
confidence of low-confidence targets, we introduce Initial Average Confidence (IAC) and
Enhanced Average Confidence (EAC). IAC represents the mean and standard deviation
of the initial detection confidence values across all targets and experiments, while EAC
represents the same statistics after visual enhancement is completed. The definitions are
as follows:

IAC = µinitial ± σinitial (17)

EAC = µenhance ± σenhance (18)

Here,

µinitial =
1
N

N

∑
i=1

Cinitial
i ,

σinitial =

√√√√ 1
N

N

∑
i=1

(
Cinitial

i − µinitial
)2,

Cinitial
i =

1
Mi

Mi

∑
j=1

Cinitial
i,j

µenhance =
1
N

N

∑
i=1

Cenhance
i ,

σenhance =

√√√√ 1
N

N

∑
i=1

(
Cenhance

i − µenhance
)2,

Cenhance
i =

1
Mi

Mi

∑
j=1

Cenhance
i,j
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where N is the number of experiments, Mi is the number of detected targets in the i-th
experiment, Cinitial

i is the mean of the initial confidence values for all targets in the i-th
experiment, and Cenhance

i is the mean confidence after enhancement in the same experiment.
To assess the efficiency of agent actions, we introduce the Average Step (AS) metric,

which reflects the average number of steps taken by the GPA across all experiments. It is
defined as follows:

AS =

N
∑

i=1
Bi

N
(19)

where Bi is the number of steps taken in the i-th experiment and N is the total number
of experiments.

4.4. Comparative Experiment

To evaluate the effectiveness and rationality of the GPA in global target allocation,
as well as the actual performance of the LEA in executing visual enhancement tasks after
allocation, we conducted tests in 150 randomly generated experimental scenarios with two
to four targets, with target positions randomly distributed within the scene. The target
detection algorithm used is YOLOX [35], implemented based on the MMDetection open-
source framework [36]. The comparative algorithm was MADDPG [15]. The experimental
results are shown in Table 2.

Table 2. Comparative experiment results.

Target Quantity Method ACR VERA IAC EAC

2 MADDPG 91.15% 16.67% 0.86 ± 0.01 0.45 ± 0.15
Ours 99.52% 95.83% 0.86 ± 0.02 0.90 ± 0.02

3 MADDPG 80.96% 30.58% 0.86 ± 0.03 0.54 ± 0.12
Ours 95.80% 90.21% 0.85 ± 0.04 0.91 ± 0.03

4 MADDPG 85.33% 31.03% 0.87 ± 0.01 0.69 ± 0.14
Ours 92.12% 74.14% 0.86 ± 0.04 0.92 ± 0.00

Note: Bold values indicate the best performance.

From the results, it can be observed that even with only three PTZ cameras, the
proposed algorithm achieves a good ACR across different numbers of targets, indicating
that most targets remain within the cameras’ field of view most of the time. Notably, when
the number of targets is two or three, the VERA reaches a high level, exceeding 90% in
both cases. When there are four targets, VERA drops to 74.14%, which is still close to the
theoretical maximum of 75%, since with only three PTZ cameras, at most three targets can
be simultaneously enhanced. Overall, the results demonstrate that the proposed algorithm
efficiently allocates PTZ camera resources and exhibits superior performance.

In contrast, the MADDPG algorithm performs relatively poorly in this task scenario.
The experiments show that MADDPG struggles to achieve satisfactory results when per-
forming collaborative visual enhancement for three targets. This is mainly due to the high
complexity of the decision space, as agents must simultaneously decide which target the
camera should focus on, the type of action to execute, and the duration of that action under
the current task setup, making it difficult for the model to learn a stable policy.

This phenomenon further validates the rationality of adopting a hierarchical archi-
tecture for complex tasks. By decomposing the overall task into smaller subtasks, the
hierarchical method effectively reduces the learning difficulty of each subtask and lessens
the complexity of directly assigning global rewards. This facilitates stable convergence of
agent policies and improves overall performance.
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To provide a more intuitive demonstration of the practical effectiveness of our pro-
posed algorithm, we selected image sequences from several representative scenarios for
illustration. First, a scenario with three targets distributed within the scene is shown in
Figure 9. It can be observed that the GPA evenly allocates the three targets to different
PTZ cameras, with each camera prioritizing the target within its field of view—a strategy
consistent with intuitive expectations. As the LEA performs visual enhancement on the
assigned targets step by step, the detection confidence gradually increases, eventually
exceeding 0.9, validating the algorithm’s rationality and effectiveness.

Figure 9. Experimental image sequence for three-target scenarios. The arrows in the images represent
the target spatial offset within the joint state space, indicating the displacement of the Bbox centers
relative to the center of the camera’s field of view.

Next, we present a special case where three targets are present, but two of them fall
within the field of view of the same PTZ camera, as shown in Figure 10. In this case, the
GPA demonstrates high flexibility and intelligence. It assigns the PTZ camera that initially
has no targets in view to focus on one of the two overlapping targets, while the original
PTZ camera focuses on the other. As a result, all targets are successfully enhanced by the
PTZ cameras, with their confidence levels reaching above 0.9. This strategy maximizes
resource utilization and avoids missing any targets, thoroughly validating the algorithm’s
design and the efficiency of its allocation strategy.

Then, we show a scenario with two targets, as in Figure 11. In this case, some PTZ
cameras have no targets within their view, which theoretically would leave them idle.
However, the GPA does not leave these cameras idle. Instead, it assigns them to jointly
observe the same target as their neighboring PTZ cameras. This strategy is of great practical
significance: on one hand, it avoids wasting resources; on the other, it enhances system
fault tolerance. If one PTZ camera fails or loses communication, the other can continue
enhancing the target, ensuring the robustness and reliability of the system.

Lastly, we show a scenario with four targets, as seen in Figure 12. Since the number of
targets exceeds the number of PTZ cameras, one target is theoretically unassignable and
cannot be directly enhanced. However, during execution, the unassigned target is still
placed within the field of view of a PTZ camera as much as possible.
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Figure 10. Experimental image sequence for special three-target scenarios. The arrows in the images
represent the target spatial offset within the joint state space, indicating the displacement of the Bbox
centers relative to the center of the camera’s field of view.

Figure 11. Experimental image sequence for two-target scenarios. The arrows in the images represent
the target spatial offset within the joint state space, indicating the displacement of the Bbox centers
relative to the center of the camera’s field of view.

Figure 12. Experimental image sequence for four-target scenarios. The arrows in the images represent
the target spatial offset within the joint state space, indicating the displacement of the Bbox centers
relative to the center of the camera’s field of view.
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4.5. Ablation Experiment
4.5.1. Ablation Study on Network Architecture

To verify the effectiveness of the proposed GNN architecture, an ablation experiment
on the network structure was designed. A control model without graph structural informa-
tion—a fully connected neural network (Multi-Layer Perceptron, MLP)—was constructed
to evaluate the specific contribution of graph modeling to task performance.

Unlike the previously described model, which performs state modeling and informa-
tion interaction based on graph structures, the MLP model directly flattens all observed
states into a vector for input. In the output part, the MLP network is required to accomplish
the same task as the GNN: selecting a target from the global target pool for each camera;
i.e., each camera outputs a probability distribution over all global targets, reflecting its
focus tendency on targets under the current state.

To ensure fairness, the experiment maintained consistency with the original GNN
model in terms of loss function, training strategy, and other aspects, only replacing the
network architecture. Experiments were conducted under the same 150 experimental
scenarios as with the GNN model to fairly assess the contribution of graph structure
modeling to the final performance. The experimental results are shown in Table 3.

Table 3. Network architecture ablation experimental results.

Target Quantity Architecture ACR VERA IAC EAC AS

2 MLP 95.05% 79.17% 0.85 ± 0.04 0.80 ± 0.18 6
GNN 99.52% 95.83% 0.86 ± 0.02 0.90 ± 0.02 2

3 MLP 93.39% 70.64% 0.86 ± 0.03 0.82 ± 0.13 6
GNN 95.80% 90.21% 0.85 ± 0.04 0.91 ± 0.03 3

4 MLP 92.81% 65.52% 0.87 ± 0.03 0.90 ± 0.06 5
GNN 92.12% 74.14% 0.86 ± 0.04 0.92 ± 0.00 2

Note: Bold values indicate the best performance.

The results indicate that when the network structure is replaced by the MLP model,
the effectiveness of target allocation deteriorates. This is mainly because the MLP model,
in terms of state space design, cannot explicitly model spatial structural information such
as relative positional relationships between targets and the connections between cameras
and targets. Structurally, the MLP model also fails to extract effective high-order feature
information. This validates the effectiveness and rationality of introducing the GNN model
and further demonstrates its advantages in multi-camera tasks.

4.5.2. Ablation Study on Reward

To validate the effectiveness of the reward function proposed in this chapter, we
designed and conducted an ablation experiment on the reward function. In this experiment,
we ablated the part of the reward function related to the LEA’s confidence feedback,
retaining only the component related to target coverage. The experimental results are
shown in Table 4.

From the results, it can be seen that although a reward function based solely on
coverage can achieve a relatively good ACR to some extent, the VERA performs poorly,
indicating an inability to effectively accomplish the visual enhancement task. This is
because, under this reward setting, the GPA cannot obtain effective feedback on task
completion from the LEA, making it unable to evaluate the rationality of target allocation.
More importantly, relying only on coverage-based rewards fails to provide sufficiently
differentiated feedback for the GPA, which hinders its ability to learn appropriate allocation
strategies during training—leading to rigid and suboptimal allocation patterns.
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Table 4. Reward ablation experimental results.

Target Quantity rcoverage
t rcon f idence

t ACR VERA IAC EAC AS

2 ✔ % 84.00% 0% 0.85 ± 0.04 0.00 ± 0.00 10
✔ ✔ 99.52% 95.83% 0.86 ± 0.02 0.90 ± 0.02 2

3 ✔ % 93.78% 0% 0.86 ± 0.03 0.00 ± 0.00 10
✔ ✔ 95.80% 90.21% 0.85 ± 0.04 0.91 ± 0.03 3

4 ✔ % 94.75% 0% 0.87 ± 0.02 0.00 ± 0.00 10
✔ ✔ 92.12% 74.14% 0.86 ± 0.04 0.92 ± 0.00 2

Note: Bold values indicate the best performance. ✔ indicates the corresponding reward is included;% indicates it
is not included.

These experimental results strongly demonstrate the necessity and effectiveness of
incorporating the LEA’s confidence feedback into the reward function. The addition of
the confidence component significantly improves the effectiveness of cooperative visual
enhancement, verifying the rationality and feasibility of the reward design.

4.6. Complex Scenario Experiments

To further validate the effectiveness and robustness of the proposed method in more
complex environments, occlusions were introduced and targets were assigned certain
motion speeds in 100 experimental scenarios. Based on this setup, experiments were
conducted to evaluate the algorithm’s performance in dynamic and complex situations.
The experimental results are presented in Table 5.

Table 5. Complex scenario experimental results.

Target Quantity ACR VERA IAC EAC

2 100.00% 100.00% 0.83 ± 0.01 0.88 ± 0.03
3 94.38% 88.10% 0.84 ± 0.05 0.91 ± 0.01
4 89.57% 66.96% 0.86 ± 0.03 0.91 ± 0.01

The results show that, except for the case with two targets, the VERA performance
in these scenarios noticeably decreases. This decline is mainly due to the large spatial
span of the experimental scenes; as targets continue moving, they may enter areas beyond
the maximum field of view of the cameras. Additionally, when targets move at higher
speeds, some cameras require more action steps to complete the visual enhancement
tasks for the targets, which leads to delays in completing enhancement and thus impacts
overall performance.

Several representative frames were selected for visualization, as shown in Figure 13.
It can be observed that even when targets are occluded and cannot be detected normally,
the proposed GPA algorithm can quickly recognize and perform visual enhancement once
the targets re-enter the camera’s field of view. This robustness is attributed to the GPA’s
target allocation process, which differentiates targets based on appearance feature vectors
extracted by the cropping feature fusion module, thereby endowing the system with a
degree of occlusion robustness and re-identification capability.
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Figure 13. Experimental image sequence for complex scenarios. The arrows in the images represent
the target spatial offset within the joint state space, indicating the displacement of the Bbox centers
relative to the center of the camera’s field of view.

4.7. Hardware Experiment

To verify the feasibility of the proposed approach and promote its practical application,
we developed a complete hardware system, as illustrated in Figure 14. The system employs
a camera module with 30× optical zoom and integrates a pan–tilt unit supporting the
RS485 interface and Pelco-D protocol communication, forming a single hardware device.
The hardware specifications are summarized in Tables 6 and 7, with the camera module’s
model and parameters kept consistent throughout the system. On the software side, we
developed a hardware control interface consistent with that of the simulation environment,
enabling the transmission of control commands to the real-world hardware and the receipt
of feedback on action states. This design minimizes domain shift issues during model
deployment and migration.

Table 6. Camera parameters.

Parameter Name Value

Zoom 30× Optical Zoom
Communication Interface RS485 Interface

Access Protocol ONVIF
Operating Temperature −20 °C 60 °C

Resolution 1920 × 1080

Table 7. Pan–tilt unit parameters.

Parameter Name Value

Horizontal Rotation Angle ±175°
Vertical Rotation Angle ±35°

Rotation Speed 10°/s
Operating Temperature −25 °C 50 °C

Communication Method RS485 Half-Duplex Bus
Protocol Pelco-D

In actual deployment, the algorithm and models must first be transferred and deployed
to a Local Compute Unit (LCU), which is connected to the PTZ camera hardware. This
enables the LEA model, running on the LCU, to send control instructions to the PTZ
camera. All LCUs communicate with a Global Compute Unit (GCU) via a network switch,
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transmitting their local state information. Based on the deployed GPA policy model, the
GCU assigns targets to specific PTZ cameras.

Figure 14. Schematic diagram of the hardware system.

Due to limitations in experimental scenarios and hardware resources, the real-world
experiments in this study could not be conducted outdoors in a setting closely matching the
simulation environment, nor were outdoor deployment conditions available. Therefore, we
selected a relatively simple and controllable indoor scenario, with the primary purpose of
verifying the feasibility and adaptability of the algorithm on the hardware system platform.
In the experiment, pedestrian targets were used for monitoring, and selected video frames
from the execution process are shown in Figure 15.

The experimental results demonstrate that the proposed hierarchical reinforcement
learning-based multi-agent PTZ camera coordination algorithm can operate stably and suc-
cessfully perform collaborative visual enhancement tasks when migrated to the hardware
platform. These results confirm the rationality of the algorithm’s architecture, the feasi-
bility of the deployment scheme, and the practical application potential of the proposed
approach. In future work, we aim to address the challenges of constructing and deploying
real-world scenarios to extend the experiments to more complex outdoor environments,
further validating the method’s practicality and robustness.

It should be noted that, due to the limitations of the experimental scenarios and
hardware resources, the hardware validation in this study was primarily conducted on a
relatively small-scale multi-PTZ camera network, and the scalability to larger networks has
not yet been fully tested. In practical deployments, multiple challenges may still arise. For
example, as the number of cameras increases, the system’s sensitivity to communication
latency in global task allocation and real-time collaboration will significantly increase;
hardware heterogeneity in terms of the model, communication protocols, and computing
capabilities may lead to inconsistencies in the execution efficiency and accuracy of the
algorithm across different devices. In addition, issues such as bandwidth usage, time
synchronization, and energy consumption control will also need to be further evaluated
and optimized in larger-scale deployments. These challenges will be investigated in future
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work in conjunction with a larger-scale hardware platform in order to further verify and
enhance the system’s practical applicability and robustness.

Figure 15. Real-world multi-pedestrian, multi-camera hardware experiment results. The arrows in
the images represent the target spatial offset within the joint state space, indicating the displacement
of the Bbox centers relative to the center of the camera’s field of view.

5. Conclusions
This paper addresses the problem of collaborative perception and visual enhancement

of multiple PTZ cameras in border scenarios by proposing a hierarchical reinforcement
learning–based multi-agent control framework. By constructing a two-level hierarchical
structure comprising a GPA and LEAs, the framework achieves reasonable global target
allocation and effective local execution cooperation. Moreover, to enhance the agents’
ability to model complex spatial relationships in the environment, a joint state space based
on graph structures is designed, and graph neural networks are introduced to extract
high-order feature correlations between multiple cameras and multiple targets.

Meanwhile, a composite reward function combining target coverage and visual en-
hancement effects is proposed to promote effective cooperation between global and local
agents. In simulation experiments, the proposed method outperforms traditional multi-
agent reinforcement learning approaches in both target coverage and visual enhancement
performance, validating the advantages of the hierarchical architecture in task decompo-
sition and reward allocation. Ablation studies further confirm the effectiveness of graph
neural networks in state modeling and the necessity of the confidence feedback mechanism
in the reward function. Experiments in complex scenarios increase environmental diversity
and verify the robustness of the method under conditions such as occlusion and dynamic
target changes. The final hardware experiments demonstrate that the method possesses
strong practical transferability and application potential.

Future research will consider extending to larger-scale PTZ camera networks to further
improve the system’s collaborative control capabilities in complex and dynamic scenarios.
Additionally, reinforcement learning algorithms suitable for multi-agent settings with
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variable input scales will be explored to enhance the system’s adaptability to changing
target quantities and overall robustness.
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