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Abstract

This paper presents a blind source separation (BSS)-based framework for joint communi-
cation and sensing (JCAS) in in-band full-duplex (IBFD) multiple-input multiple-output
(MIMO) systems operating under time-varying channel conditions. Conventionally, self-
interference (SI) in IBFD systems is a major obstacle to recovering the signal of interest
(SOI). Under the JCAS paradigm, however, this high-power SI signal presents an opportu-
nity for efficient sensing. Since each transceiver node has access to the original SI signal,
its environmental reflections can be exploited to estimate channel conditions and detect
changes, without requiring dedicated radar waveforms. We propose a blind source separa-
tion (BSS)-based framework to simultaneously perform self-interference cancellation (SIC)
and extract sensing information in IBFD MIMO settings. The approach applies the Fast
Independent Component Analysis (FastICA) algorithm in dynamic scenarios to separate
the SI and SOI signals while enabling simultaneous signal recovery and channel estima-
tion. Simulation results quantify the trade-off between estimation accuracy and channel
dynamics, demonstrating that while FastICA is effective, its performance is fundamentally
limited by a frame size optimized for the rate of channel variation. Specifically, in static
channels, the signal-to-residual-error ratio (SRER) exceeds 22 dB with 500-symbol frames,
whereas for moderately time-varying channels, performance degrades significantly for
frames longer than 150 symbols, with SRER dropping below 4 dB.

Keywords: MIMO; IBFD; channel estimation; joint communication and sensing; blind
source separation

1. Introduction
The relentless growth of mobile data traffic and the expansion into millimeter-wave

(mmWave) frequencies demand transformative advances in wireless technology to over-
come spectrum scarcity [1,2]. In-band full-duplex (IBFD) communication is a highly promis-
ing technique for enhancing spectral efficiency, as it allows a transceiver to transmit and
receive simultaneously on the same frequency band [3,4]. However, the primary obstacle
in realizing IBFD systems is the powerful self-interference (SI) signal, i.e., the leakage from
the node’s own transmitter into its receiver, which can be orders of magnitude stronger
than the desired signal of interest (SOI) from a remote user.

Conventionally viewed as a detriment, SI finds a novel purpose within the emerging
paradigm of joint communication and sensing (JCAS) [5]. The JCAS framework reinterprets
the high-power SI signal as an invaluable “signal of opportunity” for environmental sens-
ing. This dual-functionality is critical for next-generation applications, such as autonomous
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vehicle navigation, smart city infrastructure, and indoor localization, where real-time en-
vironmental awareness is as important as high-speed data links [6]. Since the waveform
of the SI signal is perfectly known to the transceiver, its reflections off surrounding ob-
jects can be exploited to estimate the radio channel, detect environmental changes, and
perform radar-like functions without needing dedicated sensing waveforms or hardware
(e.g., see [6–10] and the references therein). This dual use of the radio signal promises to
significantly improve resource utilization, efficiency, and system functionality.

To realize this dual functionality, the receiver must effectively separate the SOI from
the SI and other signals. Blind source separation (BSS) techniques [11], particularly Inde-
pendent Component Analysis (ICA) [12], are well suited for this task. BSS algorithms can
distinguish and separate signals based on their statistical properties, such as statistical
independence, making them ideal for untangling the SOI and the reflected SI components
in a complex received signal mixture.

1.1. Related Work

The concept of using BSS for signal separation in communication systems is well
established. Prior work has explored BSS for various JCAS and full-duplex applications,
demonstrating its potential in managing overlapping signals and extracting valuable infor-
mation [13]. In particular, a sparsity-enhanced source separation scheme is proposed in [14]
to mitigate aliasing in joint communication and radar scenarios. Fouda et al. [15] further
explored the design of BSS architectures tailored for full-duplex systems, emphasizing the
challenges associated with maintaining computational efficiency while managing strong SI
signals. Barneto [16] provides insights into waveform and hardware integration strategies,
offering a foundational understanding of signal co-design in cellular JCAS systems.

1.2. Contributions

However, these studies primarily assume a stationary or quasi-stationary channel
environment. Our work distinguishes itself by explicitly investigating the performance
degradation of a BSS-based JCAS framework under continuously time-varying channel
conditions. While some adaptive BSS techniques exist [17,18], the performance of the
widely used and computationally efficient FastICA algorithm in such dynamic JCAS
scenarios has not been systematically quantified. The primary objective of this paper is
not to benchmark different BSS algorithms against one another but rather to examine
the feasibility and performance implications of applying a BSS-based framework to the
integrated communication and sensing scenario in time-varying IBFD MIMO systems. Our
key contributions are the following:

1. We model a JCAS system where the known SI signal is used for sensing in a time-
varying environment.

2. We systematically evaluate the system’s sensing (ELMMSE) and communication
(SRER) performance as a function of frame size and the rate of channel variation.

3. We identify and analyze the fundamental trade-off between statistical reliability
(favoring longer frames) and channel stationarity (favoring shorter frames), revealing
an optimal frame size that is dependent on channel dynamics.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 introduces the system
model for IBFD MIMO with time-varying channels. Section 3 describes the BSS-based
channel estimation framework using FastICA. Section 4 presents the simulation setup and
analyzes the performance under various channel dynamics. Section 5 concludes this work
and outlines future research directions.
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1.4. Notations

We use E[X] to represent the expectation of the random variable X. Bold letters denote
vectors or matrices. ∥ · ∥2 represents the Frobenius norm. N (µ, σ2) denotes the Gaussian
distribution with mean µ and variance σ2. Mn×m represents a generic matrix with n rows
and m columns. (·)T denotes transpose operation.

2. System Model
As illustrated in Figure 1, we consider an IBFD MIMO system comprising two

transceiver nodes, each equipped with n transmit antennas and m receive antennas. Both
nodes simultaneously transmit and receive signals over the same frequency band, enabling
full-duplex communication. The received signal at each node is composed of multiple com-
ponents: (1) the SOI, which includes both direct-path and reflected components from the
remote node, and (2) the SI signal, which includes direct leakage between the local transmit
and receive antennas and reflections from the environment. Unlike conventional channel
models developed solely for communication systems (e.g., 3GPP TR 38.901 [19], WINNER
II [20], COST 2100 [21]), our framework explicitly incorporates both direct and reflected
SI components alongside the SOI. Non-JCAS models typically do not model the loopback
SI path created by in-band full-duplex operation, nor do they account for environmental
reflections of SI that are crucial for sensing functionality.

ADC
y(n)

RxRF
y(t)

DAC TxRF
x(t)x(n)

Node 2

Hsi-r

NT

Hsoi-cHsi-c

Hsoi-r

Node 1

NR

NT

NR

y(t)e jωt

x(t)e jωt x(t)e jωt

Figure 1. IBFD MIMO system model with self-interference and environmental reflections.

Crucially, in this work, we consider the impact of time-varying channel conditions,
which are characteristic of many realistic wireless environments. The channel properties,
including amplitude and phase responses, can change over time due to factors such as
user mobility, changes in the environment, and multipath fading. Let Rl(k) denote the
time-domain received signal at the l-th receive antenna at time k. It is expressed as

Rl(k) =
n

∑
i=1

(Hi
si-c(k) + Hi

si-r(k))S
i
si(k)

+
n

∑
i=1

(Hi
soi-c(k) + Hi

soi-r(k))S
i
soi(k) + N(k), l ≤ m.

(1)

Here, N(k) ∼ N (0, σ2) is the additive Gaussian noise. For each node at time k, Hi
si-c(k)

and Hi
soi-c(k) are the direct SI and SOI channels, respectively; Hi

si-r(k) and Hi
soi-r(k) denote

the reflected channels at the i-th transmit antenna; and Si
si(k) and Si

soi(k) are the SI and
SOI signals from the i-th transmit antenna, respectively. Each channel, now explicitly
represented as a function of time k, is assumed to have independent, identically distributed
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(i.i.d.) entries for a given time instant. For convenience, we can rewrite the equation in
matrix form at time k as follows:

R(k) = (Hsi-c(k) + Hsi-r(k))Ssi(k) + (Hsoi-c(k)

+ Hsoi-r(k))Ssoi(k) + N(k)
(2)

where Hsi-c(k), Hsi-r(k), Hsoi-c(k), Hsoi-r(k) ∈ Mm×n, Ssi(k), Ssoi(k) ∈ Mn×1, and R ∈ Mm×1.
In our model, the channels are explicitly time-dependent. We assume that the direct SI
channel, Hsi-c(k), is relatively stable or can be accurately calibrated, as it corresponds
to the fixed geometry of the transceiver hardware. In contrast, the reflected channels,
Hsi-r(k) and Hsoi-r(k), are stochastic and time-varying, capturing the dynamic nature of the
propagation environment due to mobility and scattering. Note that Ssi(k) is the transmitted
signal from the same node at time k, implying that Ssi(k) is known to the receiver. The
direct self-interference channel Hsi-c(k) is also generally known to the receiver and remains
relatively stable compared to the reflected channels, although it can still exhibit some
time dependency.

We can further rewrite (2) in a form that resembles a canonical BSS model at time k:[
Ssi(k)
R(k)

]
= H(k)

[
Ssi(k)
Ssoi(k)

]
+

[
0

N(k)

]
, (3)

where H(k) is a composite mixing matrix at time k, defined as

H(k) =

[
I 0

Hsi(k) Hsoi(k)

]
∈ M2m×2n, (4)

with Hsi(k) = Hsi-c(k) + Hsi-r(k), (5)

and Hsoi(k) = Hsoi-c(k) + Hsoi-r(k), (6)

and I being the identity matrix of size m × n. Equation (3) represents a key step in our
framework. By stacking the known transmitted SI signal Ssi(k) with the received signal
R(k), we create an augmented observation vector. This transforms the problem into a
canonical BSS form where the “sources” are the SI and SOI signals, and the “mixing matrix”
H(k) contains the channel parameters we wish to estimate. Crucially, because Ssi(k) is
known, it can serve as a reference signal, anchoring the BSS algorithm and helping to
resolve ambiguities in the separation progress, thereby enabling the estimation of both the
unknown channel Hsi-r(k) and the unknown signal Ssoi(k).

3. BSS-Based Channel Estimation
We now describe the application of the FastICA algorithm [12] to separate the SI and

SOI components from the observed signals. For simplicity, we assume m = n, meaning
each node has an equal number of transmit and receive antennas. We treat the sum Hsoi

in (6) as the overall channel coefficient of the SOI. The goal is two-fold: (1) to estimate the
unknown communication signal Ssoi for data recovery and (2) to estimate the reflected SI
channel Hsi-r for environmental sensing.

3.1. Blind Source Separation for Sensing

The ICA algorithm is founded on the principle that many mixed signals are linear
combinations of underlying source signals that are mutually statistically independent and
non-Gaussian. In our model, the transmitted BPSK signals are non-Gaussian, satisfying this
core requirement. The goal of ICA is to find a linear transformation (an “unmixing” matrix)
that, when applied to the observed mixtures, maximizes the statistical independence of the
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outputs. This process allows us to recover the original source signals, or scaled versions of
them. In particular, the FastICA algorithm exploits non-Gaussianity in the received signal
mixture to estimate the independent source components iteratively. The algorithm follows
the following key steps:

1. Preprocessing: The received signal matrix is first centered by subtracting its mean.
Then, it is “whitened” using a technique like eigenvalue decomposition. Whitening
is a linear transformation that removes any second-order correlations in the data,
forcing the components to be uncorrelated and have unit variance. This simplifies the
problem for the ICA algorithm, as the unknown mixing matrix H(k) is transformed
into an orthogonal matrix, reducing the search space and improving convergence
speed. It is important to note that for whitening to be effective, the number of
samples (i.e., the frame size) must be sufficiently large relative to the number of signal
dimensions to allow for the robust estimation of the covariance matrix. In highly
dynamic environments, this requirement conflicts with the need for short frames to
ensure channel stationarity, establishing a fundamental performance trade-off that we
investigate in this paper.

2. Iterative Estimation: FastICA iteratively estimates the columns of the unmix-
ing matrix by maximizing a measure of non-Gaussianity called negentropy, i.e.,
J(y) = E[G(y)]− E[G(v)], where G is a non-quadratic function, y is the estimated
source, and v is a Gaussian variable with the same variance as y. Negentropy is
always non-negative and is zero only for a Gaussian distribution. Therefore, maxi-
mizing it drives the estimated source y away from Gaussianity and towards one of
the independent source components. For computational simplicity, FastICA max-
imizes approximations of negentropy using non-quadratic functions G(y) such as
G1(y) = log(cosh(y)) and G2(y) = − exp(−y2/2).

3. Source Recovery: Estimate the unknown channel Ĥsi-r and signal Ŝsoi from the sepa-
rated components using the known SI signal as a reference. The FastICA update rule
for extracing one independent component is

w = E[zg(wTz)]−E[g′(wTz)]w,

where z is the whitened data, g is the derivative of G, and w is normalized after
each iteration.

3.2. Performance Metrics

We evaluate the quality of channel estimation using the ergodic linear minimum mean
squared error (ELMMSE), which quantifies the average estimation error of the sensed channel:

ELMMSE = E[∥Hsi-r(k)− Ĥsi-r(k)∥2]. (7)

The communication performance is quantified via the signal-to-residual-error ratio (SRER)
of the extracted communication signal:

SRER =
E[∥Ssoi(k)∥2]

E[∥Ssoi(k)− Ŝsoi(k)∥2]
. (8)

A higher SRER implies more effective signal separation and cleaner communication signal
extraction, directly reflecting the system’s communication performance under the JCAS
paradigm. Additionally, we can assess the ELMMSE of the overall SOI channel Hsoi as

ELMMSE = E[∥Hsoi(k)− Ĥsoi(k)∥2], (9)



Electronics 2025, 14, 3200 6 of 12

which accounts for both the direct transmission channel between the transmitter and re-
ceiver, as well as the reflected and scattered components from the surrounding environment.
This channel state information can be leveraged to optimize the transmission schemes (e.g.,
precoder design in MIMO systems) and to maximize the signal-to-interference-plus-noise
ratio (SINR), as follows:

SINR =
E[∥Hsoi(k)Ssoi(k)∥2]

E[∥Hsi(k)Ssi(k)∥2] +E[∥N(k)∥2]
.

In Section 4, we will also track the number of iterations required for the ICA al-
gorithm to converge, which provides insights into the computational complexity and
algorithmic efficiency of the proposed BSS approach under different signal block sizes and
channel dynamics.

4. Simulation and Discussion
4.1. Simulation Setup

In this section, we evaluate the sensing and communication performance of the pro-
posed system through numerical simulations based on a practical system model. Each node
is equipped with two antennas. The reflected channel Hsi-r is modeled as a Rician channel
with Hsi-r ∼ Rice(x, y), where x is the Rician factor and y is the average channel power.
This is because the SI signal reflects off objects near the transceiver, creating a scenario with
a dominant line-of-sight (LOS) path alongside multipath components, for which the Rician
distribution is the standard model. In contrast, the overall communication channel Hsoi is
modeled as Rayleigh-distributed. This represents a rich, scattering, non-LOS propagation
environment, which is typical for communication between two separate nodes in urban
settings where obstacles are common, which is consistent with 3GPP TR 38.901 urban
microcell assumptions [19]. Our simplified model preserves these key statistical properties
while reducing complexity, making it suitable for algorithm-level evaluations of BSS-based
JCAS without introducing excessive simulation overhead.

The transmitted signals Ssi and Ssoi are BPSK-modulated, with each symbol randomly
chosen from {−1,+1}. BPSK is chosen for its simplicity and non-Gaussian nature, which
is a prerequisite for ICA, making it an ideal starting point for this analysis. The combined
source matrix is defined as S =

[
Ssi; Ssoi

]
∈ R4×N , where N denotes the frame size

(signal processing block length). The received signal is generated by linearly mixing the
source signals through the corresponding channel matrices and adding a Gaussian noise of
σ2 = 0.01 (20 dB SNR).

To model time-varying channels, Hsi and Hsoi, are initialized once and then linearly
perturbed at each time frame. The chosen simulation values for channel variation (δ)
and frame size were selected to systematically demonstrate the core trade-off between
statistical reliability and channel stationarity in the proposed system. We test three time
variation speeds corresponding to δ = 0, 0.0005, 0.001, where δ = 0 represents an ideal,
unchanging channel, and δ = 0.0005 and 0.001 are selected to model realistic, dynamic
mobile environments. The static channel serves as a crucial performance benchmark,
showing how the FastICA algorithm performs when its core assumption of a stationary
environment is perfectly met. This baseline allows for isolating performance limitations of
the algorithm itself versus those caused by channel dynamics. In contrast, the non-zero
small variation factors are chosen to be low enough to prevent immediate algorithm failure
yet sufficiently high to introduce measurable degradation as the frame size increases. This
design clearly demonstrates the existence of an optimal frame size that balances statistical
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reliability with the rate of channel variation. For each time frame k ∈ [1, N f ] (where N f is
the number of frames), the time-varying channels are computed as

Hsi(k) = Hsi(0) + δ · k,

Hsoi(k) = Hsoi(0) + δ · k.

Since the mixing matrix is continuously changing with time, we consider the midpoint
mixing matrix for evaluation, as follows:

Hmid = H(k = ⌊N f /2⌋).

In cases where the mixing matrix varies sporadically over time, the average mixing matrix
offers a more stable approximation than using a single midpoint. The average composite
mixing matrix is defined as

Havg =
1

N f

N f

∑
k=1

H(k).

The estimated mixing matrix is post-processed via column permutation to resolve
inherent ICA ambiguities. The range of frame sizes (50 to 500 symbols) is selected to
effectively capture and display the system’s performance across different processing block
lengths. The lower bound of 50 tests the system under conditions of limited statistical data,
where performance is expected to be poor. The upper bound of 500 is large enough to
achieve high performance in a static channel, demonstrating the benefit of having more
data when the environment is stable. The step size of 50 provides enough data points to plot
a smooth and clear performance curve, allowing for easy visualization of the performance
trends and the identification of the optimal frame size regions.

4.2. Simulation Results

Figures 2–5 illustrate the system’s performance as a function of frame size under
three different time variation speeds. The time variation speeds δ = 0, 0.0005, and 0.001
correspond to static, slowly time-varying, and moderately time-varying channel conditions,
respectively. These plots evaluate how well the proposed FastICA-based joint communica-
tion and sensing framework performs as the rate of channel change increases.

Figure 2 shows the evolution of the ELMMSE for the SI reflection channel Hsi-r across
varying frame sizes. In the static case (i.e., δ = 0), the estimation error decreases steadily
with increasing frame length, reaching approximately 0.01 at 500 symbols. This improve-
ment occurs because longer frames provide more statistical information for the ICA algo-
rithm to exploit. However, for time-varying channels, the behavior is noticeably different.
The slowly varying case (δ = 0.0005) shows optimal performance around 200–250 frames,
after which the error begins to increase. The moderately varying case (δ = 0.001) ex-
hibits even more pronounced degradation, with optimal performance occurring around
150 frames. This degradation occurs because the average composite mixing matrix becomes
less representative of any individual time frame as the channel varies more significantly
over the processing block.

A similar trend is observed in Figure 3, which shows the ELMMSE for the SOI channel
Hsoi. The estimation error decreases rapidly for small-to-moderate frame sizes across
all variation speeds but begins to degrade when the channel varies too quickly within
a block. In particular, the curve for δ = 0.001 demonstrates increasing error beyond
200–250 frames, highlighting the fundamental limitation of using batch ICA methods
in dynamic environments. The SOI channel estimation appears more sensitive to time



Electronics 2025, 14, 3200 8 of 12

variations than the SI channel, likely due to the lack of prior knowledge about the SOI
signal structure.

Time Variation Speed = 0
Time Variation Speed = 0.0005 
Time Variation Speed = 0.001
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Figure 2. ELMMSE of channel sensing Ĥsi-r vs. frame size.
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Figure 3. ELMMSE of channel sensing Ĥsoi vs. frame size.

5

25

20

15

10

0
50 100 150 200 250 300

 
350 400 450 500

Frame Size

S
R

E
R

 (
dB

)

Time Variation Speed = 0
Time Variation Speed = 0.0005 
Time Variation Speed = 0.001

Figure 4. SRER for SOI in dB vs. frame size.
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Figure 5. Number of FastICA iterations required for convergence vs. frame size.

Figure 4 displays the SRER in decibels, which quantifies the quality of the recovered
communication signal. The static case (δ = 0) shows a consistent increase in SRER with
frame size, reaching over 22 dB by 500 symbols. However, in time-varying scenarios,
performance peaks early and then degrades significantly. For δ = 0.0005, the SRER
begins to decline beyond 200 frames, while for δ = 0.001, the degradation starts even
earlier (around 150 frames) and is more severe, dropping below 4 dB. These results show
that while longer frames improve statistical estimation in principle, they also introduce
greater inconsistency between the assumed and actual mixing behavior, leading to poorer
separation outcomes in dynamic channels.

Figure 5 depicts the average number of iterations required by the FastICA algorithm
to converge. In the static case, iteration count decreases from about 15 at small frame sizes
to approximately 14 at larger frame sizes, indicating improved convergence efficiency with
more data. However, for time-varying cases, convergence behavior is different. The slowly
varying case (δ = 0.0005) maintains relatively stable iteration counts around 17–18. The
moderately varying case (δ = 0.001) shows the most challenging convergence behavior,
requiring over 21 iterations at 500 symbols. The increased convergence time reflects the
algorithm’s difficulty in finding a consistent separation solution when the underlying
mixing matrix is changing during the processing block.

4.3. Discussion and Insights

The simulation results reveal several important insights for the JCAS system’s design
in time-varying environments. A critical trade-off exists for the optimal frame size, which
must balance statistical reliability with channel stationarity. For slowly varying channels
(δ = 0.0005), this optimum is around 200–250 symbols, whereas for faster variations
(δ = 0.001), it shifts to 150–200 symbols, meaning system designers must select frame
sizes based on expected channel dynamics. This performance degradation stems from the
mismatch between the block-based assumption of FastICA and the continuous evolution
of the channel. As the frame size increases, this mismatch becomes more pronounced,
leading to errors in both channel estimation and signal separation. Notably, the SOI channel
estimation and signal recovery appear more sensitive to time variations than the SI channel
estimation, which suggests that leveraging the known SI signal provides some robustness
in dynamic environments. Furthermore, the increased iteration count in these scenarios
indicates not only convergence difficulties but also higher computational requirements that
must be considered for real-time implementation. Ultimately, these results demonstrate the
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limitations of traditional FastICA for time-varying channels and motivate the development
of adaptive BSS algorithms capable of tracking such variations continuously.

5. Conclusions and Future Work
In this work, we proposed and evaluated a blind source separation (BSS)-enabled

framework for joint communication and sensing (JCAS) in in-band full-duplex (IBFD)
MIMO systems. By exploiting the known self-interference (SI) signal, we demonstrated
how it can be repurposed for environmental sensing without requiring dedicated sensing
waveforms. The system was formulated as a BSS problem and solved using the FastICA al-
gorithm to achieve simultaneous SI suppression and channel estimation. Through extensive
simulations under static and time-varying channel conditions, we evaluated the perfor-
mance of the proposed framework using various metrics, including signal-to-residual-error
ratio (SRER), ergodic linear minimum mean 124 squared error (ELMMSE) for both signal of
interest (SOI) and SI channels, and convergence behavior of FastICA. Our results indicate
that in static channels (δ = 0), longer frame sizes consistently improve separation and
estimation performance, with SRER exceeding 22 dB at 500-symbol frames and ELMMSE
approaching 0.01. However, under time-varying conditions (δ = 0.0005 and 0.001), per-
formance degrades beyond certain optimal frame lengths. This degradation is due to the
mismatch between the assumed stationary mixing matrix and the actual evolving one,
which hampers both separation accuracy and algorithm convergence.

The average number of iterations required for convergence also increases significantly
in highly dynamic channels, particularly for δ = 0.001, highlighting the limitations of
conventional FastICA in such settings.

To further enhance the practicality and robustness of the proposed JCAS framework,
future research directions include the following:

• Hardware Implementation Considerations: As full-duplex JCAS systems move toward
practical deployment, addressing implementation challenges such as I/Q imbalance,
phase noise, and nonlinear distortions in the BSS framework becomes crucial.

• Dynamic Frame Size Adaptation: Developing reinforcement learning-based strate-
gies that dynamically adjust processing block lengths based on real-time channel
variation estimates could optimize the trade-off between statistical reliability and
channel stationarity.

• Multi-User Scenarios: Extending the framework to multi-user MIMO scenarios where
multiple communication pairs share the same spectrum while performing distributed
sensing presents both theoretical and practical challenges worth exploring.

• Machine Learning Integration: Following recent trends in wireless communications,
integrating deep learning approaches such as complex time-domain dilated convolu-
tional recurrent networks could provide superior adaptation to time-varying channels
while maintaining reasonable computational complexity.

Overall, the integration of adaptive intelligence and advanced BSS techniques holds
significant promise for realizing spectrally efficient, environment-aware wireless net-
works. As 5G-Advanced and 6G standardization efforts progress, these technologies
will play a crucial role in enabling applications ranging from autonomous vehicles to smart
city infrastructure.

Author Contributions: Conceptualization, S.L. and T.Y.; methodology, S.L. and T.Y.; software, C.P.;
validation, C.P., S.L. and T.Y.; formal analysis, C.P., S.L. and T.Y.; investigation, C.P.; data curation,
C.P.; writing—original draft preparation, S.L. and C.P.; writing—review and editing, C.P., S.L. and
T.Y.; visualization, C.P.; supervision, S.L. and T.Y.; project administration, S.L. and T.Y.; funding
acquisition, S.L. and T.Y. All authors have read and agreed to the published version of the manuscript.



Electronics 2025, 14, 3200 11 of 12

Funding: This research was supported by the Embry-Riddle Aeronautical University Internal Faculty
Seed Fund (4.04) from The Boeing Center for Aviation and Aerospace Safety (BCAAS).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multiple-Input Multiple-Output
IBFD In-Band Full Duplex
BSS Blind Source Separation
ICA Independent Component Analysis
JCAS Joint Communication and Sensing
SI Self-Interference
SOI Signal of Interest
ELMMSE Ergodic Linear Minimum Mean Squared Error
SRER Signal-to-Residual-Error Ratio
SINR Signal-to-Interference-Plus-Noise Ratio

References
1. Heath, R.W.; Gonzalez-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An overview of signal processing techniques for millimeter

wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [CrossRef]
2. Belgium Completes 5G Spectrum Auction. Available online: https://www.rcrwireless.com/20220725/featured/belgium-

completes-final-phase-spectrum-auction (accessed on 19 June 2025).
3. Kolodziej, K.E. In-Band Full-Duplex Wireless Systems Handbook; Artech House: Norwood, MA, USA, 2021.
4. Alves, H.; Riihonen, T.; Suraweera, H.A. Full-Duplex Communications for Future Wireless Networks; Springer: Cham,

Switzerland, 2020.
5. Smida, B.; Alexandropoulos, G.C.; Riihonen, T.; Islam, M.A. In-band full-duplex MIMO systems for simultaneous communications

and sensing: Challenges, methods, and future perspectives. arXiv 2024, arXiv:2410.06512.
6. Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Toward dual-

functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [CrossRef]
7. Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling joint communication and radar sensing in

mobile networks—A survey. IEEE Commun. Surv. Tutor. 2022, 24, 306–345. [CrossRef]
8. Fang, X.; Feng, W.; Chen, Y.; Ge, N.; Zhang, Y. Joint communication and sensing toward 6G: Models and potential of using MIMO.

IEEE Internet Things J. 2023, 10, 4093–4116. [CrossRef]
9. Li, S.; Caire, G. On the capacity and state estimation error of “beam-pointing” channels: The binary case. IEEE Trans. Inf. Theory

2023, 69, 5752–5770. [CrossRef]
10. Ahmadipour, M.; Kobayashi, M.; Wigger, M.; Caire, G. An information-theoretic approach to joint sensing and communication.

IEEE Trans. Inf. Theory 2024, 70, 1124-1146. [CrossRef]
11. Cardoso, J.-F. Blind signal separation: Statistical principles. Proc. IEEE 1998, 86, 2009–2025. [CrossRef]
12. Bingham, E.; Hyvärinen, A. A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J.

Neural Syst. 2000, 10, 1–8. [CrossRef] [PubMed]
13. Luo, Z.; Li, C.; Zhu, L. A comprehensive survey on blind source separation for wireless adaptive processing: Principles,

perspectives, challenges and new research directions. IEEE Access 2018, 6, 66685–66708. [CrossRef]
14. Jin, B.; Sun, J.; Ye, P.; Zhou, F.; Lim, H.; Wu, Q.; Al-Dhahir, N. Data-driven sparsity-based source separation of the aliasing signal

for joint communication and radar systems. IEEE Trans. Veh. Technol. 2023, 72, 2161–2174. [CrossRef]
15. Fouda, M.E.; Shen, C.-A.; Eltawil, A.E. Blind source separation for full-duplex systems: Potential and challenges. IEEE Open J.

Commun. Soc. 2021, 2, 1379–1389. [CrossRef]
16. Baquero Barneto, C. Analysis and Design of Joint Communication and Sensing for Wireless Cellular Networks. Ph.D. Dissertation,

Tampere University, Tampere, Finland, 2022.
17. Li, J.; Zhang, H.; Zhang, J. Fast adaptive BSS algorithm for independent/dependent sources. IEEE Commun. Lett. 2016, 20,

2221–2224. [CrossRef]
18. Thameri, M.; Abed-Meraim, K.; Belouchrani, A. New algorithms for adaptive BSS. In Proceedings of the 2012 11th International

Conference on Information Science, Signal Processing and Their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012;
IEEE: Piscataway, NJ, USA, 2012; pp. 590–594.

http://doi.org/10.1109/JSTSP.2016.2523924
https://www.rcrwireless.com/20220725/featured/belgium-completes-final-phase-spectrum-auction
https://www.rcrwireless.com/20220725/featured/belgium-completes-final-phase-spectrum-auction
http://dx.doi.org/10.1109/JSAC.2022.3156632
http://dx.doi.org/10.1109/COMST.2021.3122519
http://dx.doi.org/10.1109/JIOT.2022.3227215
http://dx.doi.org/10.1109/TIT.2023.3283419
http://dx.doi.org/10.1109/TIT.2022.3176139
http://dx.doi.org/10.1109/5.720250
http://dx.doi.org/10.1142/S0129065700000028
http://www.ncbi.nlm.nih.gov/pubmed/10798706
http://dx.doi.org/10.1109/ACCESS.2018.2879380
http://dx.doi.org/10.1109/TVT.2022.3212408
http://dx.doi.org/10.1109/OJCOMS.2021.3086105
http://dx.doi.org/10.1109/LCOMM.2016.2598144


Electronics 2025, 14, 3200 12 of 12

19. Zhu, Q.; Wang, C.-X.; Hua, B.; Mao, K.; Jiang, S.; Yao, M. 3GPP TR 38.901 channel model. In The Wiley 5G Reference: The Essential
5G Reference Online; Wiley Press: Hoboken, NJ, USA, 2021; pp. 1–35.

20. Kyösti, P.; Meinilä, J.; Hentilä, L.; Zhao, X.; Jämsä, T.; Schneider, C.; Narandzić, M.; Milojević, M.; Hong, A.; Ylitalo, J.; et al.
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