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Abstract

Visual information is crucial in human life, not only providing critical support for com-
munication, learning, and decision-making, but also playing a key role in psychology,
medicine, and science. Eye-tracking and gaze estimation have promoted the development
of foveated rendering in wearable virtual reality and augmented reality glasses. This
review summarizes the recent development on gaze estimation and discusses the impacts
of head posture, illumination, occlusion, blur, and individual bias on the accuracy of eye-
tracking. The prospective development on eye-tracking employing unsupervised learning,
self-supervised learning, and meta-learning have also been discussed.

Keywords: gaze estimation; eye-tracking; head pose; machine learning

1. Introduction
The development of eye-tracking technology provides unprecedented opportunities to

comprehend the complexity and uniqueness of the human visual system, profoundly affect-
ing various fields, including psychology [1], computer science [2], behavioral science [3],
education [4], augmented reality (AR), and virtual reality (VR) glasses [5], among others [6].
In the context of AR and VR, eye-tracking offers unique advantages that are essential for
enhancing user experience. It enables more natural and intuitive interactions by allowing
users to control virtual objects and navigate interfaces through gaze alone. Additionally,
eye-tracking in AR/VR can provide real-time insights into user attention and intent, fa-
cilitating adaptive content that responds dynamically to the user’s focus, thus improving
immersion and engagement in these environments. The process of gaze estimation for
AR/VR applications typically includes some key steps in sequence. Firstly, the region of in-
terest in the visual scene is identified. Then, geometric or appearance features are extracted
from this area. Finally, a regression function is employed to determine the relationship
between these features and the gaze direction. Numerous factors could affect the accuracy
of gaze estimation, such as head pose variations, individual biases, blinking, occlusion, and
image blur [7–9].

Initially, as shown in Figure 1, the gaze estimation systems relied on bulky mechanical
apparatus to estimate the point of gaze (POG) [10]. These early designs, characterized by
complex calibration procedures and limited accuracy due to mechanical drift, struggled to
meet practical application requirements. The introduction of electrical sensors enabled the
detection of electrical signals related to the eyeballs, such as voltage differences between
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electrodes on the cornea and retina [11]. However, the hardware remained rudimentary,
and the systems still possessed limited accuracy and reliability. The advent of computer
vision revolutionized the field by enabling POG estimation through pupil position or
eyeball contour, serving as a significant turning point for gaze estimation. After refining
algorithms and improving adaptability to various conditions, some systems integrated
active infrared illumination and high-speed cameras to track eye movements [12], achieving
sub-centimeter accuracy in controlled settings.

 

Figure 1. Timeline of Eye-Tracking Technology Evolution.

The advent of deep learning has revolutionized gaze estimation methodologies, tran-
sitioning from rule-based systems to data-driven architectures. Deep learning models, such
as convolutional neural networks (CNNs) [13] and recurrent neural networks (RNNs) [14],
have been employed to learn complex eye movement patterns. These methods have sig-
nificantly improved accuracy and robustness of gaze estimation systems and enabled
operation under less constrained environments, such as real-time gaze estimation through
smartphone cameras [15].

This review summarizes the developments and prospects of eye-tracking technologies
and gaze estimation algorithms, by elucidating their operational principles, performance
benchmarks across diverse scenarios, and persistent technical challenges. In Section 2, the
classification and principles of gaze estimation have been discussed. Section 3 introduces
the primary sources of errors in gaze estimation algorithms and outlines commonly used
datasets in the field. In Section 4, a comprehensive review and evaluation of gaze estimation
algorithms have been provided. Section 5 discusses the challenges in complex scenes. Lastly,
the potential future development has also been discussed.

2. Classification of Gaze Estimation
Gaze estimation is typically divided into two subtasks: gaze target estimation and

gaze point estimation. Gaze estimation methods are generally classified into appearance-
based and model-based approaches. Furthermore, model-based methods can be further
categorized into corneal-reflection-based and feature-based approaches.

2.1. Gaze Target Estimation

Recasens et al. proposed an approach of gaze target estimation by employing a neural
network and the dataset GazeFollow [16]. This method utilized the quantified spatial
position of the head and a close-up image of the head to parameterize individuals for gaze
prediction. A CNN had also been employed for saliency detection, generating a heatmap
for gaze prediction. Notably, this method estimated gaze direction from a third-person
perspective in an image, but it is effective only when both the observer and the target object
appear within the same frame.
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In response to this limitation, Recasens et al. [17] proposed another network that
integrates both semantic and geometric understandings of frames, allowing for individual
gaze tracking across video frames. To further enhance intra-frame gaze target estimation,
body pose [18] and sight direction [19,20] have been utilized. By combining the output
of a deep learning-based object detection with frame-by-frame gaze coordinates, Deane
et al. [21] developed an automated method for detecting and annotating the content being
viewed by users in each frame, thereby eliminating the need for manual intervention.

To address the challenge of out-of-frame gaze targets, Tonini et al. [22] introduced a
Transformer-based architecture that automatically detects objects (including heads) within a
scene and associates each head with the corresponding gaze target, enabling comprehensive
and interpretable gaze analysis. Similarly, Tu et al. [23] proposed a Transformer-based
method capable of simultaneously detecting the gaze targets of multiple observers. This
approach overcomes the limitations of using only head images as input and significantly
improves both accuracy and efficiency.

2.2. Gaze Point Estimation

Gaze point estimation refers to the computational process of determining the focal
point of an observer. Typically, it estimates the POG on a two-dimensional plane. The map-
ping (Xe, Ye) → (Xs, Ys) links these coordinates to the gaze target, where the relationship
of mapping function is described by [24].

XS = a0 +
n

∑
p=1

p

∑
i=0

a(i,p)X
p−i
e Yi

e , (1)

YS = b0 +
n

∑
p=1

p

∑
i=0

b(i,p)X
p−i
e Yi

e , (2)

where (Xe, Ye) are coordinates derived from eye features, (Xs, Ys) are the corresponding
gaze target coordinates [25], and ai and bi are coefficients. To optimize this polynomial,
users are asked to focus on fixed points. This procedure enables the measurement of
the discrepancy between the estimated and actual gaze positions. The primary source of
discrepancy is the angular difference between the pupil axis and the visual axis of the eye,
commonly referred to as the kappa angle, as illustrated in Figure 2. The smaller anterior
segment represents the cornea, which is transparent and contains the pupil. The optical
axis is the line connecting the center of the pupil (P) to the center of the cornea (C).

Figure 2. Schematic of the human eyeball, showing key anatomical parameters and reference points
for gaze tracking.
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When the gaze directs to a particular position, the eyes rotate to ensure that light falls
precisely on the fovea—an area on the retina with a high concentration of cones [26]. The
line connecting the rotation center of the eye to the fovea is known as the visual axis or line
of sight. This visual axis intersects with the gaze target, defining the actual gaze vector.
However, the visual axis rarely aligns perfectly with the optical axis, leading to an angular
discrepancy. This angle varies among individuals, and neglecting it in model design can
introduce prediction errors. Therefore, the mapping function must account for these errors,
which can be minimized through calibration.

Falch et al. [27] proposed a novel webcam-based approach for gaze estimation on
a computer screen. Zhou et al. [28] introduced an optimized deep neural network for
2D gaze estimation on mobile devices, including effective attention modules and metric
learning. Building on the work of Krafka et al. [29], He et al. [30] proposed a few-shot
personalization method for 2D gaze estimation on devices, along with an unsupervised
personalization approach.

3. Evaluation Metrics and Datasets
3.1. Performance Metrics and Error Sources

The performance of gaze estimation systems is generally evaluated by angular ac-
curacy, mean squared error, and robustness across varying input conditions, which are
affected by head posture variations, blinking and occlusion, illumination changes, and
inter-subject anatomical differences.

3.1.1. Head Posture

The direction of sight is determined by the rotation of the eyeball, the degree of eyelid
movement, and the spatial orientation of the head. In real-world visual interaction scenar-
ios, head posture varies dynamically, directly affecting both the geometric representation of
the eye region and the appearance of ocular features within the image frame. Specifically,
head rotation and tilt may cause spatial displacement or morphological deformation of
the ocular features, thereby reducing the accuracy of gaze estimation [31–36]. Therefore,
contemporary eye-tracking systems must not only extract stable ocular features but also in-
tegrate mechanisms for real-time head pose compensation. The importance of head posture
analysis becomes even more pronounced in AR and VR glasses, in which user interfaces
demand uninterrupted and accurate gaze feedback across a wide range of orientations.

Methods proposed in the literature to cope with head posture variation can be broadly
categorized into appearance-based, geometry-based, clustering-based, and autoencoder-
based approaches.

Appearance-based methods estimate head posture directly from facial images using
machine-learned templates or detection arrays. Such methods typically rely on matching
an observed face to predefined templates or learned representations of facial configurations.
However, visual ambiguity remains a challenge since even subtle differences in head
orientation or subject identity can lead to significant prediction errors. To reduce such
variance, methods incorporating Laplacian of Gaussian (LoG) filters or Gabor wavelets have
been introduced to enhance feature localization and structural stability [31]. For example,
Gao et al. [32] proposed a hybrid framework combining CNNs with geometric projection.
This framework first classified images into head pose categories and then applied geometric
transformations to refine face orientation, effectively bridging classification and estimation
under pose variance.
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More recently, Liu et al. [33] introduced a Transformer-based architecture, named
TokenHPE, which models contextual dependencies among facial key points via tokenized
representations. This method learns orientation tokens through attention-weighted ag-
gregation of facial components, enabling robust estimation even under occlusion, dim
illumination, or extreme orientations.

Geometry-based approaches formulate gaze estimation as a spatial relationship prob-
lem, leveraging the 6-degree-of-freedom (DOF) kinematics of head and eyeball motion to
isolate and correct pose-induced distortions through coordinate transformations. Typically,
these approaches normalize image appearance by projecting the eye region onto a canonical
2D view using a perspective distortion matrix. Ruzzi et al. [34] proposed a two-stream ar-
chitecture utilizing conditional neural radiance fields (NeRF) to separately learn volumetric
features of the face and eye regions. By applying a rigid 3D rotation matrix to the extracted
features and subsequently composing them through a differentiable volume renderer, their
model can precisely control gaze angle redirection under various head poses.

Yang et al. [35] developed a monocular vision-based estimation system for uncon-
strained human gaze, jointly extracting pose features and eye appearance descriptors and
fusing them in both spatial and temporal domains to maintain gaze stability across frame se-
quences. However, degradation in image quality potentially results in prediction deviation.

Clustering-based strategies address pose variance by discretizing the head orien-
tation space and training separate models for each cluster. While this reduces within-
cluster variance and improves prediction accuracy, it may introduce discontinuities across
cluster boundaries and require significant computational resources. Early implemen-
tations used random forest-based models [36], while more recent work has explored
graph-based structures. Xin et al. [37] proposed a graph convolutional network (GCN)
with an edge-vertex joint attention mechanism (EVA) to enhance intra-cluster relation-
ships and mitigate facial feature detection instability. Their approach was evaluated
on multiple benchmark datasets and showed reduced angular error in cross-pose infer-
ence. Similarly, Tian et al. [38] employed hierarchical clustering to categorize holding pos-
tures, enabling mixed-pose positioning and robust step-length estimation without complex
classification procedures.

Lastly, autoencoder-based models advance gaze estimation by generating compressed
latent representation of facial and ocular appearance, from which head pose can be implic-
itly inferred. These models learn compact yet discriminative representations that encapsu-
late critical pose-relevant information while suppressing noise. Hu et al. [39] proposed a
multi-feature fusion gaze estimation model employing group convolution and channel–
spatial attention mechanisms (GCCSAM). This framework adaptively selects and enhances
relevant features from face and eye inputs, mitigating the impact of asymmetry and mis-
alignment on gaze estimation. Their evaluation on MPIIGaze and EyeDiap datasets yielded
average angular errors of 4.1◦ and 5.2◦, respectively, highlighting the potential of attention-
augmented encoders for robust gaze modeling. Ren et al. [40] introduced a feature fusion
method incorporating multi-level information elements to improve the overall performance
of appearance-based gaze estimation models.

These methods significantly advance gaze estimation by compensating for head pose
variability, as shown in Table 1. Appearance-based and clustering-based methods are
computationally efficient, whereas geometry-based and autoencoder-based models achieve
higher robustness in complex motion scenarios at the cost of increased computational load.
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Table 1. Comparison of methods for head pose estimation: input, dataset, and accuracy metrics.

Method References
Input

Dataset Accuracy
Eye Face

Head posture

Appearance-based
approach

[33]
√

BiWi 4.66◦

[32]
√

AFLW 5.77◦

[41]

√
CMU-PIE 7.36◦

√
MIT-CBCL 1.31◦

√
YaleB 7.584◦

Geometry-based
method

[42]
√

unknown 2.63◦
√

unknown 3.26◦

[43]
√

MPIIGaze 4.8◦

[35]
√

unknown 7.65◦

[34]

√
ColumbiaGaze 9.464◦

√
MPIIFaceGaze 14.933◦

√
GazeCapture 10.463◦

Clustering-based
method

[36]
√

Biwi 4.9◦

[38]
√

unknown 1.57◦

[37]

√
AFLW2000 3.48◦

√
300 W-LP 3.92◦

√
BIWI 2.24◦

3.1.2. Blinking, Occlusion, and Illumination

Blinking and occlusion constitute critical technical barriers in eye tracking systems,
introducing distinct data integrity challenges. Blinking often causes a loss of eye position
data, resulting in gaps and inaccuracies in gaze duration tracking. Similarly, occlusion im-
pedes precise capture of eye movements, leading to data loss, deviations in gaze trajectories,
and reduced accuracy in gaze point estimation.

To compensate for blinking, occlusion, and illumination effects, researchers have
proposed enhanced network architectures capable of learning discriminative and invari-
ant representations even from incomplete or degraded inputs. Among these, attention-
guided multi-branch architectures have demonstrated considerable effectiveness. Luo
et al. [44] developed CI-Net, a composite network comprising two parallel submodules:
the consistency estimation network (C-Net), which captures coarse gaze direction using
shared face and eye features; and the inconsistency estimation network (I-Net), which
explicitly models residual estimation errors caused by partial occlusion or left–right eye
asymmetry. By integrating spatial attention mechanisms across both submodules, CI-
Net selectively emphasizes informative regions and suppresses noise from occluded or
irrelevant features.

When unilateral eyelid occlusion occurs during blinking, state-of-the-art gaze es-
timation systems address prediction instability through adaptive input weighting and
geometric constraint modeling. For example, CI-Net introduces a balance coefficient to
weigh the contribution of each eye according to its occlusion confidence, allowing dynamic
adaptation under unilateral eyelid occlusion [44]. Furthermore, residual vector fields have
been employed to refine coarse predictions using the asymmetric geometric information
between the two eyes.
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Beyond local occlusion, structural modeling approaches have been proposed to mit-
igate uncertainty arising from global occlusion or self-shadowing. Nonaka et al. [45]
introduced a cascaded multi-network system that first predicts head and body orientation
from full-body pose, then incorporates this information into a gaze direction regressor. By
capturing the spatial consistency between body motion and attention behavior, this method
establishes a probabilistic prior that reduces ambiguity in gaze direction when facial fea-
tures are partially unobservable. Their framework significantly improves robustness under
global occlusion, especially in surveillance and group activity analysis.

To mitigate illumination-induced variability, several domain-adaptive strategies have
been proposed. Cheng et al. [46] employed domain generalization to project gaze features
into a shared subspace, minimizing distributional differences across lighting conditions.
This approach improves cross-illumination generalization without requiring supervision
from the target domain. Liu et al. [47] proposed a differential CNN (Diff-CNN), learning
pairwise difference representations between samples from different lighting domains. The
network emphasizes illumination-invariant components through subtraction-based feature
encoding, effectively filtering out illumination-induced distortions.

Empirical results demonstrate the effectiveness of these approaches. For instance,
CI-Net achieves angular errors of 3.8◦ (MPIIGaze), 5.4◦ (EYEDIAP), and 7.9◦ (RT-GENE),
outperforming standard CNN regressors under partial occlusion [44]. Probabilistic orienta-
tion modeling introduced by Nonaka et al. reduced the mean angular error to 18.9◦ under
full-body occlusion scenarios [45].

In summary, blinking, occlusion, and illumination remain formidable obstacles to
reliable gaze estimation, particularly in unconstrained real-world settings. To address these
issues, strategies such as attention-enhanced multi-path networks and domain-adaptive
convolutional models have significantly enhanced the robustness of modern gaze esti-
mation systems. Nonetheless, the challenge persists unresolved in specific scenarios,
particularly real-time multi-user interactions and uncontrolled real-world environments,
where frequent and unpredictable occlusion and illumination variations continue to pose
fundamental limitations.

3.1.3. Inter-Subject Variability

The human visual system varies significantly across individuals, particularly in ocular
geometry, corneal curvature, scleral reflectance, and the spatial displacement between
optical and visual axes. When deep learning models trained on homogeneous popula-
tions encounter unseen individuals, systematic prediction errors emerge. These errors
manifest as directionally persistent biases rather than random noise, exhibiting temporal
autocorrelation and context-dependent amplification.

To address inter-subject variation, polynomial regression commonly maps image-space
gaze coordinates to screen-space targets through learned nonlinear transformations [28].
While polynomial regression effectively personalizes gaze mappings, its performance de-
pends on sufficient per-subject calibration data. Calibration-based approaches generally
achieve high individual accuracy by requiring users to perform explicit calibration proce-
dures (e.g., fixating on predefined targets), but this process can be time-consuming and may
reduce the overall user-friendliness and scalability of the system, especially in real-time or
consumer-grade applications.

To overcome these limitations, recent research has explored calibration-free meth-
ods, which aim to eliminate or minimize the need for explicit user calibration. Such
approaches often utilize large-scale population data, robust deep learning architectures, or
user-adaptive transformation layers to generalize across subjects without subject-specific
calibration sessions. Bao et al. [48] proposed a personalized gaze estimation model, insert-
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ing the subject-wise feature modulation layers into the backbone network. These layers
adaptively transform the shared gaze representation based on the embedded identity fea-
tures, allowing the model to account for inter-subject differences without re-training. Li
et al. [49] introduced an event-based calibration-free gaze tracking system for wearable
platforms. Their method bypasses the need for explicit per-user calibration by leveraging
a high-frequency dynamic vision sensor (DVS) to capture transient eye movements at
950 Hz. Through mapping from temporal pupil contour trajectories to gaze angles, their
system achieved a sub-degree estimation error without requiring individualized parameter
fitting. Specifically, the reported angular error reached 0.46◦. Few-shot learning frame-
works have emerged as a paradigm for personalized adaptation with minimal calibration
overhead. Zhang et al. [50] proposed a meta-learning-based framework that requires fewer
than five calibration samples to adapt lightweight parameter layers embedded within a
shared backbone architecture. The fine-tuning process is constrained via meta-learning
objectives to ensure rapid convergence and robustness to overfitting. Experimental valida-
tion demonstrated that with merely two calibration samples, the framework achieved a
1.5◦ reduction in mean angular error during cross-subject gaze estimation tasks, outper-
forming conventional calibration-dependent methods. Recent advancements in adaptive
kappa angle estimation have enabled robust inference of angular disparities between vi-
sual and optical axes directly from ocular biometrics, circumventing reliance on explicit
visual fixation labels. Zhang et al. [51] proposed a flexible, calibration-free gaze estimation
method that jointly constructs the optical axis projection (OAP) and visual axis projection
(VAP) planes. By using the OAP as an eye feature to predict the VAP, the method achieves
linearity with natural gaze patterns, resulting in consistent 3D gaze estimation with signifi-
cantly improved accuracy. While calibration-free methods significantly improve usability
and adaptability, they may sacrifice a certain degree of individual accuracy compared to
well-calibrated systems.

Overall, the profound impact of inter-subject variation on gaze estimation accuracy
continues to drive algorithmic innovation. While calibration-based methods offer precise
compensation, their operational cost limits scalability. In contrast, calibration-free, domain-
invariant, and personalized learning approaches have emerged as promising alternatives,
enabling robust estimation across diverse populations and unconstrained use conditions.
The comparative evaluation of these methods on benchmark datasets—such as MPIIGaze,
XGaze, and EVE—has demonstrated their effectiveness with personalized models reducing
angular error from 4.14◦ to 2.88◦ [48,49,51].

As shown in Table 2, gaze estimation performance was systematically evaluated under
multiple factors, including blinking, occlusion, illumination, and inter-individual variability.

Table 2. Evaluation of gaze estimation under various factors: blinking, occlusion, illumination, and
individual differences. AP: average precision.

References
Input

Dataset Accuracy
Eye Face Other

Blinking
[52]

√
RT-BENE AP:0.757

Eyeblink8 AP:0.997

[53]
√

RT-BENE AP:0.653

Occlusion

[45]
Head position GAFA 20.4◦ (3D)

Body image MoDiPro 25.6◦ (2D)

[44]

√ √
MPIIGaze 3.8◦

EYEDIAP 5.4◦

RT-Gene 7.9◦
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Table 2. Cont.

References
Input

Dataset Accuracy
Eye Face Other

Illumination

[46]
√

MPIIGaze 5.20◦

EYEDIAP 7.36◦

[47]

√
MPIIGaze 4.67◦

EYEDIAP 3.36◦

UT-
Multiview 4.33◦

Individual
Differences

[48]

√
EVE 1.89◦

MPIIGaze 4.14◦/3.02◦

Xgaze 2.88◦

[54]
√

- 0.9◦

[55]
√

- 4◦

3.2. Dataset Limitations and Domain Generalization

The development and evaluation of gaze estimation algorithms depend fundamentally
on the availability of high-quality, large-scale, and demographically diverse datasets. Unlike
image recognition tasks where labels are easily obtained, gaze dataset construction requires
precise spatial alignment between gaze targets and eye images, typically acquired under
uncontrolled environmental conditions characterized by extreme head pose variations,
heterogeneous illumination, and individual differences. These operational constraints
increase the costs of data collection and annotation, resulting in limited dataset sizes and in
structural inconsistencies across benchmarks [56]. One representative strategy for collecting
large-scale in-the-wild data is exemplified by MPIIGaze, which utilizes an experience
sampling mechanism on participants’ personal laptops to prompt gaze targets across
various daily contexts. Participants are periodically asked to fixate on predefined spots
in-screen while their eye images are captured. Although this method enables long-term
data accumulation, it introduces label uncertainty due to user distraction and changes in
environmental conditions [57]. The inherent noise in such data necessitates post-processing
and filtering to improve annotation reliability, which in turn limits dataset scalability.

In response to the high cost and variability of real-world gaze data collection, synthetic
datasets have emerged as a complementary solution. UnityEyes, for instance, renders photo-
realistic images of parameterized 3D eye models under variable illumination, head pose,
and gaze direction, thereby offering precise annotations at large scale [58]. Additionally, SP-
EyeGAN generates temporally plausible gaze sequences by modeling fixation and saccadic
dynamics through two GAN modules—FixGAN and SacGAN—where each sub-network
is tailored to distinct types of gaze transitions [59]. These synthetic datasets provide rich
supervision signals, reduce the burden of manual annotation, and support pre-training for
downstream tasks such as gaze zone estimation and visual saliency modeling. Despite their
controllability and scalability, synthetic gaze datasets remain fundamentally constrained
by systemic domain divergence from real-world deployment scenarios, where variations
in ocular biometrics, skin texture, sensor noise, optical aberrations, and subject behavior
introduce pronounced distributional divergence. As a result, models trained on synthetic
data often suffer from degraded generalization performance when evaluated on natural
images. This phenomenon, referred to as domain shift, also affects models transferred
across different real-world datasets, such as MPIIGaze, GazeCapture, and EYEDIAP, due
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to differences in hardware, environmental lighting, scene composition, and individual
differences [60].

To address the domain shift in gaze estimation, recent methodologies have focused
on domain adaptation and generalization. Bao et al. [61] proposed a rotation-enhanced
unsupervised domain adaptation (RUDA) approach, in which rotated source samples are
projected into a shared latent space while enforcing gaze direction consistency. A novel loss
function penalizes angular deviations between original and rotated feature representations,
encouraging the model to learn rotation-invariant gaze encodings robust to head poses
and datasets. This rotation-based constraint enables the model to align gaze semantics
without requiring explicit labels from the target domain. Beyond direct domain alignment,
self-supervised techniques have also been integrated to leverage unlabeled data from the
target domain. Cai et al. [62] introduced an uncertainty-aware passive adaptation frame-
work that iteratively refines gaze predictions through epistemic uncertainty minimization.
Unlike supervised approaches, their method removes the dependency on labeled target
data by propagating confidence estimations across unlabeled sequences, enabling fully
unsupervised and passive domain adaptation.

Despite recent advancements in cross-dataset gaze estimation frameworks, significant
challenges remain. The absence of standardized evaluation protocols, the lack of unified
metrics for quantifying domain similarity, and the reliance on target domain samples—even
if unlabeled—limit their deployment in truly unconstrained real-world systems. Further-
more, methods such as adversarial learning [60] and ensemble modeling, while effective in
certain scenarios, often incur substantial computational expenses and significant memory
overheads, limiting the practical deployment on resource-constrained platforms.

3.3. Public Gaze Datasets

The availability of diverse, well-annotated gaze datasets is fundamental for training,
evaluating, and benchmarking gaze estimation models. Publicly available datasets exhibit
distinct characteristics in collection protocols, participants, acquisition environments, imag-
ing modalities, and annotation density. These differences affect both the learning dynamics
of data-driven models and their generalizability across domains. This section reviews
representative gaze datasets commonly used in the literature, highlighting their structural
properties and collection methods.

The MPIIGaze dataset [57] consists of 213,659 binocular eye images collected from
15 participants, with each monocular image sized at a resolution of 60 × 35 pixels. Data
acquisition was conducted using laptop-integrated webcams during daily activities, where
subjects were tasked with fixating on moving dots displayed on a screen. The number of
images per participant varied significantly, ranging from 1498 to 34,745. By incorporating
diverse lighting conditions and natural variations in head pose, this dataset effectively
supports gaze estimation in real-world (in-the-wild) scenarios. To expand the annotated
feature set beyond ocular regions, the MPIIFaceGaze dataset [63] was introduced as an
extension of MPIIGaze dataset. Comprising 37,667 facial images collected from the same
cohort of 15 participants, this dataset is enriched with facial landmarks and pupil centers.

Synthetic datasets have been developed to overcome the limitations of data scarcity
and labor-intensive annotation. UnityEyes [58] synthesizes highly realistic eye images
through a rendering pipeline that integrates high-resolution 3D facial scans with phys-
ically based modeling of eyeball geometry and material reflectance. The dataset pro-
vides pixel-level annotations, including iris center, eyelid contour, and pupil location,
under user-defined gaze angles and lighting configurations. ColumbiaGaze [64] contains
5880 high-resolution images of 56 participants aged between 18 and 36. Participants were
photographed under five horizontal head poses (0◦, ±15◦, ±30◦) and seven gaze directions
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(0◦, ±5◦, ±10◦, ±15◦). The dataset includes annotations for gaze vector, head pose, and
eyeglass usage. The controlled acquisition environment, combined with high-resolution
imaging, enables accurate evaluation of gaze estimation algorithms, particularly in cross-
pose settings. Nonetheless, the limited number of gaze angles and constrained viewing
conditions reduce ecological validity. Gaze360 [65] was designed to capture unconstrained
gaze behaviors across wide head pose ranges and environments. It comprises over 172,000 RGB
images collected from 238 participants under indoor and outdoor scenes, with 3D gaze an-
notations covering a wide angular range. Captured across nine sessions, it offers diversity in
lighting, backgrounds, and head positions. As one of the few large-scale datasets with con-
tinuous 3D gaze annotations, Gaze360 serves as a benchmark for evaluating the robustness
of gaze estimation under real-world head and gaze dynamics. ETH-XGaze [66] addresses
the need for dense sampling of gaze targets and head poses. It includes over 1 million
high-resolution (6000 × 4000 pixels) images captured using 18 synchronized DSLR cameras.
A total of 110 participants viewed stimuli while their heads were stabilized by a chin
rest. The dataset offers full 3D gaze vectors, facial landmarks, and head pose annotations,
enabling fine-grained analysis of gaze across extreme head orientations. While ETH-XGaze
provides excellent geometric variation, it is important to note that the implementation of
head fixation restricts natural behavior and gaze spontaneity. UT-Multiview [67] contains
1.2 million eye images collected from 50 participants under controlled indoor settings.
Participants were asked to fixate on a red cross embedded within a white circle, which
appeared sequentially on a 16 × 10 grid across a monitor. Head positions were stabilized
using chin rests, and images were captured from varying viewpoints. The systematic struc-
ture and grid-based target layout make UT-Multiview suitable for geometric modeling and
gaze mapping studies, although the rigid head fixation may limit generalization to dynamic
environments. EYEDIAP [68] provides RGB-D data collected from 16 participants recorded
in laboratory conditions. It includes 94 video sequences with varying head movements
and gaze behaviors, collected using a Kinect sensor and HD camera. Ground-truth gaze is
obtained via LED markers and 3D calibration. EYEDIAP supports both 2D and 3D gaze
estimation and is often used to validate models under depth-aware and motion-rich con-
ditions. RT-GENE [69] combines RGB and depth modalities for real-time gaze estimation.
It consists of 277,286 annotated eye images collected from 15 participants, with ground
truth labels derived from mobile eye-tracking glasses. The dataset was collected using
a Kinect v2 RGB-D sensor and offers synchronized eye gaze, depth maps, and full-face
images. The multimodal nature allows for hybrid approaches that fuse appearance and
geometric features. GazeCapture [29] is currently one of the largest publicly available
datasets, comprising over 2.5 million eye images collected from 1474 participants using
mobile devices. During data collection, participants tracked a moving on-screen target
while the front-facing camera recorded eye images. The dataset encompasses extensive
variations in gaze angle, device pose, and illumination, rendering it highly suitable for
training deep appearance-based estimation models. However, label noise and head uncer-
tainties in pose estimation complicate precise performance evaluation under real-world
conditions. TabletGaze [70] comprises 816 videos from 51 participants in four different
postures. Participants were instructed to fixate on dynamic targets while holding a tablet at
various positions, including standing, sitting, and lying. Each video captures time-varying
gaze behavior and eye-region appearance, supporting temporal modeling and real-time
gaze tracking applications. In surveillance and egocentric scenarios, datasets such as
GAFA [45] and GFIE [56] capture gaze behaviors from freely moving individuals. GAFA
comprises 882,000 annotated video frames from indoor and outdoor recordings, providing
3D gaze labels, head orientation, and body movement cues. GFIE includes 71,799 frames
from 61 participants and annotates both 2D and 3D gaze points alongside head bounding
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boxes. These datasets emphasize unconstrained gaze patterns and support studies on
long-range attention estimation and multimodal fusion.

These datasets differ significantly in sample size, imaging modality, head pose variabil-
ity, and gaze annotation format. Their complementary properties highlight the necessity
of cross-dataset training and evaluation to assess the robustness and adaptability of gaze
estimation algorithms. Tables 3 and 4 provide a comprehensive comparative overview of
these datasets, facilitating the selection of appropriate benchmarks based on experimental
requirements. Figure 3 depicts ecological authenticity vs. annotation complexity. Figure 4
presents a normalized performance comparison of five representative datasets (MPIIGaze,
MPIIFaceGaze, Gaze360, ETH-XGaze, GazeCapture) in terms of seven features, including
the number of participants, data volume, yaw angle range, pitch angle range, distance,
lighting conditions, and full-face inclusion status.

Figure 3. Ecological and Annotation Complexity Distribution of Gaze Datasets. The 2D scatter
plot positions datasets by participant count (x-axis) and data volume (y-axis), with color intensity
representing the yaw angle range. Symbol size denotes pitch angle variability, collectively capturing
dataset scale (axes) and gaze diversity (visual encodings).

Figure 4. Normalized Multidimensional Comparison of Gaze Datasets. The radar chart compares five
datasets (MPIIGaze, MPIIFaceGaze, Gaze360, ETH-XGaze, GazeCapture) across seven normalized
features: participant count, data volume, yaw range (±◦), pitch range (±◦), capture distance (m),
lighting conditions (controlled/uncontrolled), and full-face inclusion (binary: 0/1). Axes are min-max
normalized to the [0, 1] range to enable cross-feature comparison.
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Table 3. Comparison of gaze datasets: data characteristics, gaze and head pose annotations, and
environmental conditions.

Dataset RGB/RGB-D Participants Full Face Amount of Data Distance Illumination
Conditions

MPIIGaze [57] RGB 15 No 213,659 images 40~60 cm Daily life
MPIIFaceGaze [63] RGB 15 Yes 213,659 images 40~60 cm Daily life

UnityEyes [58] RGB - No user defined user defined User defined
ColumbiaGaze [64] RGB 56 Yes 5880 images 200 cm Lab

Gaze360 [65] RGB 238 Yes ~172 K images ~200 cm Daily life
ETH-XGaze [66] RGB 110 Yes 1,083,492 images 100 cm Lab

UT-Multiview [67] RGB 50 No 1,216,000 images 60 cm Lab
EYEDIAP [68] RGB-D 16 Yes 94 videos 80~120 cm Lab
RT-GENE [69] RGB-D 15 Yes 277,286 images ~182 cm -
NISLGaze [71] RGB 21 Yes 2079 videos 90 cm -

Gaze-Capture [29] RGB 1474 Yes >2.5 M images Close Daily life
TabletGaze [70] RGB 51 Yes 816 videos 30~50 cm Lab

GAFA [45] RGB - Yes 882,000 videos 50 cm~7 m Daily life
GFIE [56] RGB-D 61 Yes 71,799 videos 1.04 m ~ 6.48 m Daily life

Dataset Gaze Pitch Gaze Yaw Head Pose
Annot.

Gaze Pose
Annot.

Head Pose
Orient.

MPIIGaze [57] −5◦~20◦ −40◦~20◦ Yes Yes Frontal
MPIIFaceGaze [63] −5◦~20◦ −40◦~20◦ Yes Yes Frontal

UnityEyes [58] user defined user defined Yes Yes All
ColumbiaGaze [64] −10◦~10◦ −15◦~15◦ 5 orient Yes Frontal

Gaze360 [65] −50◦~50◦ −140◦~140◦ Yes Yes All
ETH-XGaze [66] −70◦~70◦ −120◦~120◦ Yes Yes All

UT-Multiview [67] −55◦~65◦ −80◦~80◦ Yes Yes All
EYEDIAP [68] −45◦~45◦ −45◦~45◦ Yes Yes Frontal
RT-GENE [69] −30◦~30◦ −40◦~40◦ Yes Yes All
NISLGaze [71] −21.48◦~20.76◦ −21.25◦~21.04◦ Yes Yes All

Gaze-Capture [29] −20◦~20◦ −20◦~20◦ - Yes Frontal
TabletGaze [70] −15◦~0◦ −20◦~10◦ - Yes Frontal

GAFA [45] −75◦~75◦ −150◦~150◦ Yes Yes All
GFIE [56] - - Yes Yes All

4. Algorithms
4.1. Model-Driven Methods

Model-driven gaze estimation methods estimate gaze direction through geometric and
optical principles, rather than relying purely on learned statistical mappings derived from
data. By explicitly modeling eye anatomy, light paths, and camera projection geometry,
these approaches establish a direct, physics-based link between observable eye features
and the target gaze direction.

4.1.1. Monocular Geometry

A fundamental challenge in gaze estimation lies in accurately inferring a 3D gaze
vector from monocular eye images, particularly when direct depth cues are unavailable.
Geometry-based approaches address this challenge by exploiting the physical principles
of optical reflection and refraction within the human eye. Specifically, these methods
reconstruct the optical axis from corneal reflections and infer the visual axis through
calibrated angular correction. The framework typically relies on a known arrangement of
light sources, cameras, and geometric assumptions about the eyeball and corneal surface.

The estimation of the optical axis relies on leveraging infrared light reflection from
the corneal surface, typically using infrared LEDs as structured illumination sources. The
positions of the reflected light spots (glints) are captured, and a mathematical model incor-
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porating eye structure parameters is constructed. Based on image processing algorithms,
the relative spatial positions of the glint and pupil center are then analyzed to derive the
optical axis direction and angle. Uniquely estimating the corneal center requires at least two
cameras and two non-collinear LEDs to avoid ambiguity. Increasing the number of LEDs
provides additional geometric constraints, thereby reducing estimation uncertainty and
enhancing robustness against noise. As illustrated in Figure 5, accurate estimation of the
gaze vector necessitates accounting for the refractive distortion introduced by the corneal
surface. Given the known corneal center C, two calibrated cameras can determine the 3D
pupil position through back-projection based on the corneal refraction center. Therefore,
the optical axis is fully specified. The visual axis can be determined by incorporating the
individual-specific angular offset between the optical axis and the visual axis.

Figure 5. A geometric model for estimating the center of corneal curvature and the optical axis [72].
Point C denotes the center of corneal curvature, while G indicates the glint point induced by the LED
light source. P represents the true 3D position of the pupil center, and P′ is the apparent pupil center
after corneal refraction. And, p and g denote the 2D image-plane projections of P′ and G, respectively.

Guestrin et al. [54] systematically formalized the conditions under which geomet-
ric reconstruction is solvable. They showed that when two cameras and two LEDs are
available, single-point calibration is sufficient to estimate the gaze vector. With only one
camera and two LEDs, multi-point calibration is required to solve for both anatomical and
device parameters. In the most constrained configuration—one camera and one LED—the
model becomes underdetermined unless five anatomical parameters are assumed and the
camera-to-cornea distance is fixed. Zhu et al. [73] proposed a simplified framework by
treating the corneal surface as a fixed spherical mirror to reduce the complexity. Under this
geometric simplification assumption, the virtual image of the illuminating LED formed
via corneal reflection becomes invariant to camera position. By assuming collinearity
among the optical center, LED, and the virtual reflection image, the corneal center can be
estimated using observations from two cameras. Similarly, the refracted pupil is modeled
as coaxial with its physical counterpart, facilitating direct derivation of the optical axis
from dual-camera observations. While this model simplifies both theoretical derivation and
practical implementation, it imposes strict assumptions that may not hold under natural
head movements or individual anatomical variability. Consequently, this approximation
introduces systematic bias in gaze estimation results.
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The monocular geometric model offers a physically interpretable and mathematically
rigorous framework for gaze estimation. However, it is subject to practical limitations
including the need for multi-sensor configurations, high-precision calibration, and strong
geometric assumptions. These constraints have motivated the development of hybrid
models that integrate geometric priors with learning-based corrections.

4.1.2. Stereo Triangulation and Gaze Depth Estimation

Stereo triangulation constitutes a key strategy in model-driven methods, addressing
the critical depth ambiguity inherent in monocular imaging systems. By employing mul-
tiple spatially separated cameras with overlapping fields of view, this approach enables
precise 3D reconstruction of the gaze point through geometric triangulation principles.
In multi-camera parallax triangulation frameworks, synchronized camera arrays capture
corneal refraction patterns from distinct angular perspectives, leveraging binocular dispar-
ity to estimate pupil centroid depth via Perspective-n-Point (PnP) algorithm [74], which
converts the parallax observed from different viewpoints into 3D spatial coordinates. It
is important to note that under the spherical cornea model, the observed pupil center is
formed after light passes through the cornea and is subject to refraction, resulting in a
geometric offset from the actual pupil center. To mitigate this, the stereo systems incorpo-
rate corneal refractive compensation [75]. Based on the optical system of the cornea, Wan
et al. [75] derived a forward transformation from the real pupil to the refracted virtual pupil
and proposed a reverse transformation to recover the real pupil axis from the observed
pupil contour image. Swirski and Dodgson [76] proposed a 3D eye model fitting approach
that derives a unique solution by fitting a set of eye images. This approach operates under
the assumption of a perfect spherical eye geometry, initializing key parameters including
the eye center coordinates, ocular radius, and 3D pupil position. These parameters are
then iteratively optimized by aligning the model to the original eye images. The estimated
parameters are defined in the coordinate system of the eye camera, necessitating a coor-
dinate transformation to the scene camera coordinate system. This transformation relies
on a 3D translation vector and a rotation matrix that maps the gaze vector into the scene
camera space.

Active stereo vision with structured illumination further enhances feature detection
and depth precision. Wang et al. [77] leveraged extended displays to achieve high-density
3D measurements, combining stereo deflectometry with a single-shot cross-sine wave
pattern. This method reconstructs the depth of eye surface and normal maps with low
latency, enabling gaze direction estimation from the geometric properties of the eye.

Beyond triangulation, it is essential to understand the behavior of depth reconstruction
error as a function of disparity and system parameters. As shown in the Figure 6, let the
cameras be rectified and parallel, with baseline B and focal length f. The disparity d
represents the pixel displacement (i.e., parallax) of the same 3D point between the two
cameras. The depth estimate is then given by the following:

Z(d) ≈ B f
d

(3)

Therefore, in a binocular stereo vision system, increasing the baseline distance and
camera focal length is the main direction to reduce depth error.
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Figure 6. Stereo Triangulation of Binocular Errors.

Traditional geometry-based 3D gaze estimation algorithms often encounter challenges
with noise in eyeball depth convergence [78]. Wang et al. [79] developed an online sys-
tem that combines triangulation for initial gaze position estimation with a subsequent
calibration step to refine depth accuracy. This system enhances the geometry-based 3D
gaze estimation algorithm by using a screen-centered coordinate system, estimating gaze
depth coordinates through the calculation of horizontal eye coordinates and the line-
of-sight discrepancy. Yuan et al. [80] proposed a geometric method for high-precision,
real-time head pose estimation from 2D face image, aiming to reduce the computational
burden of traditional methods. However, the head posture angle is determined solely
by the rotation matrix, which can be affected by external factors, leading to inaccura-
cies. Meyer et al. [81] optimized a geometric eye model by integrating distance and
rotational velocity measurements from multiple static Light Field Imaging (LFI) sensors.
This fusion strategy strengthens gaze direction estimation by compensating for individual
sensor limitations, thereby improving the robustness of traditional geometric approaches in
dynamic environments.

4.1.3. Calibration and Parameter Estimation

In model-driven gaze estimation systems, precise calibration is critical for mitigating
errors arising from inter-subject variation and camera-eye positional misalignment. Since
the geometry of the human eye varies across users, a generic model without personalized
adjustment often results in substantial prediction errors. Calibration serves as a com-
pensatory mechanism to estimate both system-specific and subject-specific parameters,
ensuring precise alignment between the mathematical gaze model and each user. These
parameters may include the transformation matrices relating pupil or glint positions to
optical axis direction, the displacement between the optical and visual axes, and the projec-
tion from gaze direction to screen coordinates. Current methodologies for gaze estimation
frequently employ explicit calibration protocols that require users to fixate on predefined
calibration targets displayed across the screen. By associating each image-space eye feature
with its corresponding known gaze target, it becomes possible to estimate a parametric
mapping function. While explicit calibration offers direct control over accuracy and pro-
vides well-defined convergence criteria, it imposes operational burdens. User cooperation,
stable fixation, and strict adherence to calibration sequences are difficult to guarantee in
mobile, wearable, or real-world scenarios. To reduce these dependencies, an alternative
line of research explores implicit calibration methods that do not rely on labeled target data,
instead inferring parameters through natural visual behavior during free-viewing tasks. By
capturing eye images over time during these natural viewing processes, and assuming that
the fixations of users are not uniformly random instead concentrating around perceptually
meaningful regions, it becomes feasible to optimize the calibration parameters as latent
variables within a probabilistic framework.



Electronics 2025, 14, 3352 17 of 28

Tong et al. [82] proposed the Discretization Gaze Network (DGaze-Net), which op-
timizes monocular 3D gaze estimation accuracy through feature discretization and an
attention mechanism. However, information loss may result from discretization, and the
method could exhibit variable performance in complex environments or among different
users. Multi-layer sensing was utilized by Lee et al. [23] to obtain depth gaze positions,
eliminating the requirement for individual calibration. However, this method requires
double Purkinje images as input, which is difficult to capture accurately. Visual saliency
concepts [83] and various saliency algorithms [84] offer fresh perspectives on 3D gaze
estimation calibration. Liu et al. [85] proposed a 3D gaze estimation method by using
automatic calibration. By identifying 3D salient pixels in the scene as potential calibration
targets through saliency detection, automatic calibration becomes achievable.

The ongoing advancement of gaze estimation systems relies heavily on calibration
and parameter estimation, which are critical for optimizing their performance and usability.
Whether implemented through geometric regression, probabilistic inference, or real-time
adaptation, calibration is not merely a pre-processing step but an active component that
bridges model predictions with real-world variability. A principled calibration strategy
ensures that geometric models maintain validity across individuals and sessions, enabling
gaze vectors to function as robust and interpretable indicators of visual attention.

4.2. Data-Driven Methods

Data-driven methods in gaze estimation have emerged as a fundamental paradigm
that circumvents the need for explicit modeling of the eyeball structure or optical pro-
jection principles. These methods directly learn the mapping between visual input and
gaze direction using supervised or weakly supervised learning frameworks [86,87]. This
paradigm shift is driven by the inherent complexity of the human ocular system, variations
in imaging conditions, and the nonlinear relationship between observable features and true
gaze vectors.

In contrast, traditional geometric or appearance-based methods rely on hand-
crafted parameters—such as corneal reflection points or ellipse fitting of the pupil
boundary—which are highly sensitive to noise, occlusions, and pose variations. As a
result, they often struggle to generalize beyond calibrated environments or specific hard-
ware setups.

Data-driven methods are grounded in statistical learning theory and end-to-end optimiza-
tion. Early studies employed classical models such as support vector regression [88] and random
forests [89–91], which relied on manually extracted features to build mapping functions.
However, these approaches are limited in their ability to generalize in high-dimensional
feature spaces and often fail to capture complex nonlinear patterns effectively.

The advent of CNNs introduced a unified framework capable of learning spatial
features directly from raw pixel data, optimized jointly with the gaze estimation objective.
Wang et al. [92] proposed a unified framework that combines adversarial learning with
Bayesian inference. This framework enhances a traditional CNN-based gaze estimator
by incorporating an adversarial component, enhancing its sensitivity to gaze direction
while remaining robustness to variations in appearance and pose. Alternatively, some
studies [93,94] have adopted a hybrid model that uses a CNN to map images to eye
landmarks, which are then used to estimate eye gaze.

CNNs are particularly effective at feature extraction, spatial attention, end-to-end
learning, and transfer learning, enabling them to autonomously capture high-level ab-
stractions. Although they achieve impressive performance—especially in transfer learning
contexts—CNNs still face challenges such as high computational cost, heavy reliance on
labeled data, and limited interpretability. Future work may focus on reducing model
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complexity, designing more efficient attention mechanisms, and improving data annotation
and collection processes.

The Transformer architecture, originally introduced by Vaswani et al. [95], has achieved
remarkable success across wide range of computer vision tasks. Cheng and Lu et al. [96]
employed Visual Transformers for gaze estimation, demonstrating significant performance
improvements. However, traditional CNNs, with their limited capacity for global context
modeling, have struggled to further improve prediction accuracy. To address this limitation,
Li et al. [97] proposed the Swin Transformer and developed two architectures: a pure Swin
Transformer model for gaze estimation (SwinT-GE), and a hybrid model (Res-Swin-GE)
that combines convolutional layers with Swin Transformer modules.

Building on this, the Gaze–Swin model [98] integrates the Swin Transformer with
ResNet-18 to capture both global and local facial features via a dual-branch structure. These
features are concatenated and passed through a multi-layer perceptron (MLP) to predict
gaze direction. In addition, the model incorporates a DA-Attention mechanism, which
leverages relative position bias and scaled cosine attention to improve feature extraction
accuracy. The Dropkey technique is also employed to mitigate overfitting, resulting in more
accurate gaze point predictions.

A continuing challenge for data-driven methods lies in their vulnerability to degraded
inputs, such as eye blinking, partial occlusion, or lens blur. To overcome this, hybrid
consistency–inconsistency networks have been developed to explicitly model prediction
uncertainty and recover reliable gaze estimates from compromised data. The CI-Net
model, for instance, separates feature pathways for clean and corrupted inputs, applying
spatial attention to reweight features based on estimated consistency. This approach has
demonstrated improved robustness under adverse conditions, achieving lower angular
error under occlusion compared to conventional CNN [44].

Data-driven methods depend heavily on large-scale annotated datasets, raising signif-
icant concerns about model generalization across domains and environments. In practice,
models trained on a specific dataset often suffer substantial performance degradation when
evaluated on unseen distributions, due to variations in illumination, camera placement, and
subject. As a result, domain adaptation has become a central research focus. For instance,
Bao et al. [61] proposed a rotation-enhanced unsupervised domain adaptation framework
that enforces rotational consistency in the feature space, enabling the model to produce
stable gaze estimates under varying orientations. Notably, this approach achieved state-of-
the-art performance on cross-dataset benchmarks without requiring labeled samples from
the target domain. Building on this, Cai et al. [62] introduced a passive adaptation frame-
work that incorporates epistemic uncertainty modeling, allowing the model to self-adjust
predictions dynamically during inference in novel environments.

Another major challenge in data-driven methods arises from imbalanced gaze distri-
butions within datasets, where certain gaze directions are disproportionately represented.
Attention-based methods have emerged as a promising solution, drawing inspiration from
human visual attention to guide the model toward the most informative regions of the in-
put. Unlike conventional techniques, attention mechanisms eliminate the need for separate
modules for eye detection or head pose estimation, offering a more unified architecture.

Zhuang et al. [99] implemented an attention-enhanced ResNet-50 to estimate gaze
points in a flight simulator. The introduction of the attention mechanism improved network
performance and addressed challenges in multi-camera and multi-screen systems. Luo
et al. [44] introduced a cross-attention mechanism that adaptively reweights information
from facial and ocular regions. Their I-Net model selectively integrates features from a
complementary network (C-Net), enhancing eye direction estimation. Attention mech-
anisms have also proven effective in fusing predictions. Huang et al. [100] proposed a
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regression-based framework that adaptively fuses candidate gaze maps, achieving more
robust estimation. Yi et al. [101] modeled the line of sight as a probabilistic distribution by
sampling from random units in a deep network to construct an attention map, which then
guided the aggregation of visual features for downstream tasks like action recognition.

Recent studies have further demonstrated that incorporating auxiliary tasks into the
learning pipeline enhances feature robustness and generalization. Zhang et al. [102] addressed
the challenge of eye blinks using cross-dataset multi-task training. Díaz et al. [103] developed
the Asymmetric Multi-Task system for Gaze-driven grasping Action Forecasting (AMT-GAF)
model, which jointly predicts future visual attention and grasping actions through multi-
task learning. Lu et al. [104] considered the refractive effects introduced by eyeglasses
and proposed a dual-objective network that simultaneously regresses the line of sight and
classifies eyewear conditions.

Data-driven methods offer a scalable, adaptive, and increasingly generalizable solu-
tion to the diverse challenges of real-world gaze estimation. By leveraging advancements
in network architectures, including attention mechanisms, adaptation strategies, and super-
vision paradigms, the capability to surpass traditional geometry-based models has been
demonstrated. As a result, data-driven techniques now dominate the field and continue to
drive progress in modern gaze estimation research.

In conclusion, the continuous evolution of data-driven methods, particularly through
the integration of deep learning and adaptive learning techniques, significantly enhances
the precision and flexibility of gaze estimation systems, enabling them to handle the
complexities of dynamic, real-world environments and broadening their applicability
across a wide range of domains.

5. Challenges and Future Directions
5.1. Existing Challenges and Issues

Gaze estimation remains a technically demanding task, particularly in unconstrained
and complex environments. While 2D imaging methods achieve high accuracy under
controlled settings, they are highly sensitive to illumination variations and require pre-
cise modeling of eye movements. These limitations reduce their reliability in real-world,
dynamic scenes.

In contrast, 3D model-based methods, which incorporate depth cues and multi-view
fusion, offer a more holistic understanding of gaze behavior. However, they introduce
additional challenges, including increased computational cost, complexity in multi-view
alignment, and the demand for real-time processing capabilities.

Traditional machine learning approaches are favored for their interpretability and
effectiveness on small datasets, but they rely on manual feature engineering, resulting
in that they are less suitable for complex or high-dimensional scenarios. Moreover, their
generalization capability often deteriorates under diverse or unseen conditions.

Deep learning-based methods have demonstrated superior performance in learning
complex patterns from large datasets. Nevertheless, many models assume a calibrated input
(e.g., calibrated face images), which constrains their applicability in real-time and multi-
person settings. Additional pre-processing steps, such as face cropping and calibration,
further contribute to increased inference latency [105].

When selecting an appropriate gaze estimation strategy, it is essential to consider
application-specific requirements, data characteristics, and computational constraints. In
many practical cases, hybrid approaches that combine complementary methods may be
necessary to achieve robust performance.

Data imbalance poses another persistent challenge. Two-dimensional methods ex-
hibit relative robustness in scenarios with limited data; their effectiveness significantly
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diminishes when faced with severely skewed distributions. Three-dimensional models,
leveraging multi-view information, can improve estimation for underrepresented gaze
directions, yet their computational demands may offset these benefits.

Traditional models generally handle moderate imbalance better than deep networks
but struggle in scenarios with extreme skew or complex features. In contrast, deep learning
models are prone to overfitting dominant categories, leading to suboptimal performance
on underrepresented gaze targets.

In cross-dataset testing, where the training and test data come from different datasets,
performance often declines significantly due to domain discrepancies. A key challenge is
the unavailability of target domain labels in real-world scenarios, which prevents direct
training of gaze estimators in the target domain. Additionally, as the scope of the source
domain decreases, adaptive capabilities also diminish. Current methods have not yet fully
resolved these problems.

To overcome these obstacles, future research must integrate weight rebalancing, data
augmentation, task-specific model architectures, and regularization techniques. Yet, a
unified framework that systematically addresses gaze estimation across heterogeneous
scenarios is still lacking.

Privacy and ethical issues surrounding eye tracking technology are also key ar-
eas of development. Existing privacy-preserving mechanisms face challenges in bal-
ancing the dual demands of privacy and utility in the context of AR/VR applications.
Privacy-preservation techniques such as plausible deniability (PD) and differential pri-
vacy (DP) mechanisms have recently been applied to eye movement data. David-John
et al. [106] applied the privacy definitions of k-anonymity and PD to a dataset of eye
tracking samples, introducing a privacy-utility trade-off while maintaining gaze prediction
accuracy. Bozkir et al. [107] propose a novel transform-coding based differential privacy
mechanism to further adapt it to the statistics of eye movement feature data. Their results
provide significantly high privacy without any essential loss in classification accuracies
while hiding personal identifiers. As eye tracking continues to evolve, striking a balance
between technological advancement and responsible usage will be key to ensuring the
broader societal acceptance and success of these systems.

5.2. Prospects

As shown in Figure 7, the integration of gaze estimation with multimodal sensor
data has revolutionized cognitive state analysis. By combining gaze information with
physiological signals such as electroencephalography (EEG), heart rate, and galvanic skin
response (GSR), researchers can more accurately infer user attention, emotional states,
and cognitive workload. Technically, multimodal fusion can be achieved through early
fusion (e.g., feature concatenation), late fusion (e.g., decision-level integration), or hybrid
fusion frameworks. Recent methods also employ attention mechanisms or cross-modal
Transformers to align temporal and spatial features across modalities. In VR and AR, the
combination of gaze estimation with head tracking and gesture recognition improves inter-
action quality, enabling more natural and immersive experiences [108,109]. For example,
sensor synchronization and spatial–temporal encoding networks have been applied to
enhance interaction fidelity. Kin et al. use eye tracking for global intuitive navigation and
gesture controllers for local fine-grained navigation [110]. In the automotive field, fusing
gaze data with driver monitoring systems and vehicle sensors allows for precise detection
of driver fatigue, attentiveness, and emotions, contributing to safer driving and more
personalized in-vehicle experiences. In clinical contexts, including medical diagnostics,
psychotherapy, and rehabilitation, integrating gaze estimation with physiological signals
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facilitates a deeper understanding of cognitive and emotional processes, supporting the
development of individualized treatment strategies.

Figure 7. Multimodal Sensor Fusion and Application Scenarios.

In gaze estimation, unsupervised learning and self-supervised learning have emerged
as effective approaches to reduce reliance on labeled data. Unsupervised learning enables
models to extract meaningful visual patterns and discriminative features from large-scale
unannotated gaze datasets, thereby improving the understanding of users’ attention be-
haviors. Typical approaches include clustering methods, representation learning through
autoencoders, and contrastive learning strategies. By uncovering the underlying structure
of the data, it reveals correlations among different gaze behaviors, which contributes to
better modeling of visual attention. In contrast, self-supervised learning leverages intrinsic
properties of gaze data to generate pseudo-labels or auxiliary tasks, effectively minimizing
the need for manual annotation. Common tasks include temporal order prediction, masked
signal reconstruction, or gaze consistency verification, which help guide feature learning in
the absence of labels. This strategy enhances the efficiency of utilizing unlabeled data and
strengthens the adaptability of gaze estimation models across diverse user behaviors and
environmental conditions, ultimately leading to more robust and accurate predictions.

Meta-learning focuses on enabling models to rapidly adapt to new tasks or domains
using only a small number of training samples, thereby alleviating the need for extensive
data collection. Its core idea lies in learning a generalizable learning strategy that allows
the model to update efficiently when facing novel scenarios. In the context of eye tracking,
meta-learning has achieved promising results in personalization tasks. For example, it has
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reached an accuracy of 88.6% in distinguishing individuals with Autism Spectrum Disorder
(ASD) from typically developing subjects. This demonstrates its potential for improving
user-specific gaze estimation and adapting gaze models to complex real-world variability.

Compared to conventional cameras, event cameras offer several technical advantages,
including ultra-low latency, low power consumption, high temporal resolution, wide
dynamic range, asynchronous data acquisition, and sparse event-driven outputs, facilitating
eye tracking and gaze estimation in dynamic or resource-constrained environments.

In recent years, HMD devices such as Meta’s Quest Pro, Apple Vision Pro, and HTC
Vive have exemplified different developmental approaches to eye-tracking technology
across major manufacturers. Meta’s latest devices incorporate compact eye-tracking mod-
ules primarily for gaze estimation and facial expression capture. While these systems are
lightweight and wearable, they still fall short of high-end devices in terms of gaze accuracy
and stability. The Apple Vision Pro integrates a dense array of infrared cameras combined
with a sophisticated real-time calibration mechanism, significantly enhancing gaze tracking
accuracy and precision—particularly in applications such as gaze-based rendering and
immersive interaction—while maintaining a high level of user comfort and natural system
responsiveness. However, the complexity of its hardware design results in higher cost
and larger physical size. The HTC Vive series, leveraging Tobii’s mature eye-tracking tech-
nology, delivers high precision and reliability, making it widely adopted in research and
industrial settings. Nonetheless, its overall bulk and weight pose challenges for long-term
comfort and everyday usability. With continued advancements in sensor miniaturization,
low-power infrared imaging, and adaptive algorithms tailored to individual users, future
eye-tracking systems are expected to achieve high precision while becoming lighter, more
comfortable, and less obtrusive.

To facilitate the selection and comparison of approaches, Table 4 provides a summary
of representative application areas, tasks, algorithms, and benchmark datasets commonly
used in eye-tracking and gaze estimation research.

In conclusion, the combination of advanced machine learning techniques, multimodal
sensor integration, and event-based imaging technologies presents prospects for the future
of gaze estimation, making it more adaptive, accurate, and applicable across various
real-world domains.
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Table 4. Summary of typical application areas, representative tasks, algorithms, and datasets in
eye-tracking and gaze estimation.

Application Area Task Algorithms Datasets

HCI

Contactless Interaction CNN-based gaze regression [29] GazeCapture [29]
MPIIGaze [57]

Remote Gaze Synchronization Gaze-following CNN [17] GazeFollow [16]

Wearable Eye-based Interaction Multi-Stage CNN + SVM [111] TabletGaze [70]

AR/VR

Foveated Rendering Real-time pupil tracking + foveated
rendering [112]

GazeCapture [29]
UnityEyes [58]

Visual Attention Analysis LSTM-based sequence modeling [69] ColumbiaGaze [64]
Gaze360 [65]

Gaze-based Interaction Control Multi-task CNN (appearance +
geometry) [66]

MPIIGaze [57]
UnityEyes [58]

Medical Diagnosis

Parkinson’s Screening Saccadic movement analysis (RF,
SVM) [113] Clinical datasets [113]

Autism Spectrum Identification Spatio-temporal gaze patterns (CNN +
LSTM) [114] ASD Eye-tracking datasets [115]

Reading and Language Assessment Scanpath analysis (HMM, RF) [116] ZuCo [117]

Automotive
Driver Attention Monitoring Gaze zone classification (CNN, 3D

CNN) [118] DR(eye)VE [119]

Hazard Prediction Temporal gaze prediction
(LSTM) [120]

EyeTrackUAV2 [121]
DR(eye)VE [119]

6. Conclusions
The critical aspects of eye-tracking and gaze estimation algorithms have been re-

viewed. The challenges in complex scenes, as well as issues related to data imbalance and
model generalization have been discussed. The future of gaze estimation algorithms in
eye tracking and potential research directions or innovative approaches have also been
proposed. These comprehensive discussions offer valuable insights for advancing our
understanding and guiding the future pathway of gaze estimation research.
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