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Abstract

To address the shortcomings of poor convergence and the ease of falling into local optima
when using the traditional gold rush optimization (GRO) algorithm to solve the complex
scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system,
an optimal scheduling model for a microgrid based on the improved gold rush optimization
(IGRO) algorithm is proposed. First, the Halton sequence is introduced to initialize the
population, ensuring a uniform and diverse distribution of prospectors, which enhances
the algorithm’s global exploration capability. Then, a dynamically adaptive weighting
factor is applied during the gold mining phase, enabling the algorithm to adjust its strategy
across different search stages by balancing global exploration and local exploitation, thereby
improving the convergence efficiency of the algorithm. In addition, a weighted global
optimal solution update strategy is employed during the cooperation phase, enhancing
the algorithm’s global search capability while reducing the risk of falling into local optima
by adjusting the balance of influence between the global best solution and local agents.
Finally, a t-distribution mutation strategy is introduced to improve the algorithm’s local
search capability and convergence speed. The IGRO algorithm is then applied to solve the
microgrid scheduling problem, with the objective function incorporating power purchase
and sale cost, fuel cost, maintenance cost, and environmental cost. The example results
show that, compared with the GRO algorithm, the IGRO algorithm reduces the average total
operating cost of the microgrid by 3.29%, and it achieves varying degrees of cost reduction
compared to four other algorithms, thereby enhancing the system’s economic benefits.

Keywords: improved gold rush optimization algorithm; combined cooling; heating and power
system; microgrid; optimization scheduling; Halton sequence; t-distribution mutation

1. Introduction
Over the past few years, with the increasing problems of fossil energy depletion and

environmental degradation, the survival and development of human beings have come
to face great challenges [1–3]. Conventional energy systems employ a singular energy
management strategy, which hampers the realization of the synergistic and complementary
benefits of diverse energy sources, thereby constraining enhancements in energy efficiency,
conservation, and emissions reduction, while also impeding the development and utiliza-
tion potential of renewable energy sources to some degree [4–6]. Microgrids, as a flexible
and efficient energy distribution and management scheme, have received widespread
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attention, especially combined cooling, heating, and power microgrids, which can produce
electricity while using the waste heat from gas turbines for heating or cooling. This allows
for gradient energy utilization, with the energy utilization efficiency reaching 70% to 90%,
which has significant benefits for energy conservation and protection of the environment,
as well as effectively reducing the operating pressure of the power grid [7–9]. The national
electric power industry is actively promoting the efficient coupling and utilization of energy
in order to achieve the lowest operating costs and optimal environmental benefits, further
reduce the costs of electricity for consumers, and enhance system stability. However, high-
dimensional random variables and large-scale optimization problems in microgrids pose
significant challenges in scheduling [10]. Therefore, the optimal scheduling of microgrids
is of great significance [11–13].

For the complex optimization problems that are faced in practical engineering, es-
pecially in situations with multiple objectives, constraints, and high uncertainty, existing
optimization methods often struggle to fulfill the demands of high effectiveness, accuracy,
and operability in practical applications. Optimization problems in engineering typically
involve large-scale data processing, dynamically changing system environments, and di-
versified objectives and constraints, and traditional optimization algorithms can encounter
many challenges when solving these problems, such as high computational complexity,
slow convergence, and poor stability. In order to overcome these problems, an increasing
amount of research is focusing on improving algorithms. Ref. [14] introduced a variable
inertia weight into the whale optimization algorithm to balance global exploration and local
exploitation. Ref. [15] introduced an adaptive displacement strategy, which emphasizes
the role of the optimal individual to improve the balance of local and global search in
the grey wolf optimization algorithm, thereby enhancing the accuracy of fault diagnosis
for power transformers. Ref. [16] proposed a dual stochastic perturbation strategy in
the gorilla algorithm, which mitigates the swarming effect of gorillas and improves the
algorithm’s capacity to avoid becoming trapped in local optima. Ref. [17] combined the
sparrow search algorithm’s explorer and joiner methods with the butterfly optimization
algorithm, dividing the butterfly population into two sub-groups of varying sizes and
improving the algorithm’s global exploration capability. Ref. [18] employed a horizontal
crossover strategy in the honey badger algorithm to generate new solutions, thereby en-
hancing the search capability of the algorithm. According to the trial results, the enhanced
algorithm not only reduces operational costs, but also significantly reduces the energy
waste rate. Ref. [19] proposed an improved mayfly algorithm for parameter identification
of permanent magnet synchronous motors, which enhances population diversity through
SPM chaotic mapping, improves global search ability by employing Cauchy and Gaussian
mutations based on individual fitness, and strengthens the ability to escape local optima
using a chaotic refractive reverse learning strategy, thereby significantly improving the
accuracy of parameter identification. With the continuous development of intelligent opti-
mization algorithms, an increasing number of novel algorithms have demonstrated strong
adaptability and competitiveness in solving complex engineering problems. Compared
to traditional optimization methods, these improved intelligent algorithms can not only
cope more effectively with the challenges of complex problems, such as high-dimensional,
multi-peaked, and non-linear problems, but also offer significant advantages with regard
to global search capability, convergence rate, and computational efficiency.

With the advancement of intelligent algorithms, novel approaches have demonstrated
superior performance in optimizing distributed energy resource configurations, not only
reducing operational costs, but also enabling more environmentally sustainable dispatch
strategies. Currently, the majority of researchers, both domestically and internationally,
address the problem of optimal scheduling of microgrids by formulating objective func-
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tions and defining corresponding constraints, and employing intelligent optimization
algorithms to obtain effective solutions [20]. Ref. [21] employed a butterfly optimization
algorithm to assess a CCHP system’s energy efficiency and pollutant emissions. Ref. [22]
proposed a hybrid optimization strategy that integrated a Tent map-based chaotic search
mechanism with a non-linear adaptive particle swarm optimization algorithm to solve the
CCHP system’s complex multi-energy coupling features, thereby improving its economic
performance. Ref. [23] introduced a rank pair learning-based crisscross optimization al-
gorithm to determine the most suitable output of distributed power units in microgrids.
The study showed that the algorithm exhibits desirable global convergence properties and
significantly reduces the operational costs of the microgrid. Ref. [24] proposed an improved
multi-objective multi-verse optimization algorithm by incorporating a mechanism based
on opposition learning, a mechanism for dominance ranking, a population-guidance mech-
anism, and a seagull attack operator, thereby enhancing its capability for optimizing the
CCHP system’s configuration using various methods. Ref. [25] significantly enhances the
artificial bee colony algorithm’s ability for broad exploration and precise local exploitation
by introducing a global best-guided strategy and a dynamic step-size adjustment mecha-
nism, thereby effectively reducing the operational cost of the system. Ref. [26] incorporated
a sinusoidal chaotic map, a shared factor mechanism, and a random walk strategy into the
sparrow search algorithm. The improved sparrow search algorithm not only promotes a
more even distribution of the initial population, but also boosts information sharing among
individuals and enhances exploration capability during the local search phase. The fusion
of these strategies greatly strengthens the algorithm’s capacity to dynamically balance local
exploitation and global exploration, thereby effectively lowering the total operational cost
of the microgrid. Ref. [27] proposed a planetary search algorithm to analyze the energy uti-
lization performance of a CCHP system under time-sharing economic operation. Ref. [28]
introduced a chaotic mapping approach based on circle mapping and applied it to initialize
the northern goshawk optimization algorithm. The sequence exhibits higher complexity
and stronger randomness, which improves the problem of premature convergence in the
algorithm, thereby significantly enhancing the operational performance of the microgrid
system. Ref. [29] proposed an improved mother optimization algorithm that dynamically
adjusts both the population size and parameter configurations in response to the problem’s
characteristics and the evolving state of the optimization process. By integrating an adap-
tive control mechanism, the algorithm effectively accommodates dynamic environmental
variations, preserves population variety, and reduces the likelihood of early convergence.
As a result, the algorithm achieves an effective balance between local and global exploration.
In microgrid scheduling applications, the proposed method significantly reduces system en-
ergy consumption and demonstrates promising performance in mitigating carbon dioxide
emissions. Ref. [30] introduced the spiral position update strategy, dynamic weight factor,
Levy flight strategy, and t-distribution mutation strategy into the dung beetle optimizer
algorithm, which, together, help to effectively prevent premature convergence of particles
caused by them becoming trapped in local optima. Ref. [31] introduced an improved honey
badger algorithm that combined a variable spiral factor with a linear parameter-decreasing
strategy, thereby effectively reducing the tendency of the algorithm to become trapped in
local optima. The experimental results showed that the improved honey badger algorithm
significantly increases the economic advantages of the microgrid.

There have been many studies on the gold rush algorithm [32], which have deeply
analyzed and improved it in various aspects. Ref. [33] employed a migration strategy
in combination with the Levy flight mechanism and joining of a follower group, thereby
enhancing the breadth and flexibility of the fusion search approach. Subsequently, a
dynamic opposite learning approach was used to increase population diversity during the
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panning phase. Moreover, a cooperative strategy involving multiple agents was introduced
to strengthen the algorithm’s search capability in the collaboration stage. Finally, the
random differential mutation method was applied to enable the algorithm to escape local
optima. The algorithm enhances the overall network coverage while simultaneously
minimizing redundant nodes and lowering energy usage. Ref. [34] first introduced a good
point-set population initialization to enhance the global exploration capabilities of the GRO
algorithm. Second, the dynamic Levy flight search approach was applied to enhance the
algorithm’s population diversity. Then, a dynamic centroid reverse learning technique was
introduced to update the agents within the group, thereby improving the overall quality
of the population. Finally, a dynamic tangent flight was used to maintain population
diversity, which helps the algorithm to avoid entrapment in local optima. The algorithm
provides a better path planning scheme for the problem of 3D unmanned aircraft route
planning. Ref. [35] used quasi-reverse learning to initialize the population, replaced the
original convergence factor with the sigmoid function, and incorporated the golden sine
algorithm to enhance optimization performance. The improved GRO algorithm exhibits
lower maximum and average reflection coefficients compared to the GRO algorithm in
the design optimization of multilayer microwave absorbers under normal incidence. The
above mentioned literature has improved the GRO algorithm and applied it to different
engineering fields. However, no research has yet been carried out on solving the problem
of optimal scheduling of a CCHP microgrid using the GRO algorithm.

The GRO algorithm features a remarkable adaptive search mechanism and exhibits
strong adaptability in addressing the integrated requirements of robustness, real-time
performance, and scalability in optimal microgrid scheduling. In addition, the GRO
algorithm does not require complex parameterization and it avoids the effects of uncertainty
associated with parameterization. As a result, this paper chooses the GRO algorithm to
deal with the microgrid optimization problem, and proposes targeted improvements to
address the issues of poor convergence and an inclination to fall into local optima, aiming to
better adapt to the complexity, dynamics, and high-reliability requirements of multi-energy
scheduling in microgrid systems.

The contributions of this paper are as follows:

1. It establishes a CCHP microgrid optimization scheduling model based on the IGRO
algorithm.

2. With the aim of addressing the shortcomings of poor convergence and susceptibility to
becoming trapped in local optima, the initialization mechanism and search strategies
of the algorithm are improved.

3. Several benchmark functions are employed for simulation and comparative analysis to
verify the superior convergence accuracy of the proposed IGRO algorithm compared
to other algorithms.

4. The IGRO algorithm is applied to optimize scheduling in a microgrid, demonstrating
its effectiveness in addressing the scheduling optimization problem when compared
to other algorithms.

2. Mathematical Model of CCHP System
Figure 1 shows the structure of the CCHP system. The electricity load is mainly met

by the power grid, photovoltaics (PV), wind turbines (WT), and a gas turbine (GT). When
electricity is abundant, excess power can be sold back to the grid. The heating load is
met by the waste heat boiler (WHB), gas boiler (GB), and electric boiler (EB), while the
cooling load is supplied by the absorption chiller (AC) and electric refrigeration (ER).
Storage batteries (BT), thermal storage tanks (HS), and cold storage tanks (CS) play roles in
supplying electricity, heating, and cooling loads, as well as in peak shaving.
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Figure 1. CCHP system structure diagram.

2.1. Mathematical Model of Gas Turbine

The gas turbine uses natural gas as fuel, and is capable of recovering waste heat to
provide heating for users while generating electricity. The corresponding mathematical
expressions are as follows [36]: {

Pe
GT(t) = ηe

GTPg
GT(t),

Ph
GT(t) = ηh

GTPg
GT(t).

(1)

In Equation (1), Pe
GT(t), Ph

GT(t), and Pg
GT(t) are the output electric power, thermal power,

and natural gas power consumed by the gas turbine in time period t, respectively; ηe
GT and ηh

GT
are the efficiency of electricity production and heat generation of the gas turbine, respectively.

2.2. Mathematical Model of Gas Boiler

Natural gas is burned in the gas boiler to provide heat; the mathematical expression
associated with this process is as follows:

Ph
GB(t) = ηGBPg

GB(t). (2)

In Equation (2), Ph
GB(t) and Pg

GB(t) are the thermal power output and the natural
gas power consumed by the gas boiler at time t, respectively; ηGB is the heat generation
efficiency of the gas boiler.

2.3. Mathematical Model of Waste Heat Boiler

The waste heat boiler provides heat by absorbing waste heat from the exhaust gases
produced by the gas turbine. The mathematical model is as follows:

Ph
WHB(t) = ηWHBPh

GT(t). (3)

In Equation (3), Ph
WHB(t) and ηWHB are the thermal power output and heat generation

efficiency of the waste heat boiler at time t, respectively.

2.4. Mathematical Model of Electric Boiler

The electric boiler is a device that generates heat energy by flowing electrical energy
through a high-resistance element; the mathematical expression is as follows:

Ph
EB(t) = ηEBPe

EB(t). (4)

In Equation (4), Ph
EB(t), Pe

EB(t), and ηEB are the thermal power output, consumed
electric power, and heat generation efficiency of the electric boiler at time t, respectively.
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2.5. Mathematical Model of Electric Refrigeration

The electric refrigeration uses electric energy to drive compressors and transfer heat
through refrigerant circulation to achieve refrigeration. The mathematical model is as follows:

Pc
ER(t) = ηERPe

ER(t). (5)

In Equation (5), Pc
ER(t), Pe

ER(t), and ηER are the cooling power output, consumed
electric power, and cooling efficiency of the electric refrigeration at time t, respectively.

2.6. Mathematical Model of Absorption Chiller

The absorption chiller is a device that drives refrigeration by absorbing thermal energy,
and its mathematical model is as follows:{

Ph
AC(t) = µACPh

WHB(t),
Pc

AC(t) = ηACPh
AC(t).

(6)

In Equation (6), Pc
AC(t) and Ph

AC(t) express the output cooling power and input heating
power of the absorption chiller at time t, respectively; µAC is the proportion of heat delivered
from the waste heat boiler to the absorption chiller; and ηAC is the cooling efficiency of the
absorption chiller.

2.7. Mathematical Model of Energy Storage Devices

The energy storage devices include storage batteries, thermal storage tanks, and cold
storage tanks. The corresponding mathematical expressions are as follows:

Ps(t) = Pcha
s (t)ηcha

s − Pdis
s (t)/ηdis

s ,
Ss(t) = Ss(t − 1) + Ps(t),
0 ≤ Pcha

s (t) ≤ Bcha
s (t)Pcha,max

s ,
0 ≤ Pdis

s (t) ≤ Bdis
s (t)Pdis,max

s ,
Ss(0) = Ss(T),
Bcha

s (t) + Bdis
s (t) ≤ 1,

Smin
s ≤ Ss(t) ≤ Smax

s ,
s ∈ {BT, HS, CS}.

(7)

In Equation (7), s is the collection of electricity, heat, and cold energy storage; Pcha
s (t)

and Pdis
s (t) are the energy storage device’s charging and discharging powers during the

time period t, respectively; ηcha
s and ηdis

s are the charging efficiency and discharging effi-
ciency of the energy storage device, respectively; Ss(t) and Ss(t − 1) are the capacities of
energy storage devices at different time periods; Pcha,max

s and Pdis,max
s are the maximum

power of single charging and discharging energy, respectively; Bcha
s (t) and Bdis

s (t) are
binary variables representing the charging and discharging state parameters of the energy
storage device during time period t, respectively; and Smax

s and Smin
s represent the upper

and lower limits of the energy storage device’s capacity.

2.8. Power Constraints
2.8.1. Constraints of Energy Balance

Energy balance includes electrical balance, thermal balance, and cold balance. The
corresponding mathematical expressions are as follows:

Pgrid(t) + PWT(t) + PPV(t) + Pdis
BT (t) + Pe

GT(t) = Pe
load(t) + Pcha

BT (t) + Pe
ER(t) + Pe

EB(t). (8)

Ph
EB(t) + Ph

WHB(t)− Ph
AC(t) + Ph

GB(t) + Pdis
HS (t) = Ph

load(t) + Pcha
HS (t). (9)
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Pc
ER(t) + Pc

AC(t) + Pdis
CS (t) = Pc

load(t) + Pcha
CS (t). (10)

In Equations (8)–(10), Pe
load(t), Ph

load(t), and Pc
load(t) are the electric load, heating load,

and cooling load at time t, respectively.

2.8.2. Constraints of Power Grid

∣∣∣Pgrid(t)
∣∣∣ ≤ Pmax

grid . (11)

In Equation (11), Pgrid(t) is the power of exchange with the grid in time period t, and
Pmax

grid is the maximum power of purchasing or selling from the grid.

2.8.3. Constraints of Equipment


0 ≤ Pe

GT(t) ≤ Pe,max
GT ,

0 ≤ Ph
GB(t) ≤ Ph,max

GB ,
0 ≤ Ph

EB(t) ≤ Ph,max
EB ,

0 ≤ Pc
ER(t) ≤ Pc,max

ER .

(12)

In Equation (12), Pe,max
GT , Ph,max

GB , Ph,max
EB , and Pc,max

ER are the maximum output power of
GT, GB, EB, and ER.

2.9. Objective Function

This paper optimizes the output of controllable devices with the goal of minimizing the
system’s electricity purchase and sale cost, fuel cost, maintenance cost, and environmental cost.

F = min
T

∑
t = 1

(CG(t) + CF(t) + CM(t) + CE(t)). (13)

In Equation (13), CG(t), CF(t), CM(t), and CE(t) are the cost of purchasing and selling
electricity, fuel cost, maintenance cost, and environmental cost, respectively. Their specific
expressions are as follows:

CG(t) =

{
Pgrid(t)cbuy(t), Pgrid(t) ≥ 0,
Pgrid(t)csell(t), Pgrid(t) < 0.

(14)

CF(t) =
cgas

L

(
Pg

GT(t) + Pg
GB(t)

)
. (15)

CM(t) =
n

∑
i = 1

KiPi(t). (16)

CE(t) =
3

∑
k = 1

(
λGT,kPe

GT(t) + λGB,kPh
GB(t) + λG,kPG(t)

)
ck. (17)

In Equations (14)–(17), cbuy(t) and csell(t) are the prices of purchasing and selling one
unit of electricity at time t, respectively; cgas and L are the cost per unit of natural gas
consumed by gas equipment and the low calorific value of natural gas, respectively; Ki

is the unit maintenance cost of the ith piece of equipment; Pi(t) is the power output or
consumption of the ith device at time t; λGT,k, λGB,k, and λG,k represent the emission factors
for the kth pollutant from the gas turbine, the gas boiler, and the upper grid, respectively;
PG(t) is the power purchased from the upper grid during time period t; and ck is the unit
cost of treatment for the kth pollutant gas.
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3. Improvements to the GRO Algorithm
In the GRO algorithm, gold miners search for gold in three main ways: migration,

gold mining, and cooperation. These modes allow the GRO algorithm to balance local
exploitation and global exploration, which improves the speed of convergence and the
reliability of obtaining a globally optimal solution.

3.1. Gold Rush Algorithm
3.1.1. Migration of Prospectors

The migration model simulates the behavior of gold miners who congregate in a par-
ticular area after information about a gold mine spreads. When certain regions are found to
contain large amounts of gold, gold miners will quickly migrate to these regions in the hope
of harvesting more wealth. In the algorithm, this process is realized by migration to regions
with the current optimal solution or a potentially better solution. Equations (18) and (19)
model the migration of prospectors to gold mines:

D1 = C1 · X∗(t)− Xi(t). (18)

Xi(t + 1) = Xi(t) + A1 · D1. (19)

where X∗(t), Xi(t), and Xi(t + 1) are the location of the best gold mine, the location of the
gold prospector i, and the new location of the gold prospector i, respectively. A1 and C1 are
the vector coefficients calculated from Equations (20) and (21):

A1 = 1 + l1

(
r1 −

1
2

)
. (20)

C1 = 2r2. (21)

where r1 and r2 are random numbers with values in the range [0, 1]. l1 is the convergence
component defined by Equation (22); if e equals one, it declines linearly from 2 to 1/tmax,
and for values greater than one, it decreases non-linearly.

le =

(
tmax − t
tmax − 1

)e(
2 − 1

tmax

)
+

1
tmax

. (22)

3.1.2. Gold Mining

Each gold miner mines gold areas to find more gold. The relevant mathematical
expressions for gold mining are as follows:

D2 = Xi(t)− Xr(t). (23)

Xi(t + 1) = Xr(t) + A2 · D2. (24)

A2 = 2l2r1 − l2. (25)

where Xr(t) is the position of a randomly chosen gold prospector.

3.1.3. Collaboration Between Prospectors

D3 = Xg2(t)− Xg1(t). (26)

Xi(t + 1) = Xi(t) + r1 · D3. (27)
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Equations (26) and (27) represent the cooperation between gold prospectors, where
Xg1(t) and Xg2(t) are two randomly selected gold prospectors.

3.2. Improved Gold Rush Algorithm
3.2.1. Halton Sequence Initialization

Initialization is a crucial part of intelligent optimization algorithms. Traditional ini-
tialization methods usually rely on pseudo-random number generation, which is simple
to implement and has strong randomness, but it may lead to uneven distribution of pop-
ulation individuals in the search space, thus missing a large number of potential search
areas [37]. The technique based on reverse learning first generates the original population
and then adjusts the ineligible individuals through reverse learning. Although this ap-
proach can achieve better results, its performance is still affected by the quality of the initial
generated population, and additional computational resources are required for fitness
evaluation. In addition, population initialization methods based on chaotic techniques
are widely used in optimization algorithms, and studies have shown that populations
generated from chaotic sequences can achieve better results compared to those generated
from pseudo-random numbers. However, although this method is globally more stable, it is
locally unstable and highly sensitive to initial conditions and parameter settings. Based on
the above problems, the IGRO algorithm adopts a more advanced quasi-random sequence,
the Halton sequence, to initialize the population; this is a kind of low-discrepancy, deter-
ministic sequence based on the construction of primes, which can make the population
more uniformly distributed in the solution space, enhance the diversity of the population,
and thus improve the convergence speed and accuracy of the algorithm effectively.

Assuming that the search space is two-dimensional, the generation process of the
Halton sequence is as follows: firstly, two prime numbers are selected as bases, correspond-
ing to two dimensions. Then, in each dimension, the interval (0, 1) is repeatedly sliced
and taken in a roundabout way according to the selected bases, so as to obtain a set of
non-repeated and uniformly distributed points. The mathematical model of the slicing
process is shown in Equations (28)–(30):

n =
m

∑
i = 0

αi pi = α0 + α1 p1 + · · ·+ αm pm. (28)

ϕp(n) =
m

∑
i = 0

αi p−i−1 = α0 p−1 + α1 p−2 + · · ·+ αm p−m−1. (29)

H(n) =
[
ϕp1(n), ϕp2(n)

]
. (30)

where n denotes the ordinal number of the Halton sequence; p denotes the base of the
Halton sequence, which takes the value of a prime number greater than or equal to 2;
αi ∈ {0, 1, 2, . . . p − 1}, and it represents the digit expansion of n in base p; ϕp1(n) and ϕp2(n)
are the defined sequence functions; and H(n) is a two-dimensional uniform Halton sequence.

In two-dimensional space, assuming that the population size is 100 and the lower
and upper bounds of the search space are 0 and 1, respectively, a comparison of the
population distributions of random initialization and Halton sequence initialization is
shown in Figure 2, where the bases of the Halton sequence are set as base1 = 2 and base2 = 3,
respectively. It can be seen through the comparison that the population distribution
of Halton sequence initialization is more uniform, which improves the diversity of the
distribution of gold miners and thus helps to improve the performance of the algorithm.
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Figure 2. Random initialization and Halton initialization of gold miner distribution spaces.

3.2.2. Dynamic Adaptive Weighting Factor

In the particle swarm algorithm, inertia weights are one of the key parameters. Larger
inertia weights facilitate a broader exploration of the search space, whereas smaller inertia
weights contribute to more precise local exploitation. To enhance both the global exploration
capability and the local search accuracy of the gold miners during the gold mining phase
of the GRO algorithm, this paper introduces an adaptive weight factor based on iterative
dynamic adjustment. The mathematical formulation of the adaptive weight factor is
provided in Equation (31). In the early stage of iteration, as the location of the gold mine is
still unclear, a larger weight factor helps the algorithm to conduct an extensive search to
explore more possible solutions. In the late stage of iteration, as the location of the gold
mine is gradually clarified, the space of the solution is gradually narrowed down, and
during this time, a smaller weight factor allows the algorithm to focus on finer localized
regions, thus improving its search efficiency and accuracy. By adjusting the size of the
weighting factor, this method skillfully balances the search needs of the GRO algorithm at
different stages, effectively improving the adaptability and accuracy of the algorithm in the
multi-stage search process.

ω = exp
(
−(t/tmax)

2
)

. (31)

After introducing the dynamic adaptive weighting factor, the search path in the gold
mining phase of the GRO algorithm is updated from Equation (24) to Equation (32):

Xi(t + 1) = Xr(t) + ω · A2 · D2. (32)

3.2.3. Weighted Global Optimal Solution

In the GRO algorithm, the cooperative phase relies only on the distance between two
randomly selected agents for position updating. Although this strategy possesses certain
exploration capabilities across the entire search space, when dealing with optimization
problems featuring a complex structure or multiple peaks, the search process tends to
converge to local optima due to the absence of an effective global guidance mechanism,
thereby limiting the algorithm’s global optimization capability. For this reason, a weighted
global optimal solution update strategy is introduced in the cooperation phase, as shown
in Equations (33)–(36):

m = 1/(1 + exp(−20(t/tmax − 0.5))). (33)

D4 = m · (X∗(t)− Xi(t)). (34)
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D5 = (1 − m) · (Xg2(t)− Xg1(t)). (35)

Xi(t + 1) = Xi(t) + r1 · (D4 + D5). (36)

where m is a dynamically varying weight coefficient based on the sigmoid function, and its
iterative value is shown in Figure 3. The value of m gradually increases with the number of
iterations, indicating that the algorithm is more inclined to rely on random cooperation for
extensive exploration in the early stage, while gradually enhancing the dominant role of
the global optimal solution in the search process during the later stage, thus guiding the
algorithm to smoothly transition from the random search in the early stage to the refined
convergence process in the later stage. This strategy not only enhances the global search
capability, but also maintains a certain local search capability by weighting the global
optimal solution for location updating.

 

Figure 3. Collaborative weight values by number of iterations.

3.2.4. t-Distribution Mutation Strategy

Finally, a t-distribution mutation strategy is introduced to perturb the position of the
optimal solution. This strategy combines the advantages of both Cauchy and Gaussian
mutations, enhancing the global search capability in the early stages of the algorithm to
avoid it becoming trapped in local optima, while in the later stages, it exhibits a stronger
local exploitation ability, facilitating a more detailed exploration of the neighborhood
around the optimal solution, and thereby effectively improving the convergence speed and
accuracy of the algorithm. The specific expression is as follows:

X̂∗ = X∗
(

1 +
⌢
t (t)

)
. (37)

where
⌢
t (t) denotes the t-distribution, whose degrees of freedom are determined by the

number of iterations of the algorithm.

3.3. Implementation Process of IGRO Algorithm

A summary of the steps involved in the IGRO algorithm is shown in the flowchart in
Figure 4.
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Figure 4. IGRO algorithm flowchart.

Step 1: Initialize the relevant parameters: gold miner size, dimensions, current number
of iterations, maximum number of iterations, population search range, and convergence
factor l1, l2;

Step 2: Initialize the gold miner population using the Halton sequence;
Step 3: Calculate the fitness value of each gold miner and set the optimal value X∗ to

the best search agent;
Step 4: Calculate the fitness of the current search agent at the new location and update

the best search agent X∗;
Step 5: Use one of the methods among Equation (19)—migration, Equation (32)—gold

mining, and Equation (36)—cooperation to calculate the new location of the search agent
and update the fitness value;

Step 6: Update the optimal solution position using Equation (37);
Step 7: Determine whether the iteration termination condition is satisfied. If it is

satisfied, then output the location of the gold prospector and its fitness value; otherwise, go
to Step 3 to continue the execution.

3.4. Algorithm Performance Testing and Comparison

In order to verify the effectiveness of the IGRO algorithm, this study used 10 bench-
mark functions as test objects and solved the 10 benchmark functions using PSO [38],
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WOA [39], GWO [40], HOA [41], and GRO, respectively. The names, definition domains,
and theoretical optimal values of the test functions are shown in Table 1. Among them,
F1–F4 are single-peak test functions, and F5–F10 are multi-peak test functions. The diversity
of test functions can fully reflect the search performance of the IGRO algorithm.

Table 1. Basis functions.

Number Names Limitations Reference Frame

F1 Sphere Function [−100, 100] 0
F2 Schwefel’s Problem 2.22 [−10, 10] 0
F3 Schwefel’s Problem 1.2 [−100, 100] 0
F4 Quartic Function i.e., Noise [−1.28, 1.28] 0
F5 Generalized Rastrigin’s Function [−5.12, 5.12] 0
F6 Ackley’s Function [−32, 32] 0
F7 Generalized Griewank’s Function [−600, 600] 0
F8 Generalized Penalized Function [−50, 50] 0
F9 Shekel’s Foxholes Function [−65.54, 65.54] 0.998
F10 Kowalik’s Function [−5, 5] 0.0003

In order to avoid the effect of randomness, each algorithm was run 30 times and three
metrics were used to measure the performance of the various algorithms: the optimal
value, average value, and standard deviation. The resulting metrics of the functions are
shown in Table 2. From Table 2 and Figure 5, it can be seen that the IGRO algorithm has
significant advantages compared to the other algorithms when solving 10 benchmark test
functions. Its optimal and average values are superior to those of the other algorithms,
and the standard deviation is relatively small. For most of the test functions, the IGRO
algorithm not only outperforms the other algorithms in terms of solution accuracy, but also
exhibits faster convergence. Therefore, the overall performance of the IGRO algorithm is
the best and most stable among the tested algorithms. In summary, the improved GRO
algorithm shows significant advantages in convergence speed and accuracy, and these
advantages make it more competitive than traditional algorithms in dealing with complex
optimization problems.

Table 2. Test results of 6 types of intelligent algorithms for different benchmark functions.

Function Metric PSO WOA GWO HOA GRO IGRO

F1
Best 1.12 × 10−5 2.79 × 10−94 7.84 × 10−35 1.66 × 10−28 2.73 × 10−78 0

Mean 2.78 × 10−4 2.18 × 10−86 2.07 × 10−33 3.21 × 10−26 1.02 × 10−72 0
Std 3.61 × 10−4 8.42 × 10−86 3.12 × 10−33 6.10 × 10−26 4.91 × 10−72 0

F2
Best 2.60 × 10−4 6.23 × 10−61 6.76 × 10−21 2.18 × 10−14 6.33 × 10−48 2.08 × 10−187

Mean 1.67 1.04 × 10−52 7.81 × 10−20 3.49 × 10−13 1.43 × 10−45 1.13 × 10−176

Std 3.79 4.08 × 10−52 1.16 × 10−19 3.35 × 10−13 4.83 × 10−45 1.71 × 10−177

F3
Best 3.80 × 102 1.50 × 104 1.65 × 10−10 2.54 × 10−23 8.24 × 10−24 0

Mean 1.60 × 103 2.95 × 104 6.36 × 10−8 1.39 × 10−21 2.7 0
Std 1.71 × 103 8.82 × 103 1.76 × 10−7 2.21 × 10−21 1.48 × 10 0

F4
Best 1.72 × 10−2 1.05 × 10−4 2.41 × 10−4 4.87 × 10−5 5.24 × 10−4 1.13 × 10−6

Mean 3.45 × 10−2 1.83 × 10−3 1.16 × 10−3 3.59 × 10−4 4.15 × 10−3 6.19 × 10−5

Std 1.12 × 10−2 1.75 × 10−3 5.69 × 10−4 2.77 × 10−4 2.94 × 10−3 7.72 × 10−5

F5
Best 2.39 × 10 0 0 0 0 0

Mean 4.78 × 10 1.89 × 10−15 1.03 1.45 × 10 0 0
Std 1.24 × 10 1.04 × 10−14 2.63 3.42 × 10 0 0
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Table 2. Cont.

Function Metric PSO WOA GWO HOA GRO IGRO

F6
Best 9.94 × 10−4 8.88 × 10−16 4.00 × 10−14 1.51 × 10−14 4.44 × 10−15 8.88 × 10−16

Mean 1.03 × 10−1 4.68 × 10−15 4.30 × 10−14 8.92 × 10−14 4.68 × 10−15 8.88 × 10−16

Std 3.59 × 10−1 2.27 × 10−15 3.82 × 10−15 7.58 × 10−14 9.01 × 10−16 0

F7
Best 9.07 × 10−5 0 0 0 0 0

Mean 2.26 × 10−2 2.61 × 10−3 3.84 × 10−3 0 0 0
Std 2.90 × 10−2 1.43 × 10−2 6.90 × 10−3 0 0 0

F8
Best 1.43 × 10−4 1.37 × 10−3 5.82 × 10−3 2.94 × 10−1 8.19 × 10−5 2.79 × 10−5

Mean 2.04 × 10−1 1.68 × 10−2 2.76 × 10−2 5.07 × 10−1 7.09 × 10−4 4.68 × 10−4

Std 2.90 × 10−1 3.13 × 10−2 1.53 × 10−2 1.10 × 10−1 1.02 × 10−3 4.61 × 10−4

F9
Best 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

Mean 9.98 × 10−1 1.72 2.45 2.93 1.06 9.98 × 10−1

Std 0 1.99 1.83 1.91 3.62 × 10−1 0

F10
Best 3.07 × 10−4 3.12 × 10−4 3.07 × 10−4 3.08 × 10−4 3.07 × 10−4 3.07 × 10−4

Mean 1.16 × 10−3 5.56 × 10−4 2.35 × 10−3 3.43 × 10−4 3.20 × 10−4 3.18 × 10−4

Std 3.64 × 10−3 2.81 × 10−4 6.11 × 10−3 5.85 × 10−5 3.68 × 10−5 3.14 × 10−5

 
(a) F1 (b) F4 

 
(c) F6 (d) F8 

Figure 5. Convergence curves of selected test functions.
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4. Calculus Analysis
4.1. Basic Parameter Settings of Microgrid

The time-of-use electricity price parameters are shown in Table 3 [42]. The emission
factors and treatment cost parameters of the pollutant gases generated by the combustion of
natural gas and the purchase of electricity are shown in Table 4, the maintenance parameters
of each piece of equipment are shown in Table 5, and the typical daily load and predicted
power of WT and PV are shown in Figure 6.

Table 3. Microgrid time-of-use electricity prices.

Periods Purchase Price (¥/kWh) Sale Price (¥/kWh)

Off-Peak Hours (0:00–7:00, 23:00–24:00) 0.1599 0.1230
Flat Hours (7:00–10:00, 15:00–18:00,

21:00–23:00) 0.4551 0.3567

Peak Hours (10:00–15:00, 18:00–21:00) 0.7749 0.6150

Table 4. Pollutant emission parameters.

Pollutant Types
Pollutant Emission Factors (g/kWh) Treatment Costs

(¥/kg)GT GB Grid

CO2 386 254 562 0.21
SO2 0.0036 0.764 1.34 14.84
NOx 0.2 0.54 1.47 62.96

Table 5. Equipment maintenance parameters.

Equipment Price (¥/kW) Equipment Price (¥/kW)

WT 0.043 WHB 0.002
PV 0.029 AC 0.02
GT 0.15 ER 0.03
GB 0.15 EB 0.02
BT 0.016 HS 0.006
CS 0.008

 

Figure 6. Typical daily load and predicted power of PV and WT.
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4.2. Analysis of Simulation Results

Figures 7–9 show the optimal scheduling results for electrical, thermal, and cooling
energy on a typical day of microgrid operation. In Figure 7, the gas turbine generates a
significant share of the electricity, while the battery storage system is controlled to charge
and discharge at different time intervals to support the power supply. During the nighttime
hours between 1:00 and 4:00, the storage batteries switch to charging mode due to the
low power demand, while electricity is purchased from the grid to meet the requirements
of other electrical equipment. During periods of peak electricity demand, the batteries
discharge stored energy to effectively alleviate pressure on the power grid, while also
selling surplus electricity back to the grid to maximize economic returns. The electric boiler
and the electric refrigeration consume electricity to meet the heating and cooling loads of
the system, thereby contributing to stable and efficient energy system operation. From
7:00 to 9:00, since the heating cost of the gas boiler is higher than the revenue from selling
electricity, the electric boiler consumes some of the electrical energy to produce heat. From
15:00 to 17:00, the storage batteries store surplus electricity to be discharged during the next
period of peak electricity demand.

 

Figure 7. Electric power balance diagram.

In Figure 8, the waste heat boiler serves as the primary heat source for the microgrid. It
recovers thermal energy from the high-temperature exhaust gas emitted by the gas turbine,
meeting the majority of the system’s heating load. The electric boiler and gas boiler adopt
a time-of-use complementary operation strategy based on electricity price fluctuations.
The electric boiler increases its output during low-electricity-price periods, while the gas
boiler ramps up output during relatively high-electricity-price periods, thereby effectively
reducing system operating costs. This time-of-use complementary operation strategy not
only adheres to pricing standards, but also significantly extends the service life of the
equipment. The thermal storage tanks store thermal energy during periods of low load
and discharge it during peak heating demand in order to stabilize the heat supply. In the
system, the waste heat boiler generates heat, part of which is used to meet the heating
load, while the other part is absorbed by the absorption chiller to produce cooling. In
Figure 9, the electric refrigeration reduces its output during periods of high electricity
prices to maximize electricity sale revenue. The absorption chiller utilizes thermal energy to
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drive the refrigeration cycle, effectively providing the required cooling load for the system.
The stable operation of both the electric refrigeration and the absorption chiller ensures a
steady cooling supply. The cold storage tanks accumulate cooling capacity during low-load
periods and discharge it during peak cooling demand to serve as an auxiliary source. This
strategy helps to regulate the load and mitigates the operational burden on the refrigeration
system under high-load conditions.

 

Figure 8. Thermal power balance diagram.

Figure 9. Cold power balance diagram.

To evaluate the stability and optimization capability of the IGRO algorithm, its perfor-
mance on the microgrid case study proposed in this paper was benchmarked against that of
the other algorithms, with each algorithm run independently 30 times. After 500 iterations,
the obtained cost change curves are shown in Figure 10, while Table 6 presents the mean,
standard deviation, optimal, and worst values for each algorithm, and Table 7 shows a
comparison of the convergence time for each algorithm.
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Figure 10. Comparison curve of daily microgrid operating costs obtained with each algorithm.

Table 6. Comparison of algorithmic results.

Algorithm
Daily Operation Cost of Microgrid (¥)

Average Value Standard Deviation Optimal Value Worst Value

PSO 14,062.8 332.3 13,352.0 14,601.5

WOA 14,125.9 314.2 13,505.4 14,768.4

GWO 13,929.0 306.6 13,193.0 14,352.9

HOA 14,160.4 287.0 13,571.8 14,638.9

GRO 13,883.9 302.0 13,167.5 14,371.3

IGRO 13,426.9 230.1 13,096.3 13,904.3

Table 7. Comparison of convergence time.

Algorithm PSO WOA GWO HOA GRO IGRO

Convergence Time/s 282.3 327.5 278.3 265.4 293.8 275.5

From the algorithm comparison curve shown in Figure 10, it can be seen that the IGRO
algorithm achieves the optimal scheduling scheme with the lowest economic cost, and the
fluctuation of its curve is significantly smaller than that for the other algorithms in solving
the problem of optimal microgrid scheduling. Base on analysis of the data in Table 6, the
average cost value obtained with the IGRO algorithm is 3.29%, 5.18%, 3.60%, 4.95%, and
4.52% lower than that obtained with GRO, HOA, GWO, WOA, and PSO, respectively,
and the standard deviation is 23.79%, 19.83%, 24.94%, 26.76% and 30.76% lower than that
for other algorithms. At the same time, the optimal cost value obtained with the IGRO
algorithm is better than the optimal value obtained with the other algorithms. As can be
seen from Table 7, the IGRO algorithm demonstrates a shorter convergence time compared
to the GRO algorithm, indicating a clear advantage in optimization efficiency. The above
data show that the IGRO algorithm shows good stability and accurate optimization ability
in solving the microgrid optimization problem.

5. Conclusions
This paper proposes an improved gold rush optimization algorithm to address the

issues of poor convergence and the tendency to become trapped in local optima. By
introducing Halton sequence initialization, a dynamic weight adjustment mechanism, a
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weighted global optimal solution updating method, and a t-distribution mutation strategy,
the proposed algorithm significantly enhances global search capabilities and accelerates
convergence, while effectively reducing the risk of premature convergence caused by
entrapment in local optima. To verify the effectiveness of the IGRO algorithm, 10 benchmark
test functions were selected and simulation experiments were conducted with six intelligent
algorithms. The experimental results demonstrate that the IGRO algorithm is significantly
better than the other five algorithms in terms of search accuracy and convergence speed. In
solving the problem of microgrid scheduling optimization, the IGRO algorithm exhibits
lower operating costs and smaller standard deviations, indicating that the IGRO algorithm
has high stability and application potential in microgrid optimization, further validating
the feasibility and superiority of the algorithm.

Although the IGRO algorithm has demonstrated strong performance, this research
still has certain limitations, due to the limited scope of study and computational constraints.
Future research could focus on integrating dynamic adjustment mechanisms that adapt
to different operating scenarios, making the algorithm’s convergence time more flexible.
This flexibility will make energy management more adaptable and efficient in response to
changing environmental conditions and system loads. Furthermore, combining artificial
intelligence with large-scale microgrids can further enhance the algorithm, improving
optimization efficiency and scheduling accuracy. This integration of AI will enable better
scalability and more robust performance in handling complex dynamic environments.
Looking ahead, improving the algorithm’s efficiency and broadening its applicability
across diverse energy scenarios will be key to establishing it as a robust solution for the
increasing demands and complexities of modern energy systems.
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