An Effective Hybrid Sampling Strategy for Single-Split Evaluation of Classifiers †
Abstract
1. Introduction
2. Related Work
3. Our Approach
3.1. The Sampling Methods on the Dataset with Numerical Attributes
3.2. The Sampling Methods on the Dataset with Categorical Attributes
4. Experimental Results
4.1. Datasets and Classifiers
4.2. Evaluation Metric MAI
4.3. Experimental Results on Numerical Datasets
4.4. Experimental Results on Categorical Datasets
4.5. Experimental Results on Mix-Type Datasets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Proceedings of the IEM Graph, Kolkata, India, 6–8 September 2018; pp. 99–111. [Google Scholar]
- Rauschert, S.; Raubenheimer, K.; Melton, P.; Huang, R. Machine Learning and Clinical Epigenetics: A Review of Challenges for Diagnosis and Classification. Clin. Epigenetics 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature review: Machine Learning Techniques Applied to Financial Market Prediction. Expert Syst. Appl. 2019, 124, 226–251. [Google Scholar] [CrossRef]
- Sharma, G. Pros and Cons of Different Sampling Techniques. Int. J. Appl. Res. 2017, 3, 749–752. [Google Scholar]
- Stratton, S.J. Population Research: Convenience Sampling Strategies. Prehospital Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Taherdoost, H. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. Int. J. Acad. Res. Manag. 2016, 5, 18–27. [Google Scholar] [CrossRef]
- Bellhouse, D. Systematic Sampling Methods. In Encyclopedia of Biostatistics; Chichester: New York, NY, USA, 2005; pp. 4478–4482. [Google Scholar]
- Shin, H.; Oh, S. Feature-Weighted Sampling for Proper Evaluation of Classification Models. Appl. Sci. 2021, 11, 2039. [Google Scholar] [CrossRef]
- Kang, D.; Oh, S. Balanced training/test set Sampling for Proper Evaluation of Classification Models. Intell. Data Anal. 2020, 24, 5–18. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yen, S.J.; Tang, Y.J. Improved Sampling Methods for Evaluation of Classification Performance. In Proceedings of the 7th International Conference on Artificial Intelligence in Information and Communication, Fukuoka, Japan, 18–21 February 2025; pp. 378–382. [Google Scholar]
- Oh, S. A New Dataset Evaluation Method Based on Category Overlap. Comput. Biol. Med. 2011, 41, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Parsons, V.L. Stratified Sampling. In Wiley StatsRef: Statistics Reference Online; John Wiley and Sons: Hoboken, NJ, USA, 2014; pp. 102–144. [Google Scholar]
- Berndt, A.E. Sampling methods. J. Hum. Lact. 2020, 36, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.J.; Critchlow, R.E. Beyond Mere Diversity: Tailoring Combinatorial Libraries for Drug Discovery. J. Comb. Chem. 1999, 1, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Hudson, B.D.; Hyde, R.M.; Rahr, E.; Wood, J.; Osman, J. Parameter Based Methods for Compound Selection from Chemical Databases. In Quantitative Structure-Activity Relationships; CRC Press: Boca Raton, FL, USA, 1996; pp. 285–289. [Google Scholar]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 2000, 40, 99–121. [Google Scholar] [CrossRef]
- Covert, I.; Lundberg, S.M.; Lee, S.I. Understanding Global Feature Contributions with Additive Importance Measures. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, NY, USA; pp. 17212–17223. [Google Scholar]
- Fryer, D.; Strümke, I.; Nguyen, H. Shapley Values for Feature Selection: The Good, the Bad, and the Axioms. IEEE Access 2021, 9, 144352–144360. [Google Scholar] [CrossRef]
- Rizzo, M.L.; Székely, G.J. Energy Distance. Wiley Interdiscip. Rev. Comput. Stat. 2016, 8, 27–38. [Google Scholar] [CrossRef]
- Ramos-Carreño, C.; Torrecilla, J.L. Dcor: Distance Correlation and Energy Statistics in Python. SoftwareX 2023, 22, 101326. [Google Scholar] [CrossRef]
- Justel, A.; Peña, D.; Zamar, R. A multivariate Kolmogorov-Smirnov Test of Goodness of Fit. Stat. Probab. Lett. 1997, 35, 251–259. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Sugiyama, M.; Suzuki, T.; Kanamori, T. Density Ratio Estimation in Machine Learning; Cambridge University Press (CUP): Cambridge, MA, USA, 2012. [Google Scholar]
- Murphy, K. A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Menéndez, M.; Pardo, J.; Pardo, L.; Pardo, M. The Jensen-Shannon Divergence. J. Frankl. Inst. 1997, 334, 307–318. [Google Scholar] [CrossRef]
- Fuglede, B.; Topsoe, F. Jensen-Shannon Divergence and Hilbert Space Embedding. In Proceedings of the International Symposium on Information Theory, Chicago, IL, USA, 27 June–2 July 2004; p. 31. [Google Scholar]
- Belov, D.I.; Armstrong, R.D. Distributions of the Kullback–Leibler Divergence with Applications. Br. J. Math. Stat. Psychol. 2011, 64, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Peker, N.; Kubat, C. Application of Chi-Square Discretization Algorithms to Ensemble Classification Methods. Expert Syst. Appl. 2021, 185, 115540. [Google Scholar] [CrossRef]
Dataset | # of Instances | # of Attributes | # of Classes |
---|---|---|---|
breastcancer | 569 | N:30 | 2 |
breastTissue | 106 | N:9 | 6 |
ecoli | 336 | N:7 | 8 |
pima_diabetes | 768 | N:8 | 2 |
seed | 218 | N:8 | 3 |
balance-scale | 625 | C:4 | 3 |
congressional_voting_records | 435 | C:16 | 2 |
Qualitative_Bankruptcy | 250 | C:6 | 2 |
SPEC_Heart | 267 | C:22 | 2 |
Vector_Borne_Disease | 263 | C:64 | 11 |
credit_approval | 690 | N:6, C:9 | 2 |
Differentiated_Thyroid_Cancer_Recurrence | 383 | N:1, C:15 | 2 |
Fertility | 100 | N:3, C:6 | 2 |
Heart_Disease | 303 | N:5, C:8 | 2 |
Wholesale_customers_data | 440 | N:6, C:1 | 3 |
Classifier | Parameter |
---|---|
Decision Tree (DT) | criterion = ‘entropy’, min_samples_leaf = 2 |
Random Forest (RF) | n_estimators = 500, max_features = ‘sqrt’ |
K-Nearest Neighbor (KNN) | n_neighbors = 5 |
Support Vector Machine (SVM) | kernel = ‘rbf’ |
Dataset | Classifier | AEV | SD |
---|---|---|---|
breastcaner | DT | 0.929 | 0.020 |
KNN | 0.969 | 0.013 | |
RF | 0.959 | 0.016 | |
SVM | 0.976 | 0.012 | |
breastTissue | DT | 0.655 | 0.086 |
KNN | 0.639 | 0.085 | |
RF | 0.684 | 0.082 | |
SVM | 0.549 | 0.075 | |
ecoli | DT | 0.797 | 0.043 |
KNN | 0.855 | 0.034 | |
RF | 0.862 | 0.033 | |
SVM | 0.864 | 0.035 | |
pima_diabetes | DT | 0.701 | 0.033 |
KNN | 0.735 | 0.028 | |
RF | 0.762 | 0.026 | |
SVM | 0.767 | 0.027 | |
seed | DT | 0.907 | 0.039 |
KNN | 0.929 | 0.033 | |
RF | 0.924 | 0.036 | |
SVM | 0.931 | 0.031 |
Dataset | Classifier | (FWS) EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|
breastcancer | DT | 0.935 | 0.945 | 0.930 | 0.935 |
KNN | 0.979 | 0.969 | 0.969 | 0.969 | |
RF | 0.972 | 0.979 | 0.981 | 0.974 | |
SVM | 0.979 | 0.979 | 0.979 | 0.979 | |
breastTissue | DT | 0.739 | 0.703 | 0.703 | 0.714 |
KNN | 0.679 | 0.679 | 0.643 | 0.714 | |
RF | 0.760 | 0.725 | 0.689 | 0.714 | |
SVM | 0.669 | 0.561 | 0.633 | 0.597 | |
ecoli | DT | 0.812 | 0.765 | 0.800 | 0.812 |
KNN | 0.824 | 0.847 | 0.835 | 0.824 | |
RF | 0.847 | 0.882 | 0.835 | 0.847 | |
SVM | 0.835 | 0.882 | 0.871 | 0.835 | |
pima_ | DT | 0.705 | 0.731 | 0.694 | 0.705 |
diabetes | KNN | 0.741 | 0.705 | 0.679 | 0.736 |
RF | 0.762 | 0.756 | 0.798 | 0.777 | |
SVM | 0.772 | 0.782 | 0.808 | 0.803 | |
seed | DT | 0.907 | 0.926 | 0.907 | 0.926 |
KNN | 0.963 | 0.907 | 0.963 | 0.907 | |
RF | 0.926 | 0.926 | 0.907 | 0.926 | |
SVM | 0.963 | 0.907 | 0.926 | 0.944 |
Dataset | Classifier | EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|
breastcancer | DT | 0.951 | 0.902 | 0.937 | 0.923 |
KNN | 0.972 | 0.965 | 0.951 | 0.965 | |
RF | 0.951 | 0.958 | 0.965 | 0.958 | |
SVM | 0.972 | 0.972 | 0.972 | 0.972 | |
breastTissue | DT | 0.500 | 0.714 | 0.643 | 0.750 |
KNN | 0.607 | 0.643 | 0.607 | 0.714 | |
RF | 0.643 | 0.750 | 0.679 | 0.679 | |
SVM | 0.536 | 0.536 | 0.500 | 0.571 | |
ecoli | DT | 0.812 | 0.824 | 0.765 | 0.835 |
KNN | 0.823 | 0.894 | 0.882 | 0.847 | |
RF | 0.859 | 0.894 | 0.847 | 0.871 | |
SVM | 0.835 | 0.894 | 0.859 | 0.824 | |
pima_ | DT | 0.731 | 0.710 | 0.710 | 0.710 |
diabetes | KNN | 0.756 | 0.782 | 0.725 | 0.720 |
RF | 0.808 | 0.751 | 0.798 | 0.756 | |
SVM | 0.803 | 0.767 | 0.782 | 0.762 | |
seed | DT | 0.889 | 0.926 | 0.907 | 0.944 |
KNN | 0.944 | 0.889 | 0.944 | 0.907 | |
RF | 0.963 | 0.907 | 0.963 | 0.907 | |
SVM | 0.926 | 0.907 | 0.926 | 0.907 |
Dataset | Classifier | (FWS) EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|
breastcancer | DT | 0.286 | 0.748 | 0.059 | 0.286 |
KNN | 0.918 | 0.139 | 0.139 | 0.139 | |
RF | 0.818 | 1.253 | 1.356 | 0.921 | |
SVM | 0.289 | 0.289 | 0.282 | 0.282 | |
breastTissue | DT | 0.977 | 0.560 | 0.560 | 0.691 |
KNN | 0.462 | 0.462 | 0.044 | 0.880 | |
RF | 0.935 | 0.499 | 0.064 | 0.372 | |
SVM | 1.592 | 0.171 | 1.118 | 0.302 | |
ecoli | DT | 0.347 | 0.756 | 0.071 | 0.347 |
KNN | 0.946 | 0.250 | 0.598 | 0.946 | |
RF | 0.460 | 0.606 | 0.598 | 0.460 | |
SVM | 0.825 | 0.519 | 0.183 | 0.825 | |
pima_ | DT | 0.732 | 1.205 | 0.102 | 0.260 |
diabetes | KNN | 0.228 | 0.978 | 0.710 | 0.603 |
RF | 0.369 | 0.369 | 1.170 | 1.033 | |
SVM | 0.962 | 0.013 | 0.013 | 0.182 | |
seed | DT | 0.020 | 0.490 | 0.020 | 0.490 |
KNN | 1.039 | 0.655 | 1.039 | 0.655 | |
RF | 0.047 | 0.047 | 0.463 | 0.047 | |
SVM | 1.038 | 0.740 | 0.147 | 0.445 | |
Average | MAI | 0.665 | 0.537 | 0.437 | 0.508 |
Dataset | Classifier | EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|
breastcancer | DT | 0.286 | 0.631 | 0.403 | 0.286 |
KNN | 0.668 | 0.668 | 1.196 | 0.918 | |
RF | 0.487 | 0.052 | 0.383 | 0.487 | |
SVM | 0.289 | 0.289 | 0.289 | 0.282 | |
breastTissue | DT | 0.977 | 1.525 | 0.143 | 0.977 |
KNN | 0.374 | 0.044 | 0.374 | 0.462 | |
RF | 0.935 | 0.808 | 0.372 | 0.499 | |
SVM | 0.171 | 0.171 | 0.645 | 0.645 | |
ecoli | DT | 0.071 | 0.347 | 0.071 | 0.899 |
KNN | 0.946 | 1.144 | 0.796 | 0.250 | |
RF | 0.460 | 0.961 | 0.460 | 0.251 | |
SVM | 0.825 | 0.855 | 0.153 | 1.161 | |
pima_ | DT | 1.473 | 0.260 | 0.056 | 1.205 |
diabetes | KNN | 0.148 | 1.728 | 0.603 | 0.148 |
RF | 1.233 | 0.032 | 0.169 | 0.833 | |
SVM | 0.989 | 0.013 | 0.767 | 0.989 | |
seed | DT | 0.450 | 0.490 | 0.020 | 0.020 |
KNN | 0.474 | 1.220 | 0.474 | 1.039 | |
RF | 1.067 | 0.463 | 1.067 | 0.557 | |
SVM | 0.147 | 0.740 | 0.147 | 1.038 | |
Average | MAI | 0.626 | 0.622 | 0.429 | 0.647 |
Dataset | Classifier | Random Sampling | (FWS) EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|---|
breastcancer | DT | 1117.94 | 58.32 | 58.07 | 1060.6 | 278.09 |
KNN | 1117.93 | 58.33 | 58.07 | 1060.6 | 278.1 | |
RF | 1117.94 | 60.07 | 52.92 | 1062.41 | 278.94 | |
SVM | 1117.96 | 60.07 | 59.93 | 1062.43 | 279.85 | |
breastTissue | DT | 10.92 | 6.75 | 360.1 | 17.42 | 10.92 |
KNN | 11.02 | 6.52 | 359.5 | 17.39 | 11.02 | |
RF | 10.85 | 6.54 | 359.7 | 17.4 | 10.85 | |
SVM | 10.84 | 6.56 | 359.6 | 17.39 | 10.84 | |
ecoli | DT | 9.52 | 8.02 | 166.39 | 17.52 | 9.52 |
KNN | 9.55 | 8.03 | 166.29 | 17.54 | 9.55 | |
RF | 9.53 | 8.02 | 166.25 | 17.5 | 9.53 | |
SVM | 9.58 | 8.04 | 166.26 | 17.5 | 9.58 | |
pima_ | DT | 529.11 | 21.26 | 21.41 | 147.87 | 103.34 |
diabetes | KNN | 529.13 | 21.22 | 21.39 | 147.85 | 103.3 |
RF | 529.11 | 21.25 | 21.4 | 147.87 | 103.31 | |
SVM | 529.12 | 21.24 | 21.39 | 147.86 | 103.3 | |
seed | DT | 932.83 | 10.67 | 8.52 | 276.44 | 33.33 |
KNN | 932.85 | 10.57 | 8.51 | 276.42 | 33.31 | |
RF | 932.85 | 10.64 | 8.52 | 276.44 | 33.3 | |
SVM | 932.8 | 10.65 | 8.55 | 276.45 | 33.33 | |
Average | Execution time | 751.65 | 22.31 | 20.71 | 402.37 | 90.10 |
Dataset | Classifier | Random Sampling | (FWS) EMD | Energy Distance | dcor-Hypothesis Testing | K-S Test |
---|---|---|---|---|---|---|
breastcancer | DT | 1117.94 | 23.72 | 23.46 | 1025.99 | 243.46 |
KNN | 1117.93 | 23.69 | 23.45 | 1025.98 | 243.48 | |
RF | 1117.94 | 24.46 | 25.18 | 1027.73 | 245.18 | |
SVM | 1117.96 | 23.69 | 23.45 | 1025.96 | 243.48 | |
breastTissue | DT | 641.98 | 6.08 | 1.93 | 345.7 | 12.58 |
KNN | 641.97 | 6.1 | 1.95 | 345.6 | 12.48 | |
RF | 641.98 | 6.15 | 1.94 | 345.72 | 12.48 | |
SVM | 641.96 | 6.13 | 1.95 | 345.8 | 12.52 | |
ecoli | DT | 536.14 | 6.97 | 5.47 | 163.83 | 14.97 |
KNN | 536.12 | 6.94 | 5.46 | 163.85 | 14.94 | |
RF | 536.14 | 6.95 | 5.44 | 163.88 | 14.92 | |
SVM | 536.13 | 6.94 | 5.48 | 163.84 | 14.97 | |
pima_ | DT | 529.11 | 12.84 | 12.99 | 139.45 | 94.92 |
diabetes | KNN | 529.13 | 12.83 | 12.96 | 139.4 | 94.95 |
RF | 529.11 | 12.84 | 12.97 | 139.42 | 94.93 | |
SVM | 529.12 | 12.83 | 12.96 | 139.48 | 94.95 | |
seed | DT | 932.83 | 6.47 | 4.31 | 272.2 | 29.35 |
KNN | 932.85 | 6.45 | 4.3 | 272.3 | 29.31 | |
RF | 932.85 | 6.44 | 4.32 | 272.23 | 29.33 | |
SVM | 932.8 | 6.47 | 4.31 | 272.25 | 29.32 | |
Average | Execution time | 751.65 | 11.25 | 9.71 | 389.53 | 79.13 |
Dataset | Classifier | AEV | SD |
---|---|---|---|
balance-scale | DT | 0.745 | 0.034 |
KNN | 0.744 | 0.030 | |
RF | 0.845 | 0.026 | |
SVM | 0.862 | 0.025 | |
congressional_voting | DT | 0.951 | 0.025 |
_records | KNN | 0.922 | 0.032 |
RF | 0.963 | 0.021 | |
SVM | 0.963 | 0.022 | |
Qualitative_ | DT | 0.995 | 0.012 |
Bankruptcy | KNN | 0.996 | 0.008 |
RF | 0.9995 | 0.005 | |
SVM | 0.996 | 0.009 | |
SPEC_Heart | DT | 0.747 | 0.049 |
KNN | 0.796 | 0.046 | |
RF | 0.824 | 0.040 | |
SVM | 0.828 | 0.041 | |
Vector_Borne | DT | 0.709 | 0.064 |
_Disease | KNN | 0.673 | 0.057 |
RF | 0.934 | 0.030 | |
SVM | 0.914 | 0.037 |
Dataset | Classifier | KLD | KLD | JSD | FWS (EMD Shapely) |
---|---|---|---|---|---|
balance-scale | DT | 0.741 | 0.722 | 0.734 | 0.747 |
KNN | 0.747 | 0.747 | 0.747 | 0.747 | |
RF | 0.823 | 0.848 | 0.829 | 0.816 | |
SVM | 0.816 | 0.816 | 0.816 | 0.816 | |
congressional_ | DT | 0.949 | 0.949 | 0.949 | 0.898 |
voting _records | KNN | 0.915 | 0.915 | 0.915 | 0.949 |
RF | 0.983 | 0.983 | 0.983 | 0.966 | |
SVM | 0.983 | 0.983 | 0.983 | 0.966 | |
Qualitative_ | DT | 1.000 | 1.000 | 1.000 | 1.000 |
_Bankruptcy | KNN | 1.000 | 1.000 | 1.000 | 0.984 |
RF | 1.000 | 1.000 | 1.000 | 1.000 | |
SVM | 0.984 | 0.984 | 0.984 | 1.000 | |
SPEC_Heart | DT | 0.716 | 0.716 | 0.761 | 0.761 |
KNN | 0.776 | 0.776 | 0.776 | 0.821 | |
RF | 0.776 | 0.791 | 0.791 | 0.791 | |
SVM | 0.821 | 0.821 | 0.821 | 0.791 | |
Vector_Borne | DT | 0.761 | 0.761 | 0.776 | 0.761 |
_Disease | KNN | 0.687 | 0.687 | 0.687 | 0.687 |
RF | 0.940 | 0.955 | 0.940 | 0.955 | |
SVM | 0.955 | 0.955 | 0.955 | 0.955 |
Dataset | Classifier | KLD | KLD | JSD | FWS (EMD Shapely) |
---|---|---|---|---|---|
balance-scale | DT | 0.881 | 0.881 | 0.478 | 0.064 |
KNN | 0.795 | 0.795 | 0.795 | 0.098 | |
RF | 0.272 | 0.818 | 0.272 | 1.078 | |
SVM | 0.673 | 0.673 | 0.673 | 1.825 | |
congressional_ | DT | 0.088 | 0.088 | 0.088 | 2.141 |
voting _records | KNN | 0.193 | 0.193 | 0.193 | 0.853 |
RF | 0.974 | 0.974 | 0.974 | 0.165 | |
SVM | 0.921 | 0.921 | 0.921 | 0.154 | |
Qualitative_ | DT | 0.474 | 0.474 | 0.474 | 0.474 |
_Bankruptcy | KNN | 0.548 | 0.548 | 0.548 | 1.503 |
RF | 0.087 | 0.087 | 0.087 | 0.087 | |
SVM | 1.335 | 1.335 | 1.335 | 0.467 | |
SPEC_Heart | DT | 0.626 | 0.626 | 0.286 | 0.286 |
KNN | 0.429 | 0.429 | 0.429 | 0.536 | |
RF | 1.193 | 0.817 | 0.817 | 0.817 | |
SVM | 0.174 | 0.174 | 0.174 | 0.902 | |
Vector_Borne | DT | 0.806 | 0.806 | 1.039 | 0.806 |
_Disease | KNN | 0.234 | 0.234 | 0.234 | 0.234 |
RF | 0.205 | 0.704 | 0.205 | 0.704 | |
SVM | 1.121 | 1.121 | 1.121 | 1.121 | |
Average | MAI | 0.601 | 0.635 | 0.557 | 0.716 |
Dataset | Classifier | Random Sampling | KLD | KLD | JSD | FWS (EMD Shapely) |
---|---|---|---|---|---|---|
balance-scale | DT | 640.33 | 31.8 | 15.38 | 32.49 | 83.9 |
KNN | 640.31 | 31.85 | 15.36 | 32.5 | 83.87 | |
RF | 640.3 | 31.87 | 15.36 | 32.48 | 83.8 | |
SVM | 640.3 | 31.82 | 15.37 | 32.5 | 83.88 | |
congressional_ | DT | 528.14 | 20.81 | 4.72 | 21.5 | 13.28 |
voting _records | KNN | 528.13 | 20.8 | 4.7 | 21.53 | 13.26 |
RF | 528 | 20.79 | 4.72 | 21.54 | 13.28 | |
SVM | 528.2 | 20.79 | 4.74 | 21.51 | 13.25 | |
Qualitative_ | DT | 799.2 | 19.17 | 3.33 | 17.48 | 11.28 |
_Bankruptcy | KNN | 799.27 | 19.19 | 3.35 | 17.45 | 11.27 |
RF | 799.25 | 19.15 | 3.33 | 17.46 | 11.28 | |
SVM | 799.24 | 19.18 | 3.34 | 17.48 | 11.25 | |
SPEC_Heart | DT | 649.3 | 38.03 | 6.01 | 45.12 | 87.5 |
KNN | 649.35 | 38.05 | 6.05 | 45.15 | 87.47 | |
RF | 649.32 | 38.04 | 6.04 | 45.12 | 87.51 | |
SVM | 649.36 | 38.07 | 6.05 | 45.15 | 87.52 | |
Vector_Borne | DT | 1072.6 | 106.5 | 9.44 | 96.01 | 208.7 |
_Disease | KNN | 1072.5 | 106.52 | 9.43 | 96 | 208.5 |
RF | 1072.63 | 106.53 | 9.45 | 96.01 | 208.68 | |
SVM | 1072.66 | 106.51 | 9.44 | 96.05 | 208.5 | |
Average | Execution time | 737.92 | 43.27 | 7.78 | 42.53 | 80.90 |
Dataset | Classifier | ACC | SD |
---|---|---|---|
credit_approval | DT | 0.817 | 0.029 |
KNN | 0.862 | 0.024 | |
RF | 0.873 | 0.023 | |
SVM | 0.862 | 0.023 | |
Differentiated_ | DT | 0.942 | 0.022 |
Thyroid_Cancer_ | KNN | 0.922 | 0.027 |
Recurrence | RF | 0.960 | 0.017 |
SVM | 0.955 | 0.019 | |
Fertility | DT | 0.846 | 0.064 |
KNN | 0.853 | 0.055 | |
RF | 0.869 | 0.057 | |
SVM | 0.881 | 0.057 | |
Heart_Disease | DT | 0.749 | 0.048 |
KNN | 0.829 | 0.038 | |
RF | 0.822 | 0.038 | |
SVM | 0.839 | 0.037 | |
Wholesale_customers | DT | 0.524 | 0.045 |
_data | KNN | 0.635 | 0.037 |
RF | 0.709 | 0.036 | |
SVM | 0.718 | 0.037 |
Dataset | Classifier | Our Hybrid Method (Accuracy) | dcor-Hypothesis Testing ANOVA (Accuracy) | Our Hybrid Method (MAI) | dcor-Hypothesis Testing ANOVA (MAI) |
---|---|---|---|---|---|
credit_approval | DT | 0.793 | 0.768 | 0.828 | 1.669 |
KNN | 0.896 | 0.896 | 1.414 | 1.414 | |
RF | 0.854 | 0.866 | 0.867 | 0.329 | |
SVM | 0.854 | 0.854 | 0.376 | 0.376 | |
Differentiated_ | DT | 0.938 | 0.938 | 0.189 | 0.189 |
Thyroid_Cancer_ | KNN | 0.938 | 0.938 | 0.596 | 0.596 |
Recurrence | RF | 0.948 | 0.948 | 0.699 | 0.699 |
SVM | 0.938 | 0.938 | 0.910 | 0.910 | |
Fertility | DT | 0.885 | 0.885 | 0.610 | 0.610 |
KNN | 0.808 | 0.808 | 0.820 | 0.820 | |
RF | 0.846 | 0.846 | 0.398 | 0.398 | |
SVM | 0.885 | 0.885 | 0.059 | 0.059 | |
Heart_Disease | DT | 0.792 | 0.805 | 0.903 | 1.172 |
KNN | 0.870 | 0.870 | 1.085 | 1.085 | |
RF | 0.857 | 0.857 | 0.918 | 0.918 | |
SVM | 0.857 | 0.857 | 0.486 | 0.486 | |
Wholesale_ | DT | 0.495 | 0.514 | 0.633 | 0.228 |
customers _data | KNN | 0.676 | 0.676 | 1.105 | 1.105 |
RF | 0.712 | 0.703 | 0.096 | 0.152 | |
SVM | 0.739 | 0.739 | 0.558 | 0.558 | |
Average | MAI | 0.678 | 0.689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, S.-J.; Lee, Y.-S.; Tang, Y.-J. An Effective Hybrid Sampling Strategy for Single-Split Evaluation of Classifiers. Electronics 2025, 14, 2876. https://doi.org/10.3390/electronics14142876
Yen S-J, Lee Y-S, Tang Y-J. An Effective Hybrid Sampling Strategy for Single-Split Evaluation of Classifiers. Electronics. 2025; 14(14):2876. https://doi.org/10.3390/electronics14142876
Chicago/Turabian StyleYen, Show-Jane, Yue-Shi Lee, and Yi-Jie Tang. 2025. "An Effective Hybrid Sampling Strategy for Single-Split Evaluation of Classifiers" Electronics 14, no. 14: 2876. https://doi.org/10.3390/electronics14142876
APA StyleYen, S.-J., Lee, Y.-S., & Tang, Y.-J. (2025). An Effective Hybrid Sampling Strategy for Single-Split Evaluation of Classifiers. Electronics, 14(14), 2876. https://doi.org/10.3390/electronics14142876