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Abstract

As the CMOS technology approaches its physical and economic limits, further advance-
ment of Moore’s Law for enhanced computing performance can no longer rely solely on
smaller transistors and higher integration density. Instead, the computing landscape is
poised for a fundamental transformation that transcends hardware scaling to embrace in-
novations in architecture, software, application-specific algorithms, and cross-disciplinary
integration. Among the most promising enablers of this transition is non-volatile mem-
ory (NVM), which provides new technological pathways for restructuring the future of
computing systems. Recent advancements in non-volatile memory (NVM) technologies,
such as flash memory, Resistive Random-Access Memory (RRAM), and magneto-resistive
RAM (MRAM), have significantly narrowed longstanding performance gaps while intro-
ducing transformative capabilities, including instant-on functionality, ultra-low standby
power, and persistent data retention. These characteristics pave the way for developing
more energy-efficient computing systems, heterogeneous memory hierarchies, and novel
computational paradigms, such as in-memory and neuromorphic computing. Beyond
isolated hardware improvements, integrating NVM at both the architectural and algorith-
mic levels would foster the emergence of intelligent computing platforms that transcend
the limitations of traditional von Neumann architectures and device scaling. Driven by
these advances, next-generation computing platforms powered by NVM are expected to
deliver substantial gains in computational performance, energy efficiency, and scalability
of the emerging data-centric architectures. These improvements align with the broader
vision of both “More Moore” and “More than Moore”—extending beyond MOS device
miniaturization to encompass architectural and functional innovation that redefines how
performance is achieved at the end of CMOS device downsizing.

Keywords: non-volatile memory; RRAM; More Moore; computer architecture

1. A Different Perspective of More-than-Moore and More Moore

The relentless scaling of CMOS (Complementary Metal-Oxide-Semiconductor) tran-
sistors has driven the exponential growth of chip integration density—and consequently
computing power and overall performance—for decades. This trend, famously known
as Moore’s Law [1], has slowed in recent years (see Figure 1), particularly in terms of
further reductions in device gate length [2—4]. In other words, Moore’s Law, first defined
by the continued upscaling of integration levels and later by device miniaturization, is
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approaching its practical limits. Or in short, we are nearing a time of “no Moore”, i.e., when
the CMOS device downsizing will come to an end.
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Figure 1. Plot of non-classical or non-Dennard device downsizing schemes towards more Moore for
a smaller chip footprint for some near future generations. Adopted from [5].

The CMOS community continues to explore every possible avenue to reduce chip
footprint and achieve higher integration density, without relying solely on gate length
scaling. In fact, for over a decade, scaling rules and technology node definitions have shifted
from physical gate length to equivalent gate length representations [5,6]. The introduction
of FinFET technology at the 28 nm node marked a significant inflection point, as technology
nodes began to be defined by integration density rather than actual gate dimensions. The
3D architecture of FInFETs, along with their increased effective gate width and compact
footprint, enables significantly improved chip density [6,7]. To further extend Moore’s Law
into the subnanometer era, a host of non-classical, or non-Dennard [8], scaling approaches
are being pursued [5]. These include gate-all-around (GAA) and nanosheet transistors,
complementary FETs (CFETs), reduced contact and cell sizes, back-side and buried power
rails, back-side interconnects, nano-through-silicon vias (TSVs), and advanced stacking
or heterogeneous 3D integration techniques (see Figure 1). In a broader context, “More
Moore” may be redefined to encompass not only continued reductions in feature size, but
also any technologies, structures, configurations, or architectures that enable higher chip
density—or deliver better performance—such that the new technology can be equated to a
smaller technology node in effect.

Among all technologies, CMOS stands out as uniquely capable of enabling both
the smallest physical device sizes, measured in nanometers, and the highest levels of
integration, reaching toward tera-scale systems. As such, CMOS will remain the foundation
of a wide range of electronic systems: from the smart technologies that shape our lives
today to the innovations of the future. Even in a “no Moore” era, CMOS technology will
continue to play a pivotal role for decades to come.

As we transcend the boundaries of traditional digital scaling, new paradigms and
applications are emerging that leverage the inherent strengths of CMOS while integrating
novel capabilities previously considered beyond its scope. This evolution is captured by
the concept of “More Than Moore,” a term introduced by the Semiconductor Industry Asso-
ciation (SIA) and emphasized in the 2010 edition of the International Technology Roadmap
for Semiconductors (ITRS) [9]. This original “More Than Moore” concept encompasses a
wide spectrum of devices and applications (see Figure 2), including the following;:
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(@) RF and analog CMOS circuits for communications and signal processing;

(b) On-chip integration of passive components such as capacitors and inductors;

(¢) High-voltage and power-management devices for energy control;

(d) Transducers and sensors capable of detecting and processing physical, chemical, and
biological signals;

(e) Biochips designed for biomedical diagnostics and interfacing with living systems.
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Figure 2. The introduction of “More Moore” and “More than Moore” concepts in the White paper for
the International Technology Roadmap for Semiconductors [9].

Over the past two decades, CMOS technology has expanded well beyond its original
role in digital logic, demonstrating remarkable adaptability and success in areas once
dominated by other technologies. Notably, CMOS has excelled in RF front-end applications
for mobile communication systems [10-14], leveraging continued process scaling to achieve
high-frequency performance and seamless integration with digital signal processing on a
single chip.

In power electronics, recent breakthroughs in CMOS-based power devices [15-18],
along with the heterogeneous integration of wide bandgap semiconductors such as GaN
and SiC, have significantly boosted system efficiency, integration, and flexibility across
diverse applications. A particularly promising development is the use of copper bond-
ing to integrate discrete GaN transistors onto CMOS substrates in a low-cost, scalable
manner [18-20]. These innovations effectively bridge the performance gap between wide-
bandgap materials and silicon logic, unlocking new levels of power density and energy
efficiency [18].

Various biochips based on CMOS technology have been developed in human-
environment interfaces, paving the way for practical applications in healthcare, diagnostics,
and biological research [14,21,22]. Furthermore, advances in nanoscale fabrication have
extended CMOS’s reach into optoelectronic domains [23-28], underscoring its remarkable
adaptability across previously unexplored technological frontiers. System-on-chip (SoC)
and heterogeneous integration technologies further enrich CMOS capabilities—not only by
enabling 3D stacking to achieve higher integration densities within compact 2D footprints,
but also by facilitating the incorporation of diverse materials and functional modules
beyond the scope of conventional CMOS processes [5,19,29-31].

Given its nanoscale dimensions, giga-scale integration density, and the complexity
of its manufacturing processes, alongside seven decades of relentless innovation and
widespread adoption, it is unlikely that emerging materials and devices will fully replace
CMOS shortly [32]. Nevertheless, novel device structures based on 2D materials and ad-
vances in atomic-level fabrication techniques are expected to complement CMOS, offering
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solutions to some of its inherent limitations and potentially enhancing performance in
specialized applications [32-35].

Beyond physical integration through novel materials and technologies, the “More
Than Moore” framework must also encompass advances in software, computational archi-
tectures, and algorithmic innovation [35]. In 2012, Wong proposed an expanded paradigm
combining “More Moore” and “More Than Moore” (see Figure 3) to this domain. In his
model, the original “More Than Moore” vision, introduced in the ITRS roadmap, is repre-
sented on a two-dimensional plane: CMOS technology scaling (i.e., device downsizing)
along the x-axis, and the integration of non-CMOS or non-digital functionalities along the y-
axis. This multidimensional integration enhances system capabilities, including improved
human-machine interfaces and environmental sensing. Wong’s framework adds a third
axis: system-level and application-level innovation. This pillar emphasizes non-hardware
elements such as software design, system architecture, domain-specific algorithms, etc.
Take computer systems as an example, over the past decade, their performance and ca-
pabilities have dramatically improved, not necessarily through transformative hardware,
but through developments in networks, the internet, artificial intelligence (AI), and a
growing ecosystem of software, tools, and applications. As a result, even with legacy
hardware, modern systems are vastly more intelligent, efficient, and responsive than their
predecessors. Thus, even as CMOS device miniaturization approaches its physical limits,
continued advancements at the algorithmic and system level can still yield more powerful,
energy-efficient, and smarter computing platforms [35]. In this sense, not only does “More
Than Moore” open the door to new applications, but it also delivers another “More Moore”
solution, an effective enhancement of computing power through alternative innovation
pathways [4].

Software, Architectures
Applications

More than Moore (systérp level)

Figure 3. A different perspective of “More-than-Moore” and “More Moore” proposed by Wong [36].

Recent advancements in non-volatile memory technologies present compelling oppor-
tunities to rethink and reshape computer architectures and computational models. These
innovations promise to enable more powerful, energy-efficient systems capable of address-
ing diverse application scenarios [36—42]. By fully harnessing the potential of non-volatile
memory, we can accelerate the emergence of ubiquitous intelligent systems, support novel
computing paradigms, and foster deeper integration between humans and machines. This
work offers a forward-looking review of the impacts and future directions of computer
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system evolution enabled by state-of-the-art non-volatile memory technologies. This re-
view begins by tracing the evolution and key characteristics of leading NVM technologies,
examining their physical principles, performance benchmarks, and process compatibility
with standard CMOS fabrication in Section 2. In Section 3, the discussion then shifts to the
broader impact of NVM across the computing stack, from circuit-level implementations
and memory subsystems to overarching system architectures and application domains. At
the architectural level, we explore how NVM enables logic-in-memory and processing-in-
memory strategies that mitigate the cost of data movement, reduce latency, and improve
throughput for data-intensive tasks. At the system level, NVM supports persistent state
storage, rapid system boot-up, and greater fault resilience—capabilities that are essential
for future computing paradigms, including edge computing, artificial intelligence (AI)
engines, and autonomous systems. Section 4 concludes with a summary and final remarks
on the technological outlook and potential paradigm shifts in memory-centric computing.

2. Overview of Non-Volatile Memory Technology

Among various non-volatile memory (NVM) technologies, Flash NAND has achieved
the most widespread commercial success. It has been integrated into nearly all main-
stream digital electronic devices, including mobile phones, digital cameras, SD cards, USB
drives, and computers, serving as both large-capacity data storage and embedded memory
within system-on-chip (SoC) architectures for low-latency access and system accelera-
tion. Beyond Flash memory, other prominent NVM technologies include Magnetoresistive
RAM (MRAM), Resistive RAM (RRAM), phase-change memory (PCM), and Ferroelectric
RAM (FeRAM). We shall highlight the core principles and recent advancements of these
emerging memory types. Notably, as elaborated in Section 3, NVM technologies are revolu-
tionizing the long-standing von Neumann architecture. Concepts such as near-memory
computing, in-memory computing, and neuromorphic computing mark a fundamental
shift from reliance on transistor scaling and increased integration density—dominant over
the past six decades through CMOS miniaturization—toward architectural innovation
that leverages computational algorithms and memory-centric processing. These trans-
formative approaches significantly elevate computing performance and efficiency in the
post-MOS era.

2.1. Flash NAND: Another Benchmark of CMOS Technology

Among various types of non-volatile memory, flash memory—particularly NAND
flash—has emerged as the most successful and widely adopted. It leads the field in memory
capacity, cost efficiency, and versatility of applications. NAND flash is often regarded as
a technological benchmark for semiconductor foundries. Figure 4 illustrates the upward
trajectory and technological evolution of flash memory products. Both capacity and bit
density closely followed Moore’s Law, which aligns with advancements in the upscaling of
integration density of DRAM and CPU. While flash memory typically utilizes technology
nodes that are a few generations behind those of leading-edge logic and DRAM devices, its
bit density still surpasses the transistor density of DRAM and processors. This is mainly
due to continuous innovations in increasing the number of bits per transistor, evolving
from single-level cell (SLC), to multi-level cell (MLC), triple-level cell (TLC), quad-level
cell (QLC), and most recently, penta-level cell (PLC) technologies. Moreover, flash memory
exemplifies cutting-edge progress in vertical stacking technology. The latest products have
stacked more than 400 layers, setting new benchmarks for scalability and integration [43].
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Figure 4. Semilogarithmic plot illustrating bit density and stack layer count evolution in commercial
NAND flash products over time. Data compiled from multiple industry sources.

Flash memory evolved from Electrically Erasable Programmable Read-Only Memory
(EEPROM), in which each bit consists of one access/programming transistor and one
memory transistor. Its core operating principle is based on the Floating Gate (FG) MOS
transistor (see Figure 5). Data are stored by trapping charge on the electrically isolated
Floating Gate, which alters the transistor’s threshold voltage. The erase operation in early
EEPROMs required high voltage, resulting in low-density and inconvenient operation,
which is overcome by reducing both the channel length and the thickness of the tunneling
oxide in the memory transistor, enabling lower voltage erasure and improved efficiency.
A major breakthrough came in 1984 when Masuoka introduced the concept of flash writ-
ing [44]. He proposed arranging multiple memory transistors into a bank configuration,
allowing them to share a single access transistor. This design brings the system closer to
achieving one transistor per bit, and in subsequent generations, it enables storing multiple
bits per transistor. The early version of flash memory, both single-layer cell (SCL) and
multi-layer cell (MLC), was based on the 22 nm planar CMOS technology. In planar NAND
flash memory, the per-cell capacity is constrained by the 4F? area limit, where F denotes
the feature size of the fabrication process. Vertical stacking is necessary to overcome this
restriction and achieve greater storage density. Additionally, storing multiple bits per cell is
another key strategy to enhance overall memory capacity. One of the earliest architectural
implementations of vertical stacking in flash memory was the stacked-surrounding gate
transistor (5-SGT) structure. This design utilized polysilicon as the Floating Gate (FG)
material and incorporated two memory cells within a single silicon pillar. By reducing the
per-bit area by more than 50%, the S-SGT structure enabled commercial production of flash
memory devices with capacities of up to 64 Gb [45].



Electronics 2025, 14, 3456

7 of 45

Gate
0]

Floating Floating

Floating Drain gate unfilled  gate filled

Gate

Source

\\\\\\\\\\\\\\\\\\\\\\\:
U 9N

7777

AVr

VGS

(a) (b)

Figure 5. (a) Cross-sectional schematic of a floating-gate flash memory transistor. (b) Illustration of
the threshold voltage shift in the Ips-V g characteristics of the memory transistor after the Floating
Gate is filled.

Interest in three-dimensional memory transistor structures dates back to 2001, when
Endoh et al. introduced the S-SGT concept, an innovation demonstrating the feasibility of
3D Floating Gate architectures [45]. A pivotal advancement came in 2007, when Toshiba
unveiled its 3D Bit-Cost Scalable (BiCS) technology [46]. BiCS replaced conventional
Floating Gates with charge-trapping layers composed of materials with a deeper bandgap,
deposited via low-pressure chemical vapor deposition (LPCVD). This approach facilitated
cost reduction by utilizing a fixed number of critical lithography steps, irrespective of the
number of stacked layers [46]. In 2013, BiCS further evolved into pipe-shaped BiCS (p-
BiCS), as shown in Figure 6a [47]. This iteration connected adjacent vertical NAND strings
at the substrate level, forming a U-shaped channel. The p-BiCS architecture addressed
high source line resistance and improved data retention by minimizing tunnel oxide
damage during fabrication. Additionally, the shared source line was directly connected to
a metal grid, significantly reducing parasitic resistance. Around the same period, Samsung
developed a gate-replacement process to mitigate charge loss due to lateral diffusion. This
innovation was branded as Terabit Cell Array Transistor (TCAT) technology for its 3D V-
NAND products (see Figure 6b) [48]. Leveraging TCAT architecture, Samsung successfully
commercialized its 128 Gb 2-bit/cell 3D V-NAND product in 2014.
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Figure 6. Comparative cross-sectional views of advanced 3D NAND architectures: (a) Toshiba’s

Toshiba’s Pipe-shape BiCS

pipe-shaped BiCS (p-BiCS) cell, featuring a U-shaped channel connecting adjacent vertical NAND
strings to reduce source line resistance and enhance data retention; and (b) Samsung’s Terabit Cell
Array Transistor (TCAT) cell, utilizing a gate-replacement process to mitigate charge loss and lateral
diffusion, enabling high-density 3D V-NAND integration.
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Process innovations have played a pivotal role in scaling 3D NAND technology. Cell-
to-cell parasitic capacitance rises sharply as technological nodes shrink and stack heights
increase. This degrades the coupling ratio between the Floating Gate (FG) and the Control
Gate (CG), impacting memory performance. To counter this challenge, the Extended
Sidewall Control Gate (ESCG) structure was introduced [49]. By incorporating additional
shielding components, ESCG significantly enhances CG coupling. Reports show that ESCG
enables a 20% reduction in program/erase (P/E) voltage, a 5% increase in read current at
the 30-nm node, and a 50% decrease in interference compared to traditional FG NAND
cells [48]. The Dual Control Gate with Surrounding Floating Gate (DC-SF) architecture was
developed to enhance capacitive coupling further. This design integrates a surrounding
FG with vertically stacked dual CGs, enabling low-voltage operation (15 V/—11 V) and
offering a broad P/E window of 9.2 V. Such characteristics make it suitable for quad-level
cell (QLC) operation, supporting 4 bits per cell. This innovation was instrumental in
commercializing terabit-scale NAND flash memory in the early 2010s [50]. Meanwhile,
adopting a gate-last fabrication approach has significantly improved write cycle endurance
by reducing electrical stress on critical dielectric layers [51]. The evolution of 3D NAND
continued with the Separated-Sidewall Control Gate (S-SCG) structure. This design pairs
a cylindrical FG with a linear CG, achieving the highest CG coupling ratio reported to
date and eliminating cell-to-cell interference. S-SCG cells support low-voltage operations
—15 V programming at threshold voltage (Vth) of 4 V and 7 V erase at Vth = -2V, offering
a read current margin more than 1.5 orders of magnitude greater than prior designs. Its
outstanding noise immunity positions the S-SCG structure as a promising candidate for
multi-level cell applications [52].

In 2023, penta-level cell (PLC) technology emerged, marking a significant milestone in
flash memory scaling. The latest PLC devices incorporated 192 stacked layers, delivering a
1.67 Tb capacity and setting a record with an industry-leading density of 23.3 Gb/mm? [53].
Samsung announces its latest 1 Tb V-NAND product achieved an unprecedented
400 active layers and a high-speed interface of 5.6 GT/s, pushing the envelope for both
vertical scalability and performance [54]. Figure 7 compares the latest NAND products
regarding capacity, bit density, I/ O speed, and number of vertical stacking layers.

Bit Density (x5 Gb/mm?)

SK Hynix 2025
KIOXIA 2025
Samsung 2025
Micron 2024

Samsung 2024

Number of Planes
Number of Layers (x50)

Bits per Cell (bit/cell) 1/0 Speed (GT/s)

Capacity (TB)

Figure 7. Comparison of key performance indicators for the latest-generation NAND flash products.
Data from various sources [43,55-58].
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2.2. Resistive Random-Access Memory (RRAM)

Resistive Random-Access Memory (RRAM) is based on the modulation of dielectric
resistance within a metal-insulator-metal (MIM) structure [59]. The resistive switching
phenomenon was first reported in the reversible breakdown of thin metal oxide films in the
1960s [60]. Figure 8§ illustrates the operating principle. In the initial state, the insulating film
typically exhibits a high resistance due to a low concentration of defects such as mobile
ions and oxygen vacancies. Nevertheless, a small leakage current may still be detectable
as these defects assist in charge conduction (Figure 8a). When a strong electric field is
applied across the dielectric, additional defects can be generated and aligned to form
continuous conductive paths between the bottom and top electrodes. These low-resistance
channels correspond to the low-resistance state (LRS) (Figure 8b). This phenomenon is
generally explained using the conductive filament (CF) model, which describes these
paths as filaments forming or rupturing depending on the electrical bias. Figure 8c,d
illustrate a broken filament (representing HRS) and an intact filament (representing LRS),
respectively. By associating the two resistive states with logical values, logic “0” for HRS
and “1” for LRS—RRAM enables non-volatile memory functionality. Switching between
states is accomplished by applying a voltage above a critical threshold (Set voltage), which
drives filament formation or dissolution. Similar to the Dynamic Random-Access Memory
(DRAM) architecture (Figure 8e), a MOS transistor can be employed for access control, with
the memory element (the switchable resistive device) connected to the drain terminal for
data storage.

TE TE

Bitline

1 4 e —1

(a) High Resistance State (HRS)  (b) Low Resistance State (LRS)

Memristor |__\/
1

TE 4 TE 4 Wordline r|

BE BE

(e) Resistive RAM Cell

(c) HRS Filament Model (d) LRS Filament Model

Figure 8. Current conduction behavior in metal-insulator-metal (MIM) structures under different
resistance states. (a) High-resistance state (HRS), where defect-assisted leakage current is minimal.
(b) Low-resistance state (LRS), characterized by the formation of conductive pathways. (c,d) Illus-
trations of the conductive filament model corresponding to HRS (broken filament illustrated as two
yellow pillars) and LRS (intact filament illustrated as a single yellow pillar), respectively. (e) Typical
access circuit configuration for the memristor.

Many dielectric materials, with different resistance change mechanisms, have been
explored as resistive switchable candidates. Because of the various underlying physical
processes, different switching characteristics were reported. Two filamentary mechanisms
could be involved: Conductive Bridge RAM (CBRAM), which relies on the electrochemical
formation and dissolution of metallic filaments using active metals like silver or copper;
and Oxide-based RRAM (OxRAM), where oxygen-vacancy filaments are manipulated via
redox reactions involving transition metals such as tantalum or titanium nitride [61,62].
Although numerous material systems can exhibit resistive switching, few meet industrial
standards for high-density, cost-effective memory, with CMOS compatibility being a central
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requirement. Binary transition metal oxides like TaOx and HfOx have emerged as leading
candidates in this domain [61,62].

Figure 9 illustrates the voltage-dependent characteristics of two different RRAM: the
unipolar and bipolar modes. In a unipolar switching device, SET and RESET actions occur
in a single polarity. Figure 9a illustrates the positive switching characteristics. For bipo-
lar mode devices, SET and RESET operations occur in different bias polarities. Unipolar
devices usually have lower fabrication costs, making them well suited for oxide-based
memristor applications. Conversely, bipolar switching requires alternating voltage polar-
ities, positive for SET and negative for RESET, where the voltage direction triggers the
resistance change. This configuration facilitates high-density crossbar integration and
is advantageous for emerging applications such as storage-computing convergence and
in-memory computing [63].

(a) 11 RESET (b) 14
SET
HRS SET RESET .
v HRS v
LRS LRS

Figure 9. Switching characteristics of Resistive Random-Access Memory (RRAM) devices under
different operational modes. (a) Unipolar switching: resistance state transitions driven by variations
in voltage amplitude or pulse width using a single polarity. (b) Bipolar switching: resistance changes
initiated by alternating voltage polarities, with SET and RESET operations triggered by opposite
voltage directions.

Figure 10 illustrates key milestones in the development and commercialization of
Resistive Random-Access Memory (RRAM). The first commercial product was launched by
Samsung in 2004 using 0.18 pm CMOS technology [64]. Panasonic followed in 2013 with the
release of an 8-bit microcontroller (MCU) featuring a 2 Mb RRAM array at the 180 nm node,
which was subsequently scaled to a 2 Mb chip on a 40 nm node by 2015. By 2024, RRAM
had been widely adopted at mature process nodes. For instance, TSMC currently offers
RRAM integration at 40 nm, 28 nm, and 22 nm nodes [65,66], and has recently achieved
a significant milestone by fabricating the largest-capacity commercially available 32 Mb
RRAM chip using 12 nm ultra-low-power FInFET technology [67]. Although its transistor
footprint (6F?) is relatively large compared to competing technologies, many RRAM devices
are reported to be fully compatible with CMOS processes. Additionally, three-dimensional
(3D) stacking presents a viable pathway for achieving higher-density architectures. These
advancements underscore the significant scalability and commercialization potential of
resistive memory technology.

RRAM is almost fully compatible with the mainstream CMOS fabrication processes,
positioning it as a leading candidate for embedded memory in advanced nodes. RRAM of-
fers exceptional scaling advantages due to its localized resistive switching, which is largely
independent of cell area. They deliver outstanding features such as ultra-high-density
integration, nanowatt-level ultra-low power consumption, millisecond-scale switching
speeds, and exceptional endurance. In the embedded memory space, shrinking process
nodes have posed increasing challenges for conventional flash memory, leading to greater
fabrication complexity and higher production costs. Figure 11 illustrates the simple crossbar
array structure and the 3D stacking structure for high-density in-memory applications [63].
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Furthermore, RRAM’s inherent non-volatile nature enables the retention of learned synap-
tic weights even after power loss, making it a compelling candidate for neuromorphic
systems [68,69].

RRAM (Samsung) (Panasonic) (TSMC) ~ , MB(;::?I\?
mechanism  1T1R 0.18um 1S1R 24nm  RRAM-SRAM ; M-macro
Observed RRAM RRAM 22 nm IMC chip 12 nm FinFET
technology
Historical f / , \ /
milestones
for RRAM 1962 2004 2013 2024

Figure 10. Chronological overview of key development milestones in commercializing RRAM and
their corresponding fabrication technology.
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Figure 11. (a) Schematic of RRAM crossbar array architecture (a) single layer, (b) two layers, and
(c) 3D stacked for in-memory computing [63]. © 2018 Springer Nature. Reproduced with permission.

2.3. Magnetic Random-Access Memory (MRAM)

Magnetic Random-Access Memory (MRAM) is widely regarded as a promising suc-
cessor to SRAM and DRAM in next-generation in-memory computing systems, thanks
to its high switching speed and low energy consumption. It introduces a new paradigm
in non-volatile memory technology by combining high-speed operation (~10 ns), almost
unlimited endurance (>10'° write cycles), near-zero standby power consumption, and
instantaneous data retention [70-72]. The core mechanism behind MRAM is the tunneling
magnetoresistance (TMR) effect, which occurs in a structure known as a magnetic tunnel
junction (MTJ]). An MT]J consists of two ferromagnetic layers separated by a thin insulating
barrier. As illustrated in Figure 12, the tunnel current’s magnitude depends on the relative
magnetization direction of these two layers, yielding different electrical resistance values
depending on whether the magnetizations are parallel or anti-parallel.

Non-magnet Low current  Non-magnet

lH'gh current
Ferromagnet =

Figure 12. Schematic illustration of the tunneling magnetoresistance (TMR) effect within a magnetic

Ferromagnet n l Ferromagnet n

Ferromagnet

tunnel junction (MT]J).

The magnitude of the TMR effect is defined as follows:

R”P — RP

MR ratio =
ratio R,

M
where Rﬂp is the electrical resistance while the magnetization direction of the two ferromag-
nets in anti-parallel mode. R, is the electrical resistance while the magnetization directions
are parallel.



Electronics 2025, 14, 3456

12 of 45

The tunneling magnetoresistance (TMR) effect was first discovered in 1975 by
Julliere in Fe/Ge-O/Co junctions at 4.2 K, where a MR ratio of approximately 14% was
recorded [73]. Miyazaki later made significant advancements in enhancing the TMR effect.
Especially in 1994, Miyazaki achieved an improved MR ratio of 18% for an experiment
using iron junctions separated by an amorphous aluminum oxide insulator [74]. A major
breakthrough occurred in 2004 when Parkin and Yuasa independently demonstrated TMR
ratios exceeding 200% at room temperature using Fe/MgO/Fe junctions [75,76], marking
a critical step toward practical applications. Later in 2008, Ikeda and Ohno’s research
group reached unprecedented TMR values of 604% at room temperature and over 1100%
at 4.2 K using CoFeB/MgO/CoFeB junctions. These accomplishments established a robust
foundation for contemporary MRAM development [77-80].

In MRAM, data are stored by modulating the magnetization states of Magnetic Tunnel
Junctions (MTJs). Each memory cell adopts a 1S1M architecture, comprising a selector
transistor and a cross-point MT]. As illustrated in Figure 13, the MT]’s operation hinges on
the magnetization direction of its free layer (indicated by a red arrow) relative to the fixed
reference layer. When these layers are aligned in parallel, the MT] exhibits low resistance;
when anti-parallel, high resistance, thereby enabling binary data encoding. This design
facilitates ultra-high-density memory arrays, with a theoretical cell area as small as 4F2.

Bit Line Bit Line

E Reference Layer
=
MT)] | =

Barrier Layer

Free Layer

Word Line Word Line
,L' Current Ll Current
Source Line Source Line
Write “0” Write “1”

STT MRAM

Figure 13. Schematic illustration showing current flow and magnetization switching dynamics within
the Magnetic Tunnel Junction (MTJ) of a Spin-Transfer Torque MRAM (STT-MRAM) cell during write
and erase operations.

Several MRAM variants have been developed over time, each employing distinct
magnetization switching mechanisms. Field-MRAM, the earliest architecture, relies on
magnetic fields generated by current-carrying wires to alter the magnetization state of the
memory cell [78]. Although Field MRAM is simple and reliable, it faces significant limita-
tions in scalability. Its design results in high write power consumption and susceptibility to
inter-cell interference, which hinders its integration into high-density memory arrays.

The second generation, Spin-Transfer Torque MRAM (STT-MRAM), was conceptu-
alized by Slonczewski and Berger in 1996, and later demonstrated experimentally by
researchers at Cornell University in 2005. STT-MRAM introduces a more refined switch-
ing mechanism by utilizing spin-polarized current to generate spin-transfer torque (see
Figure 13). As electrons tunnel through the MT]J’s insulating barrier and interact with
localized magnetic moments, they exert a torque capable of reversing the magnetization
of the free layer, provided the current exceeds a critical threshold. This innovation led to
reduced write energy and better scalability compared to Field-MRAM.

The most advanced variant to date is Spin—Orbit Torque MRAM (SOT-MRAM), repre-
senting the third generation of the technology. Unlike STT-MRAM, SOT-MRAM employs
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in-plane current within a neighboring heavy metal layer to produce Spin—Orbit Torque,
thereby switching the free layer’s magnetization without channeling high current directly
through the MT]J. As illustrated in Figure 14, this separation of current paths significantly
lowers write disturbance and enhances device endurance. SOT-MRAM offers several
performance advantages, including GHz-level switching speed, ultra-low switching energy
below 100 f]/bit, exceptional endurance beyond 10'° write cycles, and minimal standby
power. These strengths are further amplified by engineering refinements such as synthetic
antiferromagnetic (SAF) layers and voltage-assisted switching, making SOT-MRAM highly
scalable and compatible with CMOS technology.

Read Line Read Line

— —

Reference Layer

MT]

Barrier Layer

__ Heavy Metal Layer

Word Line \ Giitant \ Word Line

g1 7

Source Line Write Line Source Line

Write “0/1" Read
SOT MRAM

Write Line

Figure 14. Schematic representation of the write operation in an SOT-MRAM cell. Noting that in
SOT-MRAM, magnetization switching is achieved via current flowing through an adjacent Spin—
Orbit Torque (SOT) metal line, avoiding high current flow through the Magnetic Tunnel Junction
(MT]) itself.

Despite its advantages, MRAM still trails behind other nonvolatile memory tech-
nologies in terms of raw storage capacity. This situation has changed. A 64-Gigabit (Gb)
MRAM chip has just been achieved by the Kioxia group, which features a dense 1S1M
layout and ultrafast three-nanosecond read pulses [81]. SOT-MRAM is also considered
CMOS-compatible and can potentially be integrated into semiconductor processes through
modified Back-End-of-Line (BEOL) steps. However, this integration faces challenges due
to the complexity and sensitivity of the ultra-thin magnetic layers involved in the MRAM
stack. Additionally, MRAM'’s thermal stability remains a key concern, directly influencing
its Tunnel Magnetoresistance (TMR) ratio and long-term reliability. Overcoming these ob-
stacles will be crucial for large-scale deployment and adoption across computing platforms.

2.4. Ferroelectric RAM (FeRAM) and FeFET

Ferroelectric memory technologies, including Ferroelectric RAM (FeRAM) and Ferro-
electric Field-Effect Transistors (FeFET), are non-volatile memory types that leverage the
physical principle of ferroelectricity, first discovered in the 1920s [82]. In ferroelectric mate-
rials, polarization arises from the displacement of positive and negative charge centers, and
this polarization can be reversed by applying an external electric field without exceeding
the material’s breakdown voltage. Once polarized, the material maintains its state even
after the external field is removed, thanks to the stability of its internal ion arrangements.
This remanent polarization forms the basis for data storage and is typically detected by
measuring reversal or non-reversal currents.
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Ferroelectric materials belong to a subset of pyroelectric crystals. While a polarization—
electric field (P-E) hysteresis loop is indicative of ferroelectric behavior, it does not con-
clusively prove ferroelectricity; similar effects, such as charge relaxation in electrets, can
produce misleading signatures. Two primary classes of ferroelectric compounds dominate
memory applications: perovskite structures like lead zirconate titanate (PZT) and layered
perovskites such as strontium-bismuth-tantalate (SBT). PZT offers favorable crystalliza-
tion temperatures (450-650 °C), making it more compatible with CMOS Back-End-of-Line
(BEOL) processing. In contrast, SBT is lead free and more resistant to polarization fatigue
but demands significantly higher crystallization temperatures (~750-850 °C), complicating
its integration.

FeRAM devices typically adopt either a one-transistor—one-capacitor (1T1C) architec-
ture, analogous to DRAM but with a ferroelectric capacitor, or a simplified one-transistor
(1T) configuration with ferroelectric material as the gate dielectric (see Figure 15). Program-
ming involves activating the word line and applying voltage pulses between the bit and
source lines to manipulate the capacitor’s polarization direction resulting from the crystal
structure (see Figure 16). Although this mechanism reliably stores binary data, it suffers
from a destructive readout process that necessitates data rewriting after each read cycle.
Miniaturizing FeRAM cells presents a major challenge, as smaller geometries complicate
the accurate sensing of polarization-induced charge. Additionally, integrating ferroelectric
materials and compatible electrode interfaces remains complex, particularly when scaling
to 3D memory architectures.

Bitline

Ferroelectric Ferroelectric

FeCap Film Film Wordline

Different
_~polarization
. directions

Wordline

Source

MOSFET FeFET

(a) FeRAM (b) FeFET

I Cap

Down Down

polarized polarized polarized
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polarized

VGS

Time

(c) (d)

Figure 15. (a) Schematic of FeRAM cell and (b) FeFET structure and their corresponding changes in
current-time of current-voltage characteristics (c,d) with respect to the polarization in the top-down
direction (red color) or the bottom-up (blue color) direction. The memory effect of FeRAM could be
from a ferroelectric capacitor with a circuit configuration similar to DRAM. For FeFET, the memory
effect comes from the gate, a structure similar to a Floating Gate memory transistor.
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Figure 16. (a) Polarization characteristics (black curve) and its relation dielectric constant variation
(red line) and (b) molecular model of ferroelectric effect in HfO, unit cell. © 2011 Copyright, American
Institute of Physics. Reproduced with permission [83,84].

Ferroelectric Field-Effect Transistors (FeFETs) offer a more scalable alternative, in-
corporating a ferroelectric layer into the gate of a conventional MOSFET. Unlike FeRAM,
where data are read by charge detection, FeFETs operate based on how polarization influ-
ences the transistor’s electrical characteristics. A voltage pulse reverses the ferroelectric
polarization, inducing charge in the transistor’s channel and switching it to the “on” state,
representing a logic “1” without requiring continuous gate bias. FeFETs boast advantages
such as non-destructive readout, improved scalability, and compatibility with standard
CMOS logic. However, traditional ferroelectric materials like PZT and SBT face scaling
limitations: their low coercive fields and high permittivity amplify depolarization effects
and necessitate thicker films to preserve functionality.

Recent advancements in ferroelectricity within doped hafnium oxide (HfO,) have
significantly renewed interest in FeERAM and FeFET technologies [83,84]. HfO, offers ideal
properties for ultra-scaled memory: a wide bandgap (~5.3 eV) and strong band offset
with silicon to suppress gate leakage, along with a high coercive field (~1 MV /cm) and
modest permittivity (~30), ensuring strong data retention and wide memory windows
even in nanometer-scale films. Notably, HfO, is fully compatible with advanced CMOS
fabrication processes and is already used as a gate dielectric in high-k metal gate (HKMG)
technology. It can be precisely deposited via atomic layer deposition (ALD), making it
especially suitable for integration into dense 3D NAND memory. Nevertheless, challenges
persist around voltage scalability and the mitigation of depolarization effects, which directly
impact endurance and long-term retention reliability.

2.5. Phase-Change Memory (PCM)

Phase-change memory (PCM) has progressed over the past five decades from funda-
mental research to commercial deployment, with strong potential as storage-class memory
and neuromorphic hardware [85-88]. Its operation hinges on the rapid and reversible
phase transition of chalcogenide materials between amorphous (high-resistance) and crys-
talline (low-resistance) states. This mechanism enables PCM to deliver non-volatility, fast
read /write speeds, high endurance, scalability, and multi-level data storage. The concept
dates back to the 1960s, when Ovshinsky investigated phase transitions in chalcogenide
glasses. In 1968, he demonstrated reversible switching using tellurium-based compounds
(Geq9SijpAsspTesg), establishing the basis for PCM [89]. However, early challenges—such
as high operating voltages, limited endurance, and sluggish switching—combined with
immature microelectronic processes, delayed practical adoption. Contemporary PCM
materials include pseudo-binary germanium-antimony-tellurium compounds situated
between GeTe and Sb;,Tes, such as Ge;Sb,Tes, GeSb,yTey, and AgaInszSbg;Teys (AIST) (see
Figure 17) [90-93]. These offer rapid switching, stable phase states, and long data reten-
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tion, exceeding ten years at room temperature, with reliable phase control at nanosecond
speeds. Over the years, the core structure of phase-change memory (PCM) devices has
evolved into various architectures centered around a “heating electrode-phase-change
material-electrode” unit designed to enable localized and efficient phase transitions. Syed,
Gallo, and Sebastian have presented a comprehensive review on the technology evolution
in the aspect of material development, device structure variation, commercial products,
and applications (see Figure 18) [94]. Key PCM device configurations include mushroom-
shaped cells, confined cells, p-trench structures, side-contact cells, cross-spacer layouts,
asymmetric electrodes, and ring-shaped microelectrodes [88,94-98]. All share a common
goal: minimizing the contact area between the phase-change material and electrodes to
enhance switching efficiency.

Ge(In,Ag,Sn)

GeTe
1971
TegyGey5Sb,S, 2005

AuTe, Sb,Te, SbyqTes

Figure 17. Ternary phase diagram illustrating the composition of various phase-change alloys, their
year of discovery [90]. © 2007 Copyright Springer Nature. Reproduced with permission.
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Figure 18. Technological evolution of phase-change memory (PCM) across the domains of
(a) materials, (b) device structures, (¢) commercial products, and applications [94]. © 2025 American
Chemical Society. Licensed under CC-BY-NC-ND 4.0.

Among these, the mushroom-shaped and confined cell structures (see Figure 18)
are the most widely adopted, owing to their relatively straightforward fabrication and
integration. In mushroom-shaped devices, the bottom electrode is embedded within
insulating holes to restrict its size, thereby reducing the contact interface with the phase-
change material. In contrast, confined structures deposit the phase-change material itself
inside insulating holes, retaining it within a narrow volume. Typically, a tungsten or
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titanium nitride bottom electrode contacts a thin layer of phase-change material—often
GeySbyTes (GST)—through a small via. When current flows through this constricted region,
Joule heating triggers phase transitions in the material above. Thermal dissipation differs
significantly between structures: mushroom-shaped cells predominantly dissipate heat
through the bottom electrode, while confined cells direct most heat through the surrounding
dielectric. Although the confined design simplifies integration, its thermal efficiency still
requires optimization.

The core operating principle of phase-change memory (PCM) involves Joule heating,
which facilitates the rapid, reversible transition of the phase-change material between the
amorphous and crystalline states. The crystalline phase features a long-range ordered
atomic arrangement and lower free energy, corresponding to the low-resistance state (LRS).
In contrast, the amorphous phase consists of a disordered atomic structure with higher
free energy, resulting in the high-resistance state (HRS). By applying electrical pulses
under specific conditions, the memory cell can be switched between these states for data
storage [90,92,93,99]. In the RESET operation, a short-duration, high-amplitude electrical
pulse rapidly heats the phase-change region above its melting point (Tm). When the
pulse ends, the molten material undergoes ultra-fast quenching (cooling rates >10° K/s),
preventing atomic rearrangement and locking the material into the amorphous phase,
which exhibits resistivity in the megohm range. The SET operation uses a longer, lower-
amplitude pulse to heat the region above its crystallization temperature (T.) but below Tp,.
Sustained heating allows atoms in the amorphous phase to reorganize into the crystalline
state, yielding resistivity in the kilohm range. Figure 19b illustrates the change of PCM in
SET and RESET modes, and the current-voltage characteristics are illustrated in Figure 19c.
For READ operation applies a low sensing voltage or current—well below the SET and
RESET thresholds—to measure the cell’s resistance non-destructively. By evaluating the
measured resistance, the stored data are identified as either the HRS (amorphous) or LRS
(crystalline) state.
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Figure 19. Device architecture, circuit model, and switching characteristics illustrating the operation of
a typical phase-change memory (PCM) cell. (a) An equivalent circuit model in which the PCM material
is represented as a varistor in series with a load resistor (access device). (b) Transmission electron
micrographs of a mushroom-type PCM structure in the SET and RESET states. (c) Representative
current-voltage (IV) characteristics showing distinct conduction behaviors corresponding to different
operational states and phases of the material [94]. © 2025 American Chemical Society. Licensed under
CC-BY-NC-ND 4.0.

Despite its attractive attributes—non-volatility, fast speed, and scalability—phase-
change memory (PCM) faces several technical challenges that hinder wide-scale com-
mercialization [85,91,100]. Key issues include high power consumption during RESET
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operations, resistance drift in the amorphous state that affects data retention and multi-
level cell (MLC) reliability, limited endurance due to material degradation, thermal crosstalk
in dense arrays, and scaling difficulties that disrupt switching uniformity at nanoscale
dimensions. To address these hurdles, extensive research has focused on material engineer-
ing, device design, and system-level optimization. Various materials have been explored
(see Figures 18 and 20). Doping Ge-Sb-Te (GST) alloys with elements such as C, N, O,
Si, Ti, and Bi has improved phase stability, crystallization kinetics, resistivity contrast,
and endurance [101-107]. Notably, Sc-doped Sb-Te alloys significantly lowered RESET
currents (~90%) and accelerated switching due to favorable atomic structures [108-110].
Novel antimony-rich alloys like Sb-Te and Ge-Sb offer faster crystallization and lower
power consumption [103,111,112]. Interfacial PCM (iPCM) using [GeTe/Sb;Tes] super-
lattices has emerged as a breakthrough, enabling microamp-level programming currents
and nanosecond switching through interface-controlled phase transitions [110,113-115].
Further performance improvements have been explored via advanced electrode materials
(e.g., TiTeyp, TiOx), innovative layouts (e.g., tapered and ring-shaped electrodes), and ro-
bust conductive barrier layers (e.g., TiN, TaN) to enhance thermal isolation and interface
reliability [116-121].
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Figure 20. PCM cell architecture optimization strategies and their corresponding outcomes. Opti-
mization can be done in two domains: contact area minimization and volume reduction [94]. © 2025
American Chemical Society. Licensed under CC-BY-NC-ND 4.0.

PCM typically employs a one-transistor—one-resistor (1T1R) architecture, where a
MOSFET regulates access to a PCM cell. Data are stored by toggling between crystalline
(“1”) and amorphous (“0”) states, sensed through resistance measurements. A major
milestone came with the 2017 release of Intel and Micron’s 3D XPoint (Optane), based on
doped-GST and ovonic threshold switch (OTS) selectors in a 1S1R configuration, delivering
near-DRAM speeds, high endurance, and dense 3D integration [122]. Ongoing advances in
materials (doping, alloys, superlattices), architecture (3D arrays, selectors), and function
(MLC, compute-in-memory) are steadily pushing PCM toward mainstream viability [94].
Yet overcoming its core limitations—power efficiency, thermal management, endurance,
resistance drift, manufacturing complexity, and cost—remains critical.
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2.6. Summary

Leading semiconductor foundries and memory vendors are accelerating the commer-
cialization of emerging resistive-type non-volatile memory technologies across advanced
technology nodes. For example, TSMC currently offers RRAM up to 22 nm nodes [66] and
the spin-transfer torque magnetic RAM (STT-MRAM) up to 16 nm nodes [66]. STMicro-
electronics provides phase-change memory at the 28 nm node [123]. Ferroelectric device
technology has also attracted much attention from the major foundry players such as Glob-
alFoundries, Sony, and Micron [124,125]. In particular, Micron and Sony are collaborating
to develop ferroelectric RAM based on HfO, material shows superior characteristics that
almost meet DRAM specifications while providing certain nonvolatility [125]. Remarkably,
their prototype chip density has progressed from 32 Gb in recent years. These emerging
NVMs typically demonstrate some sub-100 ns write/read speeds, over 10® endurance
cycles. Noting that ultra-low write voltage of less than 1 V is also possible for MRAM, and
FeFET excels in extremely low write energy (<10 ] /bit) [125]. Table 1 produces a detailed
comparison of various characteristics of NVM [43]. A qualitative comparison is shown in
Figure 21. Most non-volatile memories (NVMs) exhibit acceptable endurance levels. For
example, MRAM /FeRAM offer very high endurance (>10'° cycles), nearing SRAM/DRAM
levels, making them ideal for frequent write operations in caches and main memory. PCM
and ReRAM typically range from ~106 to 1012 cycles, significantly better than NAND
Flash but substantially lower than volatile memories or MRAM/FeRAM. NAND Flash
usually suffers from the lowest endurance (SLC: ~10° cycles, TLC/QLC: ~10? cycles) due
to oxide degradation during program/erase. It requires sophisticated wear leveling, error
correction (ECC), and over-provisioning, limiting write-intensive applications. In terms
of storage capacity, SRAM has the lowest density among these technologies due to its
6-10T cell structure, confining it to small, high-speed caches. DRAM faces significant
scaling challenges due to capacitor leakage and complex cell structures, limiting density
growth compared to NAND or advanced NVMs. Primarily used for main memory, where
capacity is secondary to speed. Among NVM, NAND Flash stands out with the highest
commercially available capacity, orders of magnitude greater than other types of NVM.
This exceptionally large capacity highlights its technological maturity, particularly in terms
of mass production processes and CMOS process compatibility. However, the access speed
of NAND Flash remains the poorest among the listed NVM options, with a latency of
around 100 nanoseconds. NVM is generally faster than NAND Flash but slower than
DRAM (latency ~10 ns, high speed and bandwidth, suitable for main memory), and sig-
nificantly slower than SRAM (latency ~1 ns, used for CPU cache). High speed comes at
the cost of density and static power. From the perspective of energy efficiency comparison,
NVM offers significant advantages for idle power (zero static power due to non-volatility).
The “Write” energy of MRAM/FeRAM is very low, while PCM/ReRAM is moderate but
generally lower than NAND Flash for small writes. SRAM has low dynamic read power
but high static power consumption (leakage) due to the large number of transistors, espe-
cially at advanced nodes. However, DRAM has high dynamic power during access and
significant static power consumption due to constant refresh, a major system energy drain.
NAND Flash also has high energy consumption per program/erase operation due to high
voltages required for Fowler-Nordheim tunneling or hot carrier injection. Read energy is
relatively low. Block-based writes cause write amplification. As a result, except for certain
embedded IoT systems, NAND Flash is not suitable as a primary memory replacement for
general-purpose or high-performance computing applications, where SRAM or DRAM
typically dominate.
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Table 1. Comparison of performance metrics, device parameters, and integration features of various

non-volatile memory technologies [42].

S IRAM. - MRAM PCMStand  PCM RRAM
DRAM Embedded Alone Embedded Embedded
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MLC No No No Possible Possible Possible Possible Possible Possible
3D . No No No Yes Yes Yes Yes No No
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. . Automotive 5 . . . . 5 SMT
Retention >1yr100°C 150°C10ys 85-100°C 85-100°C Automotive 10yrs 85°C 10yrs>85°C  85-100°C compliant
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Space DRAM NVM Cache (storage, MPU, MCU (storage, MPU, MCU DRAM Flash
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Maturity Everspin, Product: Products: Products: Products_. (PZT): Texas
Avalanche, No Intel/ . No Panasonic,
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Figure 21. Qualitative comparison of various non-volatile memory technologies across key metrics:
storage capacity, endurance, access speed, energy efficiency, and process maturity. Process maturity
encompasses broader manufacturing considerations, including mass-production capability, process
complexity, size scalability, CMOS compeatibility, system integration potential, and cost-effectiveness.

For such applications, magneto-resistive RAM, especially Spin-Orbit Torque MRAM
(SOT-MRAM), presents a more promising alternative. It offers nanosecond-level latency
and exceptional energy efficiency, consuming only a few femtojoules per bit, and has much
longer endurance. Despite its advantages, MRAM technology is still less mature compared
to NAND Flash, particularly regarding capacity and CMOS process compatibility. Until
MRAM is ready for widespread general-purpose, high-capacity in-memory computing,
Ferroelectric RAM may serve as a viable transitional technology in this domain.
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3. Memory Technology for More Moore in Computing

The advancement of memory technology plays a pivotal dual role in modern com-
puting. On one hand, it extends the trajectory of Moore’s Law beyond the limits of device
scaling. On the other hand, it forms a critical foundation for big data processing, especially
for artificial intelligence (AI) applications, which are inherently data intensive. Although
various types of memory exist, none are ideal in isolation. Current computer architectures
rely on a carefully engineered trade-off, leveraging the strengths of different memory
technologies. SRAM (Static Random-Access Memory) stores data using bistable flip-flops,
offering ultra-high-speed performance. However, its need for at least six transistors per bit
results in high cost, substantial power consumption, and large cell size, limiting integration
density. DRAM (Dynamic Random-Access Memory) utilizes a capacitor-transistor pair per
bit. The capacitor stores charge representing data, while a MOS transistor controls access
and read /write operations. DRAM achieves higher density and lower cost compared to
SRAM. However, it suffers from longer access times due to capacitor charging/discharging,
destructive read operations, and the need for periodic refresh cycles to maintain data in-
tegrity. DRAM has matured over the decades, and its technology serves as a key benchmark
for silicon foundries. A recent milestone includes the development of high-bandwidth
DRAM exceeding 1 Gbit/mm?, enabling powerful GPU applications [126].

Despite their strengths, both SRAM and DRAM are volatile, necessitating non-volatile
memory for data backup and mass storage. Flash memory serves this role effectively.
Using a Floating Gate to trap charge, Flash provides data retention exceeding 10 years
with minimal read power. Multi-level cell (MLC) storage is possible, and with 3D stacking
technologies, Flash NAND has become the densest semiconductor memory, surpassing
400 layers and 28 Gbit/mm? as of 2025 [54]. The primary drawback remains its relatively
slow write speed compared to SRAM and DRAM. Figure 22 compares the device or circuit
structures and their key characteristics of various memories used in or introduced to a
computer system. The second row of Figure 22 illustrates the circuit configuration of key
characteristics of these emerging NVM.

To bridge the gap between performance and data persistence, a new generation of
non-volatile memory technologies has garnered significant attention [127]. These memory
types offer inherent non-volatility, low power consumption, and high-speed access, making
them ideal candidates for unified memory architectures in embedded systems and Internet
of Things (IoT) applications. Moreover, due to their robustness against extreme environ-
mental conditions, such as wide temperature ranges and radiation exposure, these memory
technologies are particularly well suited for high-reliability domains like aerospace and
automotive electronics. Notably, emerging non-volatile memory (NVM) technologies are
instrumental in unlocking new computational models by enabling logic-in-memory func-
tionalities and accelerating AI/ML workloads. By reducing data movement and increasing
parallelism, NVMs offer transformative capabilities for handling complex tasks and combi-
natorial optimization problems [125-129]. In addition, NVMs are foundational to novel
computing paradigms such as in-memory computing and neuromorphic architectures that
emulate the processing behavior of biological neural networks. These approaches pave
the way for energy-efficient, massively parallel systems, positioning emerging memory
technologies as key enablers of the next generation of computing.
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Figure 22. Comparison between conventional main memory devices used in current computer
systems (top row) and emerging non-volatile memory (NVM) technologies (bottom row) to be
used in future computer structures. Among the conventional options, SRAM offers the highest
speed, followed by DRAM. However, both are volatile memory technologies and therefore exhibit
significantly higher power consumption. The remaining memory types shown are non-volatile. Flash
memory operates based on charge storage, whereas the emerging NVM technologies, resistive RAM
(RRAM), phase-change memory (PCM), magneto-resistive RAM (MRAM), and ferroelectric memory
(FeRAM, FeFET), store information by altering the resistance states, phases, or polarization states of
the memory cell.

3.1. Missing Element and Ignored Logic Gate

The memristor, short for memory resistor, is often described as the missing fourth fun-
damental circuit element [129-131] because it completes the theoretical symmetry among
the basic passive electrical components: the resistor, capacitor, and inductor. While three of
the four possible pairings of fundamental electrical quantities have physical implementa-
tions, the flux—charge relationship lacked a corresponding device. In 1971, Chua proposed
the memristor to fill this gap, establishing it as the fourth fundamental element in circuit
theory [130]. As discussed in Section 2, various physical implementations of memristors
have since been proposed. Although their memory density currently remains below that
of conventional solid-state memory, their non-volatility, low power consumption, and
ultra-fast switching characteristics position them as highly promising candidates for future
advancements in computing technology across multiple domains.

Memristors, with their unique ability to retain a memory, or with a characteristic
function as charge to magnetic flux ratio, have opened up exciting possibilities in analog
circuit design. Their nonlinear, history-dependent resistance makes them ideal for a range
of analog applications where adaptability, compactness, and low power consumption.
Memristors can act as tunable resistive elements, enabling the design of programmable
gain amplifiers, filters, and oscillators [132]. Their resistance can be adjusted by applying
specific voltage pulses, allowing for real-time reconfiguration without mechanical switches
or digital control logic. Due to their inherent nonlinearity, memristors are used in gen-
erating chaotic signals for secure communications and random number generation. On
the other hand, analog memristor circuits are central to neuromorphic computing, where
they emulate synaptic weights in artificial neural networks. This will be discussed in
Section 3.3.4.
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In the theoretical extension of symbolic logic as introduced in “The Laws of Thought”
by Boole in 1854 [133], operations such as NOT, OR, and AND laid the foundation for
modern logic systems. In addition to these, two other logical operations—IMPLY and
EQUIVALENT— were also important in Boolean logic. These functions reflect conditional
statements akin to those used in contemporary programming languages.

The foundation of contemporary digital electronics was laid by Shannon [134], who
applied Boolean logic to analyze the complex electrical networks via relay switching—a key
early realization of hardware-based electrical logic circuits. However, in Shannon’s relay
systems analysis and realization, the IMPLY and EQUIVALENT operations were notably
excluded. This exclusion continued as transistor-based digital circuits and early micropro-
cessors were developed, potentially steering the direction of digital architecture away from
certain logical constructs. Interestingly, this omission aligned—perhaps serendipitously—
with the practical limitations of CMOS technology. Although the IMPLY function is logically
equivalent to “NOT p OR ¢”, implementing it in CMOS typically requires around eight
transistors (see Figure 23b), making it an inefficient choice for most digital designs.

(a) Missing Element: Memristor (b) Ignored Gate: IMPLY
p+q
Truth Table of IMPLY gate P
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Figure 23. (a) Illustration of the fundamental electrical quantities—charge, current, voltage, and
magnetic flux—and their relationships, along with the corresponding passive circuit components.
The memristor is highlighted as the “missing” fourth fundamental element, establishing a direct
relationship between charge and magnetic flux. (b) RRAM and CMOS implementation of material
implication, or IMPLY logic, a key Boolean operation, remained largely unexplored until the advent
of the memristor.

The emergence of the memristor in recent years marks a pivotal shift. IMPLY logic can
be implemented using just two memristors [135]—a far simpler solution than traditional
CMOS-based NOR or NAND gates. Figure 23 depicts the schematic of a memristor-based
IMPLY gate. CMOS IMPLY gate configuration is also shown for comparison. For the
memristor scheme, the two memristors represent logical operands p and 4. Their logic
states are encoded by resistance levels: High-Resistance State (HRS) corresponds to logic 0,
and Low-Resistance State (LRS) corresponds to logic 1. The switching behavior of these
devices is governed by two voltage thresholds: V.y,q, the minimum voltage required to
injtiate state change, and Vet, the voltage necessary to fully switch a memristor from HRS
to LRS.

The IMPLY operation is realized as follows:

- Ifpisin HRS (logic 0), no current flows, and q’s state remains unchanged. The output
is thus equal to 4.



Electronics 2025, 14, 3456

24 of 45

- If pisin LRS (logic 1) and g is in HRS (logic 0), current flows through the circuit,
switching g to LRS. The output becomes logic 1.
- Ifboth p and g are in LRS, current flows, so g remains unchanged at logic 1.

These behaviors conform to the truth table of the logical implication operation, demon-
strating how memristors can natively perform fundamental logic using minimal hardware.
Noting that other standard logic functions can also be implemented with IMPLY gates.
Figure 24 shows the design of NOT gate, AND, and OR gates. In the next section, we shall
demonstrate the design of a full adder, shift registers, and multipliers, using the memristor
and IMPLY gates. In fact, almost all the emerging In-Memory Computing (IMC) systems
(to be discussed in Section 3.3) are based on the memristive IMPLY gates. From a design
standpoint, this enables logic circuits to be built with significantly fewer components, poten-
tially transforming digital hardware architecture [136]. From the traditional CMOS circuit
point of view, memristor-based logic suggests substantial performance improvements. The
same component count can now deliver increased functionality and efficiency. Within the
broader scope of Moore’s Law, memristor-based circuits offer a promising path toward
continued progress, ushering in a new phase of “More Moore”.

3.2. Conventional Logic Block Built with Memristor

Memristor-based logic circuits are gaining traction as promising alternatives to tradi-
tional CMOS designs, particularly for arithmetic and sequential logic operations. In this
section, we took full adders, shift registers, and multipliers as examples, which are the key
functional building blocks for in-memory computing, to demonstrate the advantages of
memristors in traditional logic circuit applications.

3.2.1. Full-Adder Design Using Memristors

A full adder is a fundamental digital circuit that computes the sum of three binary
inputs: P, Q, and Carry-in, C. In memristor-based implementations was based on IMPLY
logic [137-140]. Figure 25a illustrates a one-bit full adder using IMPLY gates [138], featuring
a memristor crossbar array coupled with IMPLY logic to execute the adder function. Here,
P and Q are the binary numbers to be added, C is the carry-in, and the sum (including carry
out) is accumulated via memristors S1 and S2. One of the key advantages of memristor-
based full adders is their remarkable device efficiency. The number of memristors required
for a 1-bit full adder can be reduced to just five, a significant improvement over the
traditional CMOS-based designs. In contrast, a standard CMOS full adder typically uses
28 transistors [141], with optimized versions still requiring 17 transistors [142]. Multiple-bit
full adder can be simply cascaded by a one-bit full adder in series (see Figure 25b).

Thanks to their higher device density, simplified interconnects, and lower power
consumption, memristor-based adders could be viewed as multiple generations ahead of
CMOS technology, assuming comparable functional cell sizes can be achieved. Their
non-volatile nature further enhances suitability for in-memory computing, allowing
logic and memory operations to coexist within the same substrate. However, despite
these advantages, memristor technology—particularly in the form of Resistive Random-
Access Memory (RRAM)—still faces challenges. Issues such as limited endurance, device
variability, and process immaturity currently prevent widespread adoption and consis-
tent accuracy, especially when compared to the well-established and highly optimized
CMOS counterparts.
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Figure 24. Circuit schematic of (a) NOT gate, (b) two-input AND gate, (c) two-input OR gate,
(d) multi-input AND gate, and (e) multi-input OR gate, realized with memristors [140]. © 2020
Springer Nature. Reproduced with permission.
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Figure 25. (a) Architecture of a one-bit full adder implemented using memristor-based IMPLY logic.
(b) An 8-bit full adder constructed by serially cascading one-bit IMPLY-based adders. (c) An 8-bit
parallel-serial full adder designed with memristive IMPLY logic [138]. © 2018 Springer Nature.
Reproduced with permission.
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3.2.2. Shift Register Design Using Memristors

Shift registers are essential components for storing and transferring binary data se-
quentially across clock cycles. In memristor-based shift registers, information is encoded
via stateful logic, wherein the memristor’s resistance state directly represents the binary
bit value [143-146]. Figure 26 presents various architectures of memristor-based shift
registers. In Figure 26a, a circular shift register configuration is shown, demonstrating the
use of memristors in implementing conventional D-type flip-flops [144]. Here, the D-type
flip-flops, as shown, are implemented with memristors. Figure 26b illustrates a four-bit
shift register, each bit composed of two memristors (m0 and m1) in parallel. The circuit
facilitates data transfer from a high bit to a lower bit, i.e., right shift, through V,nq and Vet
pulses applied between adjacent devices [146].
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Figure 26. Two memristor-based shift register designs. (a) A D-type flip-flop implemented using
memristors, applied in a circular shift register architecture [144]. (b) Schematic of a 4-bit shift register
constructed with memristor-based logic gates. Modified based on [146].

A key advantage of these designs lies in their improved data retention, attributed to
the non-volatile nature of memristors. Compared to traditional SRAM-based shift registers,
memristor implementations offer significantly higher density and ultra-low standby power
consumption. However, they currently face challenges such as lower switching speeds and
potential long-term reliability concerns due to resistance drift and cumulative errors from
frequent switching. Nevertheless, because of their compact footprint, energy efficiency,
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and intrinsic non-volatility, memristor-based shift registers hold strong promise for future
in-memory computing architectures.

3.2.3. Multiplier Designs Using Memristors

Multipliers play a pivotal role in digital signal processing and artificial intelligence
workloads. Memristor-based multipliers often employ array architectures incorporating
XNOR gates, full adders, and IMPLY logic [146,147]. Figures 27 and 28 illustrate two
optimized memristor-based multiplier designs [146], which have reduced area and latency.
In the first design, it is a ripple carry multiplier that requires 24 clock cycles to complete
an 8-bit multiplication. The second designs make use of CMOS logic or MAD (Memristor-
Aided Logic) gates to enhance performance and efficiency. The use of memristor-based
IMPLY logic enables compact adder implementation, resulting in high circuit density and
low power consumption. According to Guckert and Swartzlander, by employing memristor
IMPLY gates, the multiplication delay was reduced from 2N2 + 29N to 2N2 + 21N steps,
while the component count decreased from 17N + 3 to 7N + 1 memristors for the first
design. By adopting MAD logic, the multiplication can be completed in only N2 + N steps
using just 5N memristors and 3N + 2 driver circuits. Separately, Sun et al. proposed a
method to convert multiplication into multi-bit addition using Multiple Input Multiple
Output (MIMO) logic, thereby enhancing execution speed and reducing system complexity
(see Figure 29) [147].

TIPPTILLTILILILY -

?
] |
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©)

Figure 27. Implementation of an 8-bit shift-and-add multiplier based on RRAM IMPLY gates.
Modified based on [146].
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(b)

Figure 28. (a) Circuit configuration of a memristor-aided full adder (MAD). (b) An 8-bit shift-and-add
multiplier based on MAD. Modified based on [146].
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Figure 29. Schematic showing the simplification of a memristor-based multiplier by transforming the
multiplication operation into a multi-bit addition using a Multiple Input Multiple Output (MIMO)
scheme [147].

Thanks to the nonvolatile nature of memristors, these designs minimize data move-
ment, crucial for processing-in-memory architectures. Overall, memristor-based binary
multipliers offer a reduction in the number of computation steps and achieve greater area
efficiency, with spatial requirements falling to less than one-sixth of conventional CMOS
counterparts. In addition, they demonstrate superior scalability and are well suited for
future in-memory computing applications. However, current limitations primarily stem
from the immature state of memristor technology. Process variations and device-level
nonuniformities can affect the accuracy and reliability of multiplication operations.

3.3. Impact of Non-Volatile Memory Technology in Computing
3.3.1. Memory Replacement and NVM Augmenting to Von-Neuman Computer

In the traditional von Neumann architecture, memory and processing units are physi-
cally distinct, resulting in an inherent separation between computation and data storage.
To balance trade-offs in speed, power consumption, cost, and capacity, modern computing
systems organize memory hierarchically into three tiers: SRAM, DRAM, and Flash NAND.

The fastest level—cache and main memory—relies on high-speed SRAM, which stores
one bit per cell using a six-transistor (6T) configuration [141]. While SRAM offers extremely
low latency, it comes with significant drawbacks: high cost, large power dissipation, and
limited storage density. For instance, in 3 nm technology nodes, the bit density of SRAM is
approximately 30 Mbit/mm? [148]. Further downsizing offers diminishing returns; the cell
size is largely constrained by the interconnect overhead among transistors. For example,
reducing from a 5 nm to a 3 nm node decreases the cell area by only ~5% (from 0.021 pm?
to 0.0199 pum?) [148].

Systems employ DRAM to achieve higher-capacity memory, storing one bit per
transistor-capacitor pair. DRAM offers better density and lower cost than SRAM, but it has
notable limitations: slower access times, destructive reads, and a requirement for periodic
refresh cycles to preserve data integrity. Despite being the fastest available large-capacity
memory, DRAM still lags significantly behind SRAM and processor speeds. Reportedly,
memory access latency can be up to 100 times slower than internal processor access [149].

Because SRAM and DRAM are volatile, systems rely on non-volatile secondary
storage—such as flash memory or solid-state drives (SSDs)—for persistent data and pro-
gram storage. However, the energy and latency associated with data movement between
memory and storage remain major bottlenecks. In mobile and energy-constrained systems,
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transferring data between DRAM and the processor can account for over 35% of total
system energy consumption [150]. This is further exacerbated by the gap between DRAM
and slower secondary storage technologies, both in terms of latency and energy efficiency.

Emerging non-volatile memory (NVM) technologies have the potential to permeate
nearly every layer of the traditional von Neumann computer architecture due to their
advantages in non-volatility, low power consumption, high speed, and large storage
capacity. A natural first step in the evolution toward NVM-based computing is the re-
placement of energy-intensive volatile memories such as SRAM and DRAM with non-
volatile alternatives [151]. Figure 30 illustrates the concept of a board- or chip-level non-
volatile architecture.
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Figure 30. Comparison of traditional computer architectures with ROM, RAM structure (a), and its
non-volatile replacement (b).

In conventional computing platforms—including embedded systems and smartphones—the
architecture typically comprises a CPU, application-specific processing units, bus inter-
connects, and a memory hierarchy consisting of ROM, SRAM, and DRAM. Due to the
volatile nature and limited capacity of SRAM and DRAM, operating systems, application
software, and user data are stored in secondary storage devices such as flash memory and
magnetic hard drives. While ROM is a form of non-volatile memory, it lacks the capability
for in situ reprogramming or data writing and is generally limited to storing firmware or
startup routines. During system initialization, code must be loaded from ROM into DRAM,
and user data must be retrieved from secondary storage into DRAM via the I/O and data
buses. This process introduces latency and energy overhead. Furthermore, maintaining
program execution and data in DRAM requires a continuous power supply. Upon task
completion or system shutdown, computational results and system state must be written
back to non-volatile storage, adding further delay and power consumption. Replacing
volatile memory with NVM at the main memory level could significantly streamline this
process by enabling persistent, low-power data retention, thus paving the way for a more
efficient and unified memory architecture.

When the speed of non-volatile memory (NVM) approaches that of dynamic RAM
(DRAM), it becomes feasible to consolidate ROM, DRAM, and even SRAM into a unified,
high-capacity NVM-based memory system, as illustrated in Figure 30b. This architectural
shift effectively eliminates traditional data transfer delays between ROM and RAM, as
well as overhead associated with loading from or writing back to mass storage through
the data bus and I/O subsystems. The figure retains a secondary mass storage unit, which
can be made optional or removable depending on the application requirements. This
configuration significantly reduces bus-related energy consumption and enables instant-
on/instant-off functionality for system boot-up and shutdown, thereby reducing latency
and the risk of data loss. Such a system is particularly well suited for always-on platforms,
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including smartphones, tablets, smart home devices, and IoT systems. For deep data
processing, NVM integration can offer new and better computer architectures, reducing
data transmission latency and bottlenecks. For instance, in Al training, the traditional
mode requires the CPU to repeatedly schedule data from SSD to DRAM to GPU, resulting
in data transfer consuming the majority of the time. In response to this, Samsung has
developed the Z-NAND technology, which adopts a new solid-state storage layer between
traditional DRAM and SSD. It has stronger performance than NAND flash and the non-
volatile feature of DRAM. Meanwhile, technological innovation allows the GPU to directly
access storage for data reading and writing, achieving sub-microsecond latency, which
can be up to 16 times faster than traditional SSDs and reduces overall power consumption
by 80%. Additionally, based on the high integrability of NVM, Sandisk has recently
launched an ultra-large-scale (256 TB) SSD for Al data centers. They have restructured
the storage architecture through technologies such as Direct Write QLC, BiCS8 2-Tb QLC
die, and Ultra QLC power optimization.) By minimizing the need for standby power, this
architecture contributes to substantial energy efficiency gains, and through innovations at
the architectural level of data computing and storage, it will make an attractive candidate
for next-generation computing environments.

A more aggressive non-volatile memory (NVM) replacement scheme is illustrated
in Figure 31. In this architecture, not only is the main memory replaced by NVM, but
the internal storage and logic elements of the CPU—including registers, cache, and even
logic functions—are reimagined using non-volatile look-up tables (LUTs) or crossbar-based
structures. In fact, implementing the logic function using table lookups for pre-stored
data in memory has been the fundamental configuration of existing graphics processing
units (GPUs), which is also known as Computing-With-Memory (CWM). In the CWM
scheme with GPU, highly efficient predefined basic operations in the GPU lack flexibility
for general-purpose computing. However, a mixed mode and possibly a more innovative
way of CWM could be possible for the von Neumann computer.

All NVM Computer Architecture

Level of NVM Augmentation Possible Technological Option

MRAM

NVM CPU — (Speed: < 10 ns, Size: <1 Gb)

MRAM, FeRAM, or RRAM
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Main Memory
NVM RAM + Storage —
Main Mass Storage

|k PCM or Flash

NVM Secondary Storage ——I
I (Speed: ~ 100 ns, Size: 100 Th)

Secondary Mass Storage

Figure 31. Illustration of all non-volatile memory augmented computer architecture.

Given the performance characteristics of various memory components in contempo-
rary computing systems, corresponding NVM technologies can be matched to achieve
efficient replacements. For instance, MRAM offers the speed and endurance suitable for sub-
stituting CPU registers and cache. Meanwhile, the main memory could be cost-effectively
implemented using RRAM, which balances performance and scalability. Although NAND
flash remains the dominant choice for secondary storage—due to its maturity, low cost,
and high density—RRAM presents a promising alternative. If advancements in RRAM
fabrication can match the pace of NAND flash development, it could emerge as a viable
candidate for general-purpose data storage in the future.
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3.3.2. Near Memory Computing

Further evolution of the NVM augmented von-Neumann computer is the near-
memory computing (NMC) architecture. NMC addresses the persistent data movement
bottlenecks inherent in conventional architectures by reorganizing memory structures and
redefining the interface between memory and processing units [152-154]. In this paradigm,
computations are executed on independent processing modules positioned close to—but
external from—the memory arrays. Graphics Processing Units (GPUs) exemplify this
architectural approach (see Figure 32a, for example).
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Figure 32. (a) Graphics cards represent one of the earliest implementations of near-memory system
architecture, utilizing 2.5D packaging technology to position DRAM in close proximity to the GPU.
Adopted from Wikipedia.org (https:/ /en.wikipedia.org/wiki/Three-dimensional_integrated_circuit
(accessed on 28 June 2025). Three-dimensional integrated-circuit under CC BY-SA 4.0 rule) (b) Near-
memory architecture is emerging as a popular solution for high-performance SoC CPUs, enabling the
integration of diverse memory blocks with logic units for improved computational efficiency.

For general-purpose computing, near-memory computing (NMC) systems may still re-
semble conventional CPU-memory configurations (see Figure 32b). A prominent example
is AMD’s Zen series CPUs, which adopt NMC principles through 2.5D packaging tech-
niques that integrate multiple chiplets, particularly by placing high-bandwidth memory
(HBM) alongside processor cores. This close integration reduces data latency, enhances
communication bandwidth, and improves overall system performance by minimizing
the distance between memory and compute elements [154]. As a result, NMC offers a
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cost-effective solution with manageable implementation complexity, positioning it as a
compelling intermediate stage on the path toward fully in-memory computing.

3.3.3. In-Memory Computing (IMC)

The ultimate evolution of computing architecture is embodied by in-memory com-
puting (IMC), also called logic-in-memory [38,155-158]. In this paradigm, logic operations
are performed directly within the memory arrays, utilizing embedded digital or analog
computing elements. This unified approach to computation and storage eliminates the
need for frequent data transfers between separate processing and memory units, thereby
streamlining data flow. A specialized form of IMC—neuromorphic computing, which
emphasizes analog computation through convolutional neural networks for biologically
inspired applications—also falls under this category and will be discussed in Section 3.3.4.
The intrinsic parallelism of IMC enables highly efficient data processing across the mem-
ory fabric, significantly reducing data movement and power consumption. A notable
implementation of this architecture was demonstrated by Xue et al., who designed a 4 Mb
ReRAM-based IMC macro with 8-bit precision tailored for Al edge applications. Their
design achieved an energy efficiency ranging from 11.91 to 195.7 TOPS/W, depending on
operating conditions [66].

To illustrate the efficiency of non-volatile memory (NVM)-based in-memory comput-
ing (IMC) architectures, Figure 33 presents a Resistive Random-Access Memory (RRAM)
cross-point array (represented as red cylinders positioned at the intersections of blue and
green bars). This structure can solve a 3 x 3 linear system of the form I = GV, or its inverse
form V = —G~ 1 [27]. In this configuration, the conductance values at each cross-point
correspond to the respective elements of matrix A. Utilizing Ohm’s Law, the current vector
I can be computed as the scalar product I = GV, where the input voltage vector V is applied
across the word lines. Conversely, to retrieve the voltage vector V from known currents I, a
transimpedance amplifier can be employed to perform scalar division, effectively realizing
the matrix inversion operation in analog hardware. Crossbar-based memristor arrays offer
scalability for both machine learning and scientific computing tasks. However, current
Resistive Random-Access Memory (RRAM) technologies remain in an early stage of de-
velopment and suffer from substantial inter- and intra-device variability. As a result, the
precision of analog matrix-vector multiplication (MVM) operations is often insufficient
for applications requiring high numerical accuracy, though it may still be acceptable for
certain Al workloads. To address this limitation, Sebastian et al. proposed decompos-
ing multi-bit vectors into 1-bit slices, distributed across separate crossbar columns (see
Figure 34). As shown in Figure 34a, input bits are applied sequentially, with each resulting
partial product undergoing analog-to-digital conversion and appropriate bit shifting prior
to accumulation. The final inner product is then derived by summing all partial results. In
addition, a mixed-precision computing strategy can be employed (see Figure 34b), where
the outputs of low-precision analog MVM operations are iteratively refined. This approach
improves the solution accuracy for systems of linear equations, thereby enhancing the
feasibility of analog in-memory computing in data-intensive and numerically demanding
applications [157].



Electronics 2025, 14, 3456

34 of 45

Figure 33. (a) Schematic of a linear system solver implemented using an RRAM cross-point array,

where red cylinders at intersections represent programmable resistive elements. (b) Corresponding

analog circuit representation leveraging Ohm’s law for matrix—vector multiplication and inverse

function evaluation using a transimpedance amplifier. Reprinted with permission from [158]. © 2020

Springer Nature. Reproduced with permission.
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3.3.4. Neuromorphic Computing

Extending beyond near-memory computing (NMC) and in-memory computing (IMC),
neuromorphic computing seeks to emulate the efficiency, adaptability, and event-driven
nature of biological neural systems. This paradigm leverages emerging non-volatile mem-
ory technologies—such as resistive RAM (RRAM) and phase-change memory (PCM)—to
enable ultra-efficient pattern recognition and sensory information processing [159-162].

Neuromorphic hardware mimics synaptic behavior by utilizing memristive and other
programmable-resistance devices, allowing for inherently parallel and asynchronous com-
putation. These properties make it particularly well suited for edge Al applications. On-
going research is directed toward developing scalable neuromorphic platforms built with
a diverse array of non-traditional memory elements, including memristors, PCM, and
related technologies. A comprehensive review on this topic has been given by Kudithipudi
et al. [159]. The architectural principles, hardware-software co-design, and broader ecosys-
tem requirements necessary for realizing large-scale neuromorphic systems were explored.
The review highlights various applications, with a strong emphasis on low-power Al,
real-time sensory processing, and on-device edge computing. Figure 35. Demonstration of
a biological neuron emulation using a phase-change memory (PCM) array. The bioinspired
interconnection scheme places PCM synapses between post-synaptic and pre-synaptic
electrodes, enabling synaptic weight modulation based on the relative timing of neuronal
spikes. This mechanism—implemented through PCM cells—faithfully reproduces spike-
timing-dependent plasticity (STDP). The experimental results exhibit strong agreement
with corresponding biological synapse data [161].

Pre-synaptic neuron

Dendrites Post-synaptic neuron

Axon hillock
Neural

Neural signal signal :\; 120 ™
'?.-.-{‘ 310 Lo 31 e
Nucleus Synapse 28! o _b_ post ¢ Q —‘_,_ post
Myelin sheath v g’ 60 AIt <t 0 g A't_>)x0
Post-spike lin\ .g 40} &g
; = 20} 9o "o,
Y N "’Po(enlialed Synapse 2 Ot n‘b’ [ o ° O =
\ ,” ,"(crysv.alhne state) g 20F © B 835 O >
- Y o || © Bi&Poo
Rl 5 401 9l = pcm
S el
Pre-spike line u>’~ -100 -50 0 50 100

Spike timing At (ms)

Depressed Synapse

(amorphous state) Bottom
electrode

Figure 35. Emulation of synaptic behavior using phase-change memory (PCM) synapses. The
left panel illustrates the synthesis of neuronal synaptic action through PCM-based spike-timing-
dependent plasticity (STDP), while the right panel shows a strong correlation between the emulated
results and experimentally measured biological data [161]. © 2011 American Chemical Society.
Reproduced with permission.

Recent advancements in deep artificial neural networks (DNNs), though only loosely
inspired by biological cognition, have demonstrated human-level performance in tasks
such as image and speech recognition [159-163]. The crossbar architecture of RRAM is
particularly well suited for mapping DNN:Ss, as it naturally supports parallel, analog in-
memory computation. In this structure, synaptic weights are encoded as conductance
values at the cross-points, with input signals applied as voltages across the wordlines. The
corresponding output currents, read from the bitlines, represent the result of analog matrix—
vector multiplication (MVM). Figure 36 depicts the implementation of a feedforward
DNN using multiple crossbar arrays of memory devices [157]. Synaptic weights Wj; are
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represented as conductance or charge states within the memory cells. Each layer of the
network corresponds to a distinct crossbar. During forward propagation, input data are
applied to the rows (wordlines), and outputs are extracted from the columns (bitlines).
These outputs are passed through peripheral nonlinear activation circuits and fed into
the next layer via a global communication network. Figure 36b,c illustrate two strategies
for training neural networks using crossbar arrays. In Figure 36b, forward and backward
propagations are performed by applying activation values x; and error signals §; to the
rows and columns, respectively. Simultaneous row /column pulse application enables in-
place weight updates via an approximate outer-product operation that directly programs
the memory devices. In Figure 36c, the weight update AWj; is calculated digitally and
applied to the array through targeted programming pulses—offering greater precision and
flexibility [157].
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Figure 36. Illustration of a large-scale RRAM-based in-memory computing architecture for deep
learning applications. (a) The system integrates multiple cross-point arrays and peripheral circuits
to enable highly parallel operations. (b) Illustration of RRAM cross-point array for efficient matrix—
vector multiplication. (c) Application in scalable neural network [157]. © 2020 Springer Nature.
Reproduced with permission.

NVM technologies, particularly RRAM and PCM, have achieved significant
milestones in neuromorphic computing. Neuromorphic hardware leverages NVM
technologies—notably RRAM and PCM to directly emulate synaptic plasticity, enabling
energy-efficient, parallel, and event-driven computation. These devices intrinsically mimic
biological synapses: conductance states encode synaptic weights, while electrical pulses
induce weight updates via nanoscale physical phenomena (e.g., ion migration in RRAM,
amorphous—crystalline phase transitions in PCM). As depicted in Figure 35, PCM arrays
implement bio-realistic STDP. Pre- and post-synaptic spikes generate voltage pulses across
PCM cells, dynamically modulating conductance (synaptic weight) based on temporal
correlation. This in situ learning mechanism avoids von Neumann bottlenecks by co-
locating memory and computation. Similarly, RRAM crossbars (Figure 36) execute analog
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MVM-—core to DNNs—by applying input voltages along wordlines and summing cur-
rents bitline-wise, with synaptic weights encoded as conductance states. This enables
>10 TOPS/W energy efficiency (vs. <1 TOPS/W for GPUs), critical for edge AL

Despite these successes, fundamental challenges impede commercialization. Device
variability (>5% cycle-to-cycle/device-to-device conductance drift) degrades computa-
tional accuracy in analog matrix operations. Limited endurance (<10° weight updates
for RRAM/PCM vs. 10'° in biological synapses) constrains lifelong learning capabilities.
System integration bottlenecks arise from peripheral circuitry (ADCs, drivers), which
dominate area/power budgets, while sparse event-driven architectures require special-
ized NVM interfaces. Crucially, algorithm-hardware co-design gaps persist in mapping
bio-inspired learning rules to NVM physics, limiting functional flexibility. Research now
prioritizes novel material stacks and 3D integration to address density and variability.
Hybrid precision architectures combining NVM (coarse weights) with CMOS (fine-grained
tuning) aim to balance efficiency and accuracy. Concurrently, event-driven sparse comput-
ing paradigms and NVM-optimized neuromorphic compilers are being co-developed to
overcome integration overheads. These pathways collectively target commercially viable
neuromorphic edge systems capable of adaptive, ultra-low-power cognition.

In summary, neuromorphic hardware emulates synaptic behavior by employing
memristors and other programmable-resistance devices, enabling inherently parallel and
asynchronous processing. These characteristics make it particularly well suited for edge
Al applications. Ongoing research is focused on developing scalable neuromorphic plat-
forms using emerging non-volatile memory (NVM) technologies such as memristors,
phase-change memory (PCM), and other non-traditional elements. Empowered by NVM
technologies, many neuromorphic chips exhibit both low dynamic power consumption
and minimal standby power, making them ideal for low-power, real-time processing in
domains such as wearable electronics, robotics, and the Internet of Things (IoT). Despite
promising advances, key challenges remain. A major hurdle is hardware heterogeneity,
as current designs require the complex co-integration of diverse technologies—including
CMOS, memristors, and spintronic devices. Moreover, similar to traditional CMOS systems,
interconnect bottlenecks—especially in large-scale crossbar array architectures—can restrict
communication bandwidth, potentially limiting system scalability and performance.

4. Conclusions

As the era of traditional CMOS scaling draws to a close, sustaining the momentum of
Moore’s Law demands a paradigm shift in computing system design that prioritizes archi-
tectural innovation, energy efficiency, and data-centric processing. Non-volatile memory
(NVM) technologies stand at the forefront of this transformation, not merely as memory
alternatives but as foundational enablers of next-generation computing platforms.

By embedding intelligence within main memory and minimizing costly data move-
ment, NVM-based solutions such as resistive RAM, MRAM, and PCM are unlocking
unprecedented opportunities across the computing stack. From logic-in-memory accelera-
tors to neuromorphic edge processors, these devices blur the boundary between memory
and logic, paving the way for more responsive, resilient, and power-conscious architectures.
The continued integration of NVM into heterogeneous systems will be central to achieving
both “More Moore,” which extends the computer performance through functionally en-
hanced logic and systems designed based on NVM, and “More than Moore,” which enables
in-memory computing and neuromorphic architectures for performance enhancement
beyond the conventional scaling trajectories based on physical CMOS device downsizing.
With this connection, future research must focus on addressing integration challenges,
optimizing memory-logic co-design, and developing cross-disciplinary frameworks that
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harness the full potential of NVM in Al, edge computing, and beyond. With these efforts,
non-volatile memory technologies are poised to play a defining role in the next chapter
of scalable, intelligent, and sustainable computing, and most importantly, opening up
additional options for “more Moore” for the greatest microelectronic technology we have.
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