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Abstract

Accurate heading direction tracking is essential for immersive VR/ AR, spatial audio render-
ing, and robotic navigation. Existing IMU-based methods suffer from drift and vibration ar-
tifacts, vision-based approaches require LoS and raise privacy concerns, and RF techniques
often need dedicated infrastructure. We propose UDirEar, a COTS UWB device-based
system that estimates user heading using solely high-level UWB information like distance
and unit direction. By initializing an EKF with each user’s constant interaural distance,
UDirEar compensates for the earbuds’ roto-translational motion without additional sensors.
We evaluate UDirEar on a step-motor-driven dummy head against an IMU-only baseline
(MAE 30.8°), examining robustness across dummy head-initiator distances, elapsed time,
EKEF calibration conditions, and NLoS scenarios. UDirEar achieves a mean absolute error of
3.84° and maintains stable performance under all tested conditions.

Keywords: heading direction; ultra-wideband; extended Kalman filter

1. Introduction

Tracking the orientation of mobile devices has become a fundamental component in a
wide range of applications. In immersive environments such as virtual reality (VR) and aug-
mented reality (AR), accurate pose estimation of head-worn or handheld devices directly
influences user experience and system interaction fidelity [1-5]. Similarly, in robotics [6-8],
understanding not only the position but also the viewing direction of agents is essential for
tasks such as navigation, human-robot interaction, and collaborative perception. Further-
more, in domains like 3D reconstruction [9-12], camera orientation is a key parameter in
recovering scene geometry and structure.

Understanding where a person is looking is especially important in VR/AR applica-
tions, where it determines the user’s field of view and drives scene rendering. Accurate
tracking enhances immersion and prevents motion sickness [13,14]. It also enables intuitive
interactions, such as gaze-based selection, and facilitates communication in multi-user
settings by revealing users’ attention and intent. Overall, head direction plays a key role in
interaction, navigation, and spatial awareness in immersive environments.

Several techniques have been explored for heading direction tracking. Inertial mea-
surement units (IMUs) offer a low-cost, lightweight solution and are commonly embedded
in head-mounted displays or mobile devices. However, IMUs suffer from drift and cumu-
lative error without external references [15-22]. Vision-based approaches [23-27], often
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relying on facial landmark tracking or depth estimation, provide high accuracy but re-
quire line of sight (LoS) and suffer in low-light or occluded environments. Acoustic-based
methods [15-17,28-32], though less common, have been proposed to estimate orientation
using time of arrival or phase differences, but they are generally sensitive to environmental
noise and multipath. In recent years, wireless signal-based methods have gained atten-
tion for their potential to operate passively and robustly across different environments.
Wi-Fi [27,33,34] and RFID tags [35,36] have demonstrated feasibility for tracking heading
direction and pose estimation. However, they often rely on infrastructure deployment or
require controlled settings and are generally more susceptible to multipath interference
due to their narrower bandwidth.

Among various wireless technologies, ultra-wideband (UWB) radio has emerged
as a strong candidate due to its high temporal resolution, robustness to multipath, and
increasing integration into commercial off-the-shelf (COTS) devices. UWB radio chips are
now being incorporated into modern smartphones [37-40] and are expected to appear
soon in wireless earbuds [41] for applications such as spatial audio and device localization.
This trend presents an opportunity to explore heading direction tracking using only COTS
UWB-equipped devices, specifically, a smartphone and a pair of wireless earbuds, without
the need for any additional hardware or sensors. In this work, we explore this opportunity,
but doing so presents several challenges due to the limitations of commercially available
UWB devices and the characteristics of head-mounted wireless devices.

Challenge 1: Limited access to low-level UWB data in COTS devices. Traditional UWB-
based localization and orientation estimation methods rely on low-level signal features
such as amplitude, phase difference, or the full channel impulse response (CIR), which
provide fine-grained spatial information [42-47]. These features enable precise angle-of-
arrival (AoA) estimation using antenna arrays or multiple paths. However, COTS UWB
devices abstract away these raw signals and instead expose only processed, high-level
data, typically limited to distance and direction measurements. This necessitates alternative
approaches that can infer head direction from sparse or aggregated measurements.

Challenge 2: Constraints of wireless earbuds. Wireless earbuds are designed with
strict power and form-factor constraints. Unlike VR headsets or smartphones, which can
incorporate multiple sensors and perform on-device computation, earbuds must maintain
low power consumption to support long battery life and user comfort. This limits the
feasibility of using additional sensing modalities such as inertial sensors or microphones.
Moreover, wireless earbuds often operate as passive devices, responding to commands
from a paired device with minimal independent processing. Therefore, any head tracking
system must operate with minimal reliance on local computation. This presents a significant
design constraint in balancing accuracy with hardware limitations.

Challenge 3: Roto-translational motion (roto-translational motion means motion con-
tains both rotation and translation motion) of earbuds. Unlike fixed sensors rigidly attached
to a central point on the head, earbuds are located on either side of the head and experience
non-rigid motion during head rotation. When a person turns their head, each earbud under-
goes both rotational and translational movement, tracing an arc-like path. This introduces
spatial disparity between the devices and causes the UWB-measured positions to reflect not
only orientation but also the geometric offset of each earbud. As a result, simple geometric
models assuming rigid head rotation do not hold.

To address these challenges, we propose UDirEar, a novel heading direction tracking
system that is friendly to wireless earbuds and their paired device. To minimize wireless
earbud power consumption, UDirEar relies exclusively on UWB measurements and ex-
cludes all other sensing modalities. It applies an extended Kalman filter (EKF) to fuse UWB
sensor data and correct measurement errors. Since no additional sensors are used, the EKF
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model itself handles calibration based on the interaural distance (distance between the left
and right ear). This distance remains constant for each individual and is set once during the
EKEF initialization stage. In this paper, we describe how UDirEar exploits the characteristics
of UWB wireless earbuds to correct errors caused by roto-translational motion. To correct
errors from translational motion, UDirEar fuses sensor values with an EKF and corrects
tracking errors with EKF calibration that anchors on the interaural distance. We compare
UDirEar’s performance against the IMU-based baseline MUSE, examining its variation
across factors such as dummy head-initiator distance, elapsed time, EKF calibration, and
non-line-of-sight (NLoS) conditions. Experimental results confirm that UDirEar achieves a
mean absolute error (MAE) of 3.84°. Our main contributions are as follows.

*  We propose UDirEar, a heading direction tracking system that relies solely on UWB
sensors embedded in wireless earbuds. Because it uses a COTS UWB device, it operates
only on high-level UWB information such as distance and direction without access to
the amplitude or phase of the CIR.

*  We present an EKF model that exploits the interaural distance for heading direction
tracking with both ears. Rather than estimating heading directly from sensor distance
and direction, this model infers heading indirectly through sensor placement. By
inserting an EKF model between raw measurements and final tracking, UDirEar
reduces performance degradation due to sensor error and defines the EKF model
explicitly around the constant interaural distance.

*  We experimentally evaluate UDirEar’s performance against existing methods. We
further analyze how factors such as target distance, elapsed time, EKF calibration, and
NLoS conditions impact accuracy. We compare results across different scenarios and
explain the reasons behind any observed performance changes.

The remainder of this paper is organized as follows. Section 2 reviews prior work on
heading direction tracking, and Section 3 provides background on UWB technology and
the extended Kalman filter. In Section 4, we describe the overall system architecture, which
is then evaluated in Section 5. Section 6 outlines directions for future work, and Section 7
concludes this paper.

2. Related Work

Head orientation tracking techniques can be broadly categorized into vision-based,
acoustic-based, IMU-based, and wireless signal-based methods. Each modality presents
unique advantages and limitations concerning accuracy, privacy, LoS constraints, and the
availability of COTS hardware.

Vision-based methods [20,23-26] typically use cameras to detect facial landmarks and
infer angle of head. Such systems achieve high accuracy and are often used as ground truth
for evaluating other methods. For example, Kumar et al. [20] demonstrated that visual
SLAM (Simultaneous Localization and Mapping) provided significantly lower orientation
errors (4.5°) compared to IMU-only methods (9.6°) outdoors. However, vision-based solu-
tions inherently require consistent lighting conditions and an LoS to the target, limiting
their robustness in dynamic environments. Moreover, reliance on camera systems raises
substantial privacy concerns due to the sensitive visual data captured.

Acoustic tracking systems use inaudible sound signals, typically ultrasound, to deter-
mine orientation by analyzing sound propagation from sound source to target. Acoustic
methods [15-17,28-32,48] inherently provide enhanced privacy compared to vision-based
systems, as they do not capture visual or sensitive data. These approaches also demon-
strate moderate resilience against LoS constraints due to the reflective and diffractive
properties of sound waves. Recent advancements have shown acoustic-based tracking’s
potential accuracy and usability. For instance, FaceOri [30] utilized smartphone-generated
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ultrasonic signals and wireless earbuds’” microphones to achieve low orientation errors
(3.7° yaw, 5.8° pitch), highlighting acoustic tracking’s practicality with widely available
devices. Similarly, HeadTrack [32] employed FMCW chirps transmitted from smartphones
to earbuds, reporting orientation errors (4.9° yaw, 6.3° pitch). Further, EHTrack [31] demon-
strated a 1.83° mean orientation error using structured acoustic signals between speakers
and earbuds. Despite these advantages, acoustic methods remain susceptible to ambient
noise interference and have a limited operational range, typically effective only within a
few meters.

IMU-based tracking leverages sensors such as gyroscopes, accelerometers, and magne-
tometers to estimate orientation independently from external references. Ferlini et al. [21,22]
demonstrated the potential for earbud-integrated IMUs to provide sub-degree accuracy for
brief head movements, highlighting their instantaneous precision. However, IMU methods
typically suffer from drift accumulation due to gyroscope bias integration, resulting in
deteriorating accuracy over time. Zhao et al. [26] tackled this by employing dual IMUs
(one fixed in the vehicle, one on the user’s head) to remove external motion interference,
effectively reducing drift-related errors in dynamic driving environments. Nevertheless,
without continuous external recalibration or sensor fusion, IMU-only systems are inherently
limited in their ability to sustain accurate orientation tracking over prolonged durations.

Wireless signal-based approaches, leveraging Wi-Fi [27,33,34], RFID [35,36], or UWB
signals [42-47,49-51], estimate orientation by analyzing signal propagation characteristics
such as signal strength, phase shifts, or AoA. These methods inherently provide improved
privacy compared to vision-based systems since wireless signals alone offer limited person-
ally identifiable information. Moreover, RF signals are robust to many NLoS environments,
supporting reliable operation with high penetration even when direct visibility is compro-
mised. These methods increasingly leverage widely available consumer electronics, making
them highly practical.

UWB-based tracking methods, in particular, have recently attracted attention for orien-
tation estimation due to their high time resolution and multipath resilience. Zhou et al. [50]
fused high-level UWB information with smartphone gyroscope information, achieving
significant error reduction (gyro-only 7.6°, fused 2.7°). Furthermore, Xie et al. [27] presented
a Wi-Fi-based head tracking approach using channel state information (CSI), achieving
an average yaw error below 4° in real-time applications such as driver monitoring. Addi-
tionally, UHead [49] demonstrated UWB radar’s capability to measure head orientation
non-intrusively, achieving a 13° median orientation error for driver attention monitoring,
underscoring UWB-based systems’ usability and installation simplicity. Nonetheless, wire-
less signal-based tracking often relies on fixed infrastructure or multiple synchronized
devices, potentially limiting immediate portability.

To overcome individual modality limitations, recent hybrid approaches have com-
bined complementary sensors or employed specialized calibration techniques. FaceOri [30]
integrated acoustic signals with earphone IMUs, while Zhao et al. [26] utilized dual IMUs
for dynamic calibration. Ferlini et al. [21] proposed automatic calibration for magnetome-
ters within earbuds to mitigate magnetic interference, demonstrating significant accuracy
improvements (3° errors) without user intervention. Such hybrid and calibration methods
illustrate that exploiting known constraints or combining sensor modalities can significantly
enhance tracking robustness and accuracy.

Building upon these insights, we introduce UDirEar, a heading direction tracking
system that relies solely on UWB sensors embedded in wireless earbuds and uses a smart-
phone as the anchor, operating only on high-level information of distance and direction
without access to CIR amplitude or phase. We present an EKF model that enforces a con-
stant interaural distance constraint to infer heading direction indirectly from dual-ear
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UWB readings, reducing errors caused by sensor noise from roto-transitional motion. We
experimentally evaluate UDirEar against existing methods, analyzing how factors such as
target distance, elapsed time, and NLOS conditions impact accuracy and robustness.

3. Technical Background
3.1. UWB Primer

UWB is a wireless communication technology that operates over a very wide frequency
range, typically more than 500 MHz or 20% of the carrier frequency. Among various
implementation schemes, impulse radio UWB (IR-UWB) is the most commonly used. It
transmits data using very short pulses, enabling both wireless communication and precise
time-of-flight (ToF) measurement. Commercial UWB systems operate in the 3.1 to 10.6 GHz
frequency band with low transmission power (typically limited to —41.3 dBm/MHz), and
the spectrum is divided into multiple 499.2 MHz wide channels, as defined by standards
such as IEEE 802.15.4 [52].

UWB enables accurate ranging by measuring the ToF of the first arriving signal path,
typically the LoS path. When a UWB pulse is transmitted, it travels through various paths
due to reflections, and the initiator detects the earliest arriving pulse using the CIR. The
preamble of a UWB packet is designed to have strong autocorrelation properties, allowing
precise timestamping of the first path arrival.

This high level of precision has led to the adoption of UWB in consumer devices,
including smartphones such as the iPhone [37-39] and Samsung Galaxy series [40]. In
addition to smartphones, UWB technology is now integrated into a growing range of
consumer electronics, such as smartwatches [53,54], and is expected to be incorporated
soon into wireless earbuds [41]. These devices provide processed spatial data, such as
distance and angle, through built-in UWB modules and developer-friendly APIs [55,56].

3.2. UWB Positioning Using Ranging and AoA

UWB systems enable high-precision positioning by combining ToF-based ranging with
Ao0A estimation. When a UWB initiator is equipped with an antenna array, it can estimate
both the distance and direction to a transmitting device, allowing accurate positioning
using only a single initiator.

3.2.1. ToF-Based Ranging

The IEEE 802.15.4 standard [52] defines two primary methods for UWB-based ranging;:
single-sided two-way ranging (SS-TWR) and double-sided two-way ranging (DS-TWR) [57].
In SS-TWR, the initiator estimates the ToF by measuring the round-trip time and subtracting
the known processing delay of the responder. While simple, this approach is sensitive to
clock offset between devices, which may lead to inaccurate distance estimation. To address
this issue, DS-TWR introduces an additional message exchange that enables both the
initiator and responder to measure delays independently. By combining timing information
from both ends, DS-TWR effectively compensates for clock discrepancies and improves
ranging accuracy.

As illustrated in Figure 1a, the DS-TWR procedure consists of three primary message
exchanges, Poll, Response, and Final, followed optionally by a Report message. The initiator
sends a Poll message, the responder replies with a Response, and the initiator completes
the exchange by transmitting a Final message. Each device records local transmission and
reception timestamps, which are used to estimate the ToF while mitigating clock offset and
drift. The ToF Ty is calculated as follows:

T, — Troundl : Troundz - Treply1 ’ Treply2 (1)
f Tmund1 + Troundz + Treplyl + Treply2
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The estimated distance is then calculated by multiplying the ToF by ¢ - Ty, where ¢ denotes
the speed of light and Ty accounts for the temporal resolution of the system. A Report
message may be used to convey the computed result back to the initiator.

0 %

Initiator Responder
...... —
o/ ’
\ ..... /
Troundl I T’replyl
Re sponse
Treplyz I Troundg
Fin,
Iy
Repo't
v v < d >
(a) Distance estimation based on DS-TWR (b) AoA estimation using an antenna array

Figure 1. Distance and AoA estimation using UWB signals.

3.2.2. AoA Estimation

AoA estimation allows an initiator to infer the direction of the incoming signal, which
can be leveraged for localization or beamforming. One widely used method is phase
difference of arrival (PDoA), which estimates AoA by analyzing the phase differences of
the received signal across a known antenna array geometry. As illustrated in Figure 1b,
consider a uniform linear array with antenna spacing d. The AoA 6 can be estimated from
the PDoA A¢ between adjacent antennas, which is related to 6 as follows:

0 = arcsin ( A2.71Ad¢>' (2)

where f; is the carrier frequency and A = c/f. is the signal wavelength. In practice,
multipath effects and phase ambiguity (due to phase wrapping) can degrade performance,
which may be mitigated through array calibration, spatial filtering, or combining with
other techniques such as ToF or amplitude-based methods.

3.2.3. Three-Dimensional Positioning Capabilities of COTS UWB Devices

COTS UWB devices, such as those in recent smartphones, perform ranging and AoA
estimation using built-in algorithms and L-shaped antenna arrays. Unlike linear arrays,
which can measure only a single direction, L-shaped antenna arrays allow simultaneous
estimation of azimuth and elevation, which enables accurate 3D localization. While some
compact devices may only support range due to size constraints, angle information is
reciprocal, meaning that 3D positioning can still be achieved if only one side provides
angular estimates. By combining range and directional cues, such systems can support
active sensing applications such as motion tracking and spatial interaction.

3.3. Error Correction Using Extended Kalman Filter

Sensor-based systems predict the state of a target by feeding measurement values
obtained from sensors into a pre-designed model. However, sensor values have inevitable
noise and bias, and the model itself cannot perfectly emulate real-world dynamics. As a re-
sult, discrepancies arise between the model’s predictions and the ground truth. To mitigate
these discrepancies, we employ the EKF. The EKF fuses the model’s predicted state and the
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sensor values by computing a weighted sum based on Kalman gain. By simultaneously
accounting for both process noise and measurement noise, the EKF effectively compensates
for uncertainties in the sensor value and the model, yielding significantly improved state
estimation [58-60].

The Kalman filter (KF) is a recursive state estimation algorithm that fuses a process
model, known control inputs, and noisy measurements to produce an estimate of the
system’s state [61]. Uncertainty arises from both the process model and the measure-
ments. To compensate for these uncertainties, the KF recursively fuses the process model’s
prediction and the measurements using a Kalman gain that reflects their respective co-
variances. At each iteration, the filter consists of a prediction step and an update step,
as defined in Equations (3)—(8) (Table 1 summarizes the descriptions of symbols used in
Equations (3)—(8)).

£, = AR 1+ Bugq +wy 3)
P =AP 1 AT +Q (4)
Sx=HP_ H' +Ry (5)

Ky =P H/ S (6)

R =% +Ke(zx —HZ%Y) 7)
P= (I-KH) P, 8)

Table 1. Description of symbols used in the Kalman filter equations.

Symbol Description

e state vector at step k

U control input at step k

Wy process model’s noise vector at step k
Py error covariance at step k

Qk process model’s noise covariance at step k
Ry sensor value’s noise covariance at step k
Sk residual noise covariance at step k

A state transition matrix

H observation matrix

K} Kalman gain at step k

Z sensor value at step k

a—upper right position of symbol means this symbol is predicted value.

The prediction step (Equations (3) and (4)) uses the process model to estimate the state
and its uncertainty at the current time step. The update step (Equations (5)—(8)) incorporates
the actual sensor measurement to correct the prediction using the Kalman gain.

While the KF is an effective method for reducing errors in both the process model
and sensor values, it is fundamentally constrained by its requirement that the process
model be linear, as implied by the first equation. In contrast, real-world dynamics are
typically nonlinear. To address this limitation, the EKF extends the KF to handle nonlinear
process models. Its principal idea and the key difference from the standard KF is the
linearization of the nonlinear state transition and observation functions via a first-order
Taylor series expansion [62,63]. Apart from this local linearization step, the EKF follows the
same prediction—update cycle as the KE.
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4. Methods

In this section, we will present the detailed design for estimating the heading direction
using both ears, as well as the EKF design to compensate for precision degradation caused
by the ears’ roto-translational motion.

4.1. Heading Direction Basic Model
4.1.1. UWB Coordination System

When using UWB through a COTS device, we cannot obtain the CIR amplitude and
phase information as we would with a dedicated UWB device. Consequently, we must rely
on high-level UWB information provided by the UWB API [55,56]. Figure 2a illustrates the
information obtainable via the API, which returns the distance between the initiator and
the responder, as well as a unit direction vector. Therefore, if we denote the API output as
the distance d and the unit direction vector (6y,0y,0.), we can express the responder device’s
position in a three-dimensional Cartesian coordinate with the initiator located at the origin.

(v,y,2) = (d-0x,d-0,,d-6;) )

From the above equation, when a signal arrives at the initiator at time f, we can deter-
mine the relative position between the initiator and the responder in a three-dimensional
Cartesian coordinate.

Responder

=

(di"'" oS (9 + g) s dinger - Sin(0 + g))

Direction Vector
» x

(dinter * cos (6 - g) s dinter * SIN(0 — %))

(a) UWB high-level information (b) EKF heading direction system model

Figure 2. (a) Illustration of UWB high-level information from COTS UWB devices in 3D Cartesian
coordination. (b) Illustration of process model used in EKF heading direction; 2D coordinates mean
coordinates of both ears in 2D Cartesian coordination where center of head is at origin.

4.1.2. Heading Direction Model

Once the relative positions between the initiator and each responder have been deter-
mined, mounting the responder units on both ears yields the 3D coordinates of the left and
right ear. Denote the left-ear position by (x;, y;, z;) and the right-ear position by (x;, y», zr).
The 3D vector from the left ear to the right ear, which serves as our heading direction proxy,
is then given by

vsp = (Xr = X1, Yr — Y1, 2r — 21) (10)
In 3D orientation, we decompose motion into yaw (heading), pitch, and roll. As shown
in Figure 2b, since the y-coordinate encodes only pitch/roll effects, we project v3p onto

the xz-plane to eliminate these and estimate pure yaw, and with this projected vector, we
calculate slope of line .45 that passes both ears.

vop = (Xp — X7, 2, — 2p) (11)
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Zy — Z]
Xr_xl

(12)

Mears =

Because the heading direction must be perpendicular to the line connecting both ears in the
xz-plane, we can finally compute the heading direction 6 as follows:

) = arctan(—g) (13)

6 = arctan( -
arctan| Az

Mears
As shown, if the relative positions between both ears and the COTS UWB device are known,
we can determine the heading direction. However, this approach relies on knowing the
precise positions of both ears and, in contrast to directional information, the limited accuracy
of distance measurements precludes fine-grained estimation [64]. Moreover, since inference
arises because both ears are located at the sides of the head, errors from these measurement
challenges must be corrected to achieve fine-grained heading direction tracking.

4.2. EKF-Based Correction of Roto-Translational Interference

To estimate heading direction from ear positions, it is essential to know the precise
locations of both ears. However, even if the head’s primary motion is a pure rotation about
the neck axis, the ears do not undergo pure rotation alone. Since the ears are attached to
both sides of the head, they not only undergo rotational motion about the head’s central axis
but also perform a translation that traces a circular arc around that same axis, meaning they
execute a roto-translational motion. Unfortunately, when a responder device undergoes
translation, the direction estimates provided by the API suffer in accuracy [50]. Moreover,
since APIs do not expose low-level CIR amplitude or phase data, it is impossible to deter-
mine whether the reported values have already been degraded by translational motion or
to correct for that degradation based solely on high-level outputs. Using Equation (9), we
estimate ear positions from the distance and direction measurements provided by the UWB
API However, as noted above, both measurements suffer significant accuracy degradation
under combined translational and rotational motion. Moreover, the UWB API does not
expose low-level CIR phase and amplitude data, making direct error compensation impos-
sible. Therefore, in this study we introduce a dedicated calibration technique to overcome
these limitations.

To address this issue, UDirEar leverages a correction method that uses an EKFE. The
EKF integrates the process model with sensor measurements to minimize both the model’s
estimation error and the sensor’s measurement error. Since the primary source of error
in the current heading direction estimate is the roto-translational motion of both ears, we
aim to apply process model-based estimation to reduce the sensor measurement error.
In constructing our system model, we leverage the interaural distance, which means
the distance between the two ears. Figure 2b shows the process model used in the EKF
for heading direction estimation. By initializing the model with the constant interaural
distance, which is unique to each user, we can use the same value throughout a single
session. In the next section, we will describe in detail how we designed the EKF to correct
the UWB measurements.

4.3. System Overview

Figure 3 provides an overview of UDirEar, an EKF that leverages interaural distance to
fuse UWB measurements. The system consists of three main stages: 1. Parameter Initialization,
in which the process model is initialized; 2. UWB Measurements, which acquire relative
position information for both ears; and 3. EKF-based Heading Tracking, which fuses the
previously defined model with UWB sensor values in an EKF to obtain an accurate heading
direction despite the ears’ roto-translational motion.
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1. Parameter 3. EKF-based

s [0

(Initiator)

Head Width Heading Direction

: O

Reference Direction
UWE Connections ’ D

’
. ’
?:\ 91‘01 ! d / tE’]hoad
G UWB-equipped ., 4 X
Headphone / \
(Responder) Left Cup Right Cup

Figure 3. Illustration of overall heading direction system that runs on UWB devices. It fuses UWB

sensor value with EKF process model that uses interaural distance to correct devices’ inefficient
accuracy because of roto-translational motion.

In the Parameter Initialization stage, the user briefly holds the head still to measure
the interaural distance, the UWB initiator’s relative position from the head, and the ini-
tial heading direction state. To determine the interaural distance, we use the UWB API
to measure the distance and direction from the initiator to each responder attached to
the left and right earbuds. The interaural distance is then computed from the earbud
position coordinates obtained via Equation (9). After initialization, in the UWB Measure-
ments stage, the initiator gathers distance and direction values from the responder at
both ears. The EKF-based Heading Tracking stage then uses the initialized values as cor-
rection metrics for UWB measurement errors. We operate UDirEar’s EKF on an initiator
(smartphone) to maintain the energy efficiency of responder (earbud) since the EKF is a
computaionally intensive algorithm. Collectively, these stages calibrate the system geome-
try, acquire real-time UWB data, and apply EKF-based corrections to deliver robust heading
direction tracking.

4.4. EKF-Based Heading Tracking

The measurement values provided by the initiator consist of the distances from the
left (d;) and right ear (d,) and the 3D unit direction vectors from the left (6, 6;,, 6;,) and
right (6rx, 6yy, 6;2). However, as noted in Section 4.1.2, the y-coordinate is less relevant for
heading direction estimation. In practice, we perform all computations within the xz-plane
rather than using full 3D coordinates, thereby reducing both latency and computational
resource requirements.

Figure 2b illustrates our process model, which relates the xz-plane coordinates of the
two ears to the heading direction. In this model, the center of the head is placed at the
origin of the xz-plane. At time step k, the heading direction angle 0 (measured from the
x-axis) evolves with angular velocity wy over a time interval At. Given ) and half the
interaural distance d;s.,, the xz-coordinates of each ear can be computed. Hence, we can
initially define the state vector at step k as

Xe = (dinter, Ok, wi) (14)

Since d is determined once during the Parameter Initialization stage and remains constant
for a given user, we simplify the EKF’s state vector to

X = (9](, (,dk) (15)

Drawing on prior work showing that human head yaw rotations proceed at an ap-
proximately constant angular speed [65,66], we model the angular velocity of our state
vector under the assumption that |wy | remains constant. To capture reversals in rotation
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direction, we introduce a control input uy, defined as rotation direction (—1 for clockwise
and +1 for anti-clockwise). In our state transition function, this control input modulates the
direction of the angular velocity, allowing us to predict the next step’s angular velocity as
u|wg|. For the EKF prediction, we use a state transition function f(x, ux) that takes the
current state x; and control input u; to predict the next step’s state xj1:

Xpt41 f(Xk, uk) = (9k + wy - At uy - \wk|) (16)

The Jacobian of this function with respect to x; defines the state transition matrix F, and
the process model noise covariance is denoted by Q:

AP AP
p= 20 _ (LAY o=13, 2 17)
oxe \0 1 At
5 A

Using these, we perform the standard EKF prediction of x;_.

To correct the prediction, the EKF compares the predicted sensor measurements to the
actual UWB measurements. The measurement model /(x) computes the expected distances
and unit vectors for each ear:

Pl_k = (dinter' COS(Bk + g), 0, dinter' Sin(gk + %))

. ’ (18)
Pr_k = (dinter' COS(Qk + 3%)/ 0, dintcr' Sll‘l(@k + STH));
Pk — Prait
diey k= 1Ppry = Pruitll, ey = W (19)
.
h(xe) = [di i g dr jer 1 g (20)

Pr,it is the known UWB initiator (sensor) position.

Equations (18) and (19) give the detailed definitions that compose the measurement
function h(xy), while Equation (20) shows the resulting form of /(x;). The observation
matrix H is the Jacobian of h(x;) with respect to the state vector, and the sensor noise
covariance R is a diagonal matrix whose every row’s diagonal entry v,,, 4, is the variance
of the corresponding UWB measurement entry’s sensor.

(%] 0 0

H= o rR=|9 ® @)
an 0
0 0 o,

Note that while the EKF compensates for UWB sensor errors, the raw measurements still
suffer from high variance under roto-translational motion. To mitigate this, we partition
incoming readings into fixed-duration time bins and replace each bin with its mean value
before feeding it into the EKE. Consequently, the EKF’s time step At is fixed to the duration
of these bins.

Putting all of these EKF elements together, the full EKF-based heading direction
tracking algorithm proceeds as Algorithm 1.
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Algorithm 1 Algorithm of EKF-based heading direction tracking

Require: dl,le,Gly, 012, dr, Orx, Ory, 0rz, At

Ensure: state vector x
1: initialize d;,serqural, Pinit X0 > Parameter Initialization
2: while true do
3:  calculate state transition matrix F using At

S« HPyeH' +R
K4 Py H' 571
100 X 4 Xpred + Ky

11: P+ (I—KH) Ppred
12: end while

4:  calculate process covariance matrix Q using At

5 Xpred < f (%, 1) > Prediction Procedure
6 Ppeg < FPFT +Q

7 Yz —h (Xprea) > Update Procedure
8:

9:

5. Results
5.1. Experimental Setup

The experimental hardware consists of a responder—initiator pair for UWB signal
exchange and a step-motor-based motion controller for precise heading direction adjust-
ment. An iPhone 12 Pro (Apple, Cupertino, CA, USA) serves as the UWB initiator, while
Qorvo DWM3000EVB and nRF52840-DK (Qorvo Inc., Greensboro, NC, USA) modules
act as responders. Since UWB wireless earbuds are not yet readily available, we used the
dedicated devices as responders compatible with the initiator. To accurately control the
heading direction of a dummy head fitted with these responders at both ears, we employed
42BYGHWS&L11 step motors (Wantai Motor, Beijing, China) driven by A4988 step motor
drivers (Allegro Microsystems, Manchester, NH, USA), all coordinated by an Arduino
Uno-based motion controller (Arduino, Chiasso, Switzerland).

Communication between the initiator and each responder was implemented using
Apple’s Nearby Interaction framework (version 3.2.1). Due to the framework’s constraints,
we were required to use UWB channel 9 (center frequency 7.9872 GHz), and we kept DS-
TWR parameters at their default values. An initial session was established over Bluetooth
via Apple’s Nearby Interaction framework, followed by UWB communication to acquire
distance and direction measurements, which were then used for ear position estimation.

For performance comparison of our EKF-based heading direction tracking, we adopt
the state-of-the-art IMU-based orientation tracker MUSE [67] as our baseline. MUSE tracks
orientation by integrating gyroscope measurements and calibrates against the magnetome-
ter’s magnetic vector. To further enhance calibration precision, it also performs opportunis-
tic recalibration using accelerometer data.

MUSE is rigidly attached to and rotated with the dummy head, providing direct
measurements of heading direction. In contrast, our proposed method infers heading indi-
rectly from the xz-plane coordinates of the ear-mounted responders. For a fair comparison,
we define the following:
¢ Ground Truth: The angular trajectory pre-programmed into the dummy head.

*  Metric: The mean absolute error (MAE) between the predefined trajectory and esti-
mated heading.

5.2. Experimental Results

In this subsection, we describe the experiments conducted to verify the performance
and robustness of UDirEar and present the corresponding results. The main experiment
compares the performance of UDirEar with that of MUSE, demonstrating the better per-
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formance of our approach. Subsequent experiments examine the influence of dummy
head-initiator distance, elapsed time, the inclusion of EKEF filtering, and NLoS conditions
on performance.

5.2.1. Comparison Between Baseline and UDirEar

In our experiments, we use the dummy head’s predefined angular trajectory as the
ground truth and adopt the MAE between each estimated heading and the ground truth as
our main metric. Proper trajectory design is therefore essential to accurately assess tracking
performance. Since the human neck typically rotates over a 0°-180° range without torso
movement, we employ a back-and-forth trajectory from 0° to 180° in all subsequent tests.

Figure 4 shows the time-resolved heading trajectories of UWB only, UDirEar (10 Hz
update rate, 3 m dummy head-initiator distance), and MUSE (5Hz update rate) against
the ground truth (two cycles of 0°—=180°—0°). UWB only is the same method as UDirEar
but without EKF-based calibration. In this section, we compare MUSE with UDirEar and
UWB only with UDirEar, evaluating UDirEar against these baselines and investigating
how EKF-based calibration affects UDirEar’s performance.

---- Ground Truth
250 1 —— MUSE

—— UWB only
§ 500 4 UDirEar(Ours)
[=1]
1)
=
E 150 -
=]
o
2
8 100
on
=
=
i
T 50 1

0_

0 5 10 15 2I0 25 30 35
Elapsed Time (Seconds)
Figure 4. Heading direction tracking result comparison between MUSE, UWB only, and UDirEar.
While all three methods effectively capture the periodic trend in heading direction, UDirEar captures
fine-grained tracking details more effectively than MUSE, with the UWB-only approach yielding
the least detailed tracking. The MAE for UDirEar, MUSE, and UWB only is 3.84°, 30.78°, and
99.48°, respectively.

Both MUSE and UDirEar capture the overall triangular trend, but MUSE exhibits
considerable jitter and coarser steps, whereas UDirEar follows the trajectory more smoothly
and with finer detail. This difference arises because UDirEar relies solely on the measure-
ments at time t to estimate the heading direction at time t, whereas MUSE incorporates the
entire measurement history from time 0 to t. Since MUSE incorporates all measurements
from time 0 up to the current instant, the errors at each step accumulate into a cumulative
error, which can lead to performance degradation. Furthermore, UDirEar infers heading
from the xz-plane coordinates of ear-mounted UWB sensors and uses an EKF to compensate
for the current step’s measurement error.

The impact of this gyroscope noise becomes apparent when comparing the MAE of
each method over the full trajectory. MUSE incurs an average error of 30.78°, whereas
UDirEar achieves only 3.84°, demonstrating that our approach substantially outperforms
the baseline within the typical 0°~180° head motion range.

Figure 4 plots the tracking over the trajectory for UWB only and UDirEar. Although
both exhibit the same periodic trend, the UWB-only curve shows large, erratic deviations
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from the ground truth path, yielding an MAE of 99.48°. In contrast, UDirEar closely follows
the trajectory, with an MAE of 3.84°.

The core reason the UWB-only method exhibits a high MAE is the nonlinear error
propagation that occurs when converting the two ear positions into a heading direction. In
practice, the two sensors have different noise characteristics, each with its own variance and
fixed bias. We compute the heading 6 as Equation (13). Here, small errors Ax = (x, — x;)
and Az = (z, — z;) propagate nonlinearly into 6. In particular, when Az is small, a given
position error translates into a much larger angular error, so any difference in sensor
variance or bias is magnified into a steep rise in MAE.

Without an EKF, simply averaging or weighted-averaging two noisy measurements
cannot compensate for this nonlinear amplification, and the MAE remains high. By contrast,
the EKF’s update step uses each sensor noise covariance matrix R to assign more weight
to the more reliable sensor (smaller variance) and less weight to the less reliable one
(larger variance).

5.2.2. Effect of Distance Between Dummy Head and Initiator

The goal of this experiment is to assess how the distance between the dummy head
and initiator affects heading tracking accuracy. Because signal attenuation at longer ranges
can degrade performance, we measured the MAE over the full trajectory as the dummy
head and the initiator were placed at distances of 1 m, 2 m, 3 m, 4 m, and 5 m.

All tests were conducted in the indoor environment shown in Figure 5. Five meters
was the maximum feasible range in our laboratory.

Responder
, (DWM3000 EV
Initiator :
(iPhone 12 Pro)
T s
-
- ¢

Controller Step Motor

Figure 5. Experiment environment. Dummy head with two responders are controlled by step motor
and motion controller.

Figure 6 shows the results. We observed mean errors of 10.23°, 6.37°, 3.84°, 3.83°, and
2.85° at distances of 1 m, 2 m, 3 m, 4 m, and 5 m, respectively. Contrary to expectations of
higher errors at longer distances due to attenuation, the data show larger errors at shorter
ranges. This outcome is due to the fixed distance-independent bias in UWB ranging. A
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constant offset error becomes a larger fraction of the true range at close distances [68-70].
In addition, UWB ranging accuracy remains roughly constant over these short indoor
distances [50], so the fixed bias dominates performance at 1 m.

10 1 —e— UDirEar

w
1

Mean Absolute Error (degree)

5] \

1 2 3 4 5
distance (m)

Figure 6. Effect of dummy head-initiator distance on performance. Heading error rises at close
dummy head-initiator ranges due to UWB'’s constant ranging bias.

Although our experiments only cover distances up to 5 m, this range is sufficient
to evaluate the distance-dependent robustness of our method for wireless earbud-based
heading tracking.

5.2.3. Effect of Elapsed Time

Conventional IMU-based approaches including MUSE rely primarily on gyroscope
integration for heading tracking. Gyroscope drift introduces cumulative error over
time, so these methods are not well suited for long-term use. To address this, prior
work has combined a gyroscope with UWB or additional IMU sensors for periodic
correction [26,47,50,67].

In this experiment we extended the predefined trajectory (eight cycles of 0°—180°—0°)
to observe how tracking performance evolves over longer intervals. We evaluate perfor-
mance using the cumulative MAE, which is defined as the MAE from the start of tracking
up to each elapsed time.

Figure 7a presents the tracking result over time of MUSE and UDirEar against the
ground truth. Both methods capture the overall pattern of counterclockwise rotation from
0° to 180° followed by clockwise return to 0°; however MUSE’s estimates gradually diverge
due to accumulating gyroscope drift despite its internal correction.

--- Ground Truth 70 1 — MUse
— MUSE UDirEar
UDirEar

@
g

)
g

5
&

W
8

Heading Direction (degree)
Cumulative MAE(degree)

s

5

b
3
8
°

[ 20 40 60 80 100 120 140 [ 20 40 60 80 100 120 140
Elapsed Time (Seconds) Elapsed Time (Seconds)

(a) Heading direction tracking over trajectory (b) cumulative MAE over trajectory

Figure 7. Effect of elapsed time on performance. UDirEar maintains stable performance over time,
whereas MUSE’s performance degrades as elapsed time increases.
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Figure 7b plots the cumulative MAE over elapsed time. Although there is some initial
jitter, UDirEar maintains an almost flat cumulative MAE, whereas MUSE’s error grows
continuously. By the end of the trajectory, the cumulative MAE of our approach is 4.65°,
compared with 69.71° for MUSE. This dramatic difference demonstrates that UDirEar
provides stable tracking over a long time.

5.2.4. Effect of NLoS by Occlusion

In practice, our method infers heading from ear-mounted UWB sensors, but the
geometry of the head makes it unlikely that both ears remain in LoS to the initiator. To
evaluate robustness under NLoS conditions, we placed a 50 x 80 cm rectangular panel
between the dummy head and initiator at a 5 m separation, creating three NLoS scenarios
with plastic, wood, and steel occluders.

Figure 8 shows the MAE for LoS (no obstacle) and each NLoS case. This error increases
from 2.85° in LoS to 8.23° with plastic, 15.24° with wood, and 15.69° with steel. This drop
in performance is due to occlusion-induced UWB signal attenuation, which reduces range
accuracy and degrades angular precision. Materials inducing greater signal attenuation
correspond to higher measurement errors, with steel exhibiting the strongest attenuation
and producing the largest error, followed by wood and then plastic.

16 A

= = =
(=] o8] s
| | |

Mean Absoclute Error (degree)
[+=]

0 = T
No Obstacle Plastic Wood Steel

Figure 8. Effect of occlusion on performance. UWB signal attenuation caused by occlusion leads to
performance degradation.

6. Discussion
6.1. IMU-Enhanced Initiator Initialization and Tracking

In UDirEar, the initiator was used with its fixed position, but our future goal is to oper-
ate without fixing the initiator’s position. As shown in Section 5.2.4, relying solely on UWB
measurements without EKF calibration can lead to degraded measurement performance.
In UDirEar, the energy constraints of wireless earbuds necessitate the use of UWB-only
measurements, and because the Parameter Initialization stage does not employ the EKF,
the precision of the initialized parameters may be low. Using a initiator with fewer energy
constraints such as a smartphone with a built-in IMU and fusing its inertial data with UWB
measurements during initialization can significantly enhance the precision of the initial
parameter estimates. Since our initiator can also integrate an IMU, future work will fuse
IMU data both at startup and online. During initialization, IMU alignment will refine the
initiator position, interaural distance, and initial state to correct UWB bias. In filtering, the
EKF will combine continuous IMU and UWB updates to track the initiator’s motion in real
time rather than holding its position fixed. This IMU and UWB fusion should yield a more
flexible, accurate heading estimator without modifying the responder.
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6.2. Fine-Grained Practical Head Movement Tracking

To simplify computation, UDirEar currently projects both ear positions onto the xz-
plane and estimates heading direction in that plane. However, our evaluation relied on
a dummy head model, so we have not yet characterized the additional signal delay and
attenuation effects introduced by a real human’s head. Moreover, because UDirEar only
tracks yaw when the interaural axis lies approximately in the xz-plane, its applicability is
currently confined to these constrained motion scenarios. However, full three-dimensional
orientation offers richer motion capture. In future work, if the UWB API evolves to provide
limited low-level details or to allow user-defined DS-TWR configurations [71], additional
CIR-related measurements could be exploited for finer-grained ranging and directional
estimation. In that scenario, for 3D head movement tracking, instead of using only direction
vectors, we would construct quaternions from this richer information and integrate them
into the EKF framework.

6.3. Heading Direction Application in Daily Life

Heading direction tracking with UDirEar can enable a variety of daily applications,
including VR/ AR interfaces, navigation systems, and attention-aware controls. Because
it uses COTS UWB hardware and sensors mounted at the ears, it can be easily integrated
into existing VR/ AR headsets, allowing the system to render visuals and spatial audio
based on the user’s real-time heading direction. In navigation, head tracking can guide
users by indicating which way to turn or highlighting points of interest in their field of
view. Finally, in attention-aware control scenarios, the system can detect when the user is
looking at a display or object and automatically switch it on or off, improving convenience
and energy efficiency.

7. Conclusions

In this paper, we propose a method that uses only UWB sensors embedded in wireless
earbuds and an extended Kalman filter to track heading direction under roto-translational
motion. We exclude IMUs to minimize energy consumption and rely solely on UWB
measurements. An EKF is applied to correct for and fuse the bias and variance of the two
ear-mounted sensors. To verify robustness, we compared our method against an IMU-based
approach and evaluated the effects of distance, elapsed time, EKF configuration, and NLoS
conditions. These experiments yielded an MAE of 3.84°.
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