E:I?é electronics

Article

Real-Time Kubernetes-Based Front-End Processor for Smart Grid

Taehun Kim !, Hojung Kim 2*{, SeungKeun Cho ?, YongSeong Kim 2(*, ByungKwen Song ? and Jincheol Kim !

check for

updates
Received: 30 April 2025
Revised: 4 June 2025
Accepted: 6 June 2025
Published: 10 June 2025

Citation: Kim, T.; Kim, H.; Cho, S.;
Kim, Y.; Song, B.; Kim, J. Real-Time
Kubernetes-Based Front-End
Processor for Smart Grid. Electronics
2025, 14, 2377. https:/ /doi.org/
10.3390/ electronics14122377

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

1 Security Business Department, KEPCO Knowledge Data and Network, Naju 58322, Republic of Korea;
thkim_5117@kdn.com (T.K.), shine_1991@kdn.com (J.K.)

Department of Electronics and Computer Engineering, Seokyeong University, Seoul 02713, Republic of Korea;
wiw4477@skuniv.ac.kr (S.C.); wiz@skuniv.ac.kr (Y.K.); bksong@skuniv.ac.kr (B.S.)

* Correspondence: hotteok@skuniv.ac.kr; Tel.: +82-10-9559-3034

Abstract: In Supervisory Control and Data Acquisition (SCADA) systems, central to indus-
trial automation and control systems, the Front-end Processor (FEP) facilitates seamless
communication between field control devices and central management systems. As the
Industrial Internet of Things (IIoT) and Industry 4.0 centered on the smart factory paradigm
gain traction, conventional FEPs are increasingly showing limitations in various aspects.
To address these issues, Data Distribution Service, a real-time communication middleware,
and Kubernetes, a container orchestration platform, have garnered attention. However, the
effective integration of conventional SCADA protocols, such as DNP3.0, IEC 61850, and
Modbus with DDS, remains a key challenge. Therefore, this article proposes a Kubernetes-
based real-time FEP for the modernization of SCADA systems. The proposed FEP ensures
interoperability through an efficient translation mechanism between traditional SCADA
protocols—DNP3.0, IEC 61850, and Modbus—and the Data Distribution Service protocol.
In addition, the performance evaluation shows that the FEP achieves high throughput
and sub-millisecond latency, confirming its suitability for real-time industrial control ap-
plications. This approach overcomes the limitations of conventional FEPs and enables
the realization of more flexible and scalable industrial control systems. However, further
research is needed to validate the system under large-scale deployment scenarios and
enhance security capabilities. Future work will focus on performance evaluation in realistic
conditions and the integration of quantum-resistant security mechanisms to strengthen
resilience in critical infrastructure environments.

Keywords: common information model; data distribution service; DNP3.0; front-end
processor; IEC 61850; Kubernetes; Modbus; protocol conversion; smart grid; supervisory
control and data acquisition

1. Introduction

SCADA systems, a core element of industrial automation and control systems, have
been pivotal in industrial settings over the past several decades. SCADA systems provide
infrastructure for monitoring and controlling remote equipment and are widely used
in various industries, such as power, nuclear energy, and oil [1]. Conventional SCADA
systems communicate with remote facilities using industrial protocols, such as DNP3.0,
IEC 61850, and Modbus, which have been widely adopted in industrial fields due to their
proven stability and reliability over the decades [2-4].

In particular, with the rapid evolution of industrial environments centered around
the IIoT and smart factory paradigms, existing SCADA systems are becoming increasingly
complex and are required to operate in larger and more distributed environments. Industry

Electronics 2025, 14, 2377

https://doi.org/10.3390/ electronics14122377

https://doi.org/10.3390/electronics14122377
https://doi.org/10.3390/electronics14122377
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0004-7636-3964
https://orcid.org/0009-0000-8108-3917
https://doi.org/10.3390/electronics14122377
https://www.mdpi.com/article/10.3390/electronics14122377?type=check_update&version=2

Electronics 2025, 14, 2377

2 of 34

4.0 refers to the digital transformation in manufacturing and industrial automation, char-
acterized by the integration of technologies such as the Internet of Things (IoT), artificial
intelligence (AI), cloud computing, and edge computing to enable intelligent interconnec-
tion and optimization between production equipment and information systems [5,6]. In line
with this trend, SCADA systems must evolve beyond their traditional roles of monitoring
and control to support the real-time processing of large volumes of data and enable flexible
interoperability with a wide range of heterogeneous devices and systems.

To address the increasing technological complexity and evolution, the Smart Grid
Architecture Model (SGAM), proposed by the European standardization bodies for the
electric power industry (CEN-CENELEC-ETSI), has gained considerable attention. SGAM
is a three-dimensional framework that defines how various components of a smart grid
system should be integrated and interoperable. It structures the system across five inter-
operability layers—business, function, information, communication, and component—as
well as along operational zones and energy domains [7]. This model provides a systematic
representation of how industrial systems, including SCADA, should be designed and
scaled within future-oriented smart grid environments.

However, conventional SCADA systems show limitations in scalability, flexibility, real-
time responsiveness, and fault recovery. Because conventional SCADA systems depend on
fixed infrastructure, system scaling is difficult, and integrating diverse data sources and
applications is complex and inefficient. Moreover, these systems are difficult to ensure
rapid recovery in the event of system failures and high availability, imposing constraints
on stable operations in industrial settings [8]. To overcome these limitations, the adoption
of real-time middleware and cloud-native technologies has become necessary.

Kubernetes is an open-source container orchestration platform that enables automatic
deployment, management, and scaling of containerized applications. By offering the flexi-
bility to run applications consistently across diverse environments through visualization,
Kubernetes can be considered an ideal platform for modernizing SCADA systems [9].
Kubernetes’s automatic scaling mechanism enables horizontal scaling of SCADA systems.
Leveraging containerized microservice architecture enables the modularization and flexible
updates of SCADA systems. Moreover, declarative configuration and self-healing features
in Kubernetes enhance the high availability and reliability of SCADA systems.

Data Distribution Service (DDS) is a data-centric communication middleware that
supports real-time data processing. By enabling fine-tuned control over various parame-
ters, such as reliability, priority, durability, and temporal constraints, through Quality of
Service (QoS) policies, DDS ensures real-time data processing required in mission-critical
industrial environments. In addition, DDS enables efficient data exchange between system
components using a data-centric approach, allowing effective processing of massive data
generated by various sensors and measuring devices [10]. Therefore, DDS-based data
distribution provides a crucial technological basis for industrial automation systems.

However, the integration between conventional SCADA systems and DDS-based
systems remains a key challenge. As the two systems utilize fundamentally different
communication paradigms and protocols, ensuring interoperability is inherently difficult.
Conventional SCADA protocols, such as DNP3.0, IEC 61850, and Modbus, primarily utilize
connection-oriented communication methods based on Master-Slave or Client-Server
models, whereas the DDS protocol utilizes a data-centric Publish-Subscribe communication
method. Moreover, SCADA protocols primarily utilize polling-based data acquisition
mechanisms, whereas DDS adopts an event-based data dissemination method. To ensure
interoperability among various SCADA protocols and device vendors, data exchange must
occur through a common structure. This implies that, beyond simple protocol translation,
semantic-level data mapping and translation are required [11].

Electronics 2025, 14, 2377

30f34

Therefore, this article proposes a FEP for efficient translation between conventional
SCADA protocols and DDS protocols within a Kubernetes platform. The main objectives
of this article are as follows: (1) to design and implement a FEP capable of translating data
between conventional SCADA protocols (DNP3.0, IEC 61850, and Modbus) and the DDS
protocol; (2) to ensure real-time data processing and interoperability through mechanisms
embedded in the FEP; (3) to utilize Kubernetes features, such as horizontal scaling and
self-healing, to provide high availability and scalability for the overall system; (4) to enable
seamless integration between legacy SCADA and DDS-based systems, facilitating mod-
ernization toward a cloud-native architecture; and (5) to conduct performance evaluations
of the proposed system including FEP and multiple DDS implementations in order to
validate the effectiveness of the proposed system and provide performance indicators for
its deployment.

The remainder of this article is structured as follows. Section 2 introduces the back-
ground knowledge necessary for understanding this article, as well as the related works
relevant to this article. Section 3 details the structure and implementation of the proposed
system. Section 4 presents the implementation results and the performance evaluation of
the proposed system. Section 5 discusses the implications and limitations of the proposed
approach. Finally, Section 6 summarizes the research findings and conclusions.

To better understand the motivations and context of this work, it is essential to first
review the underlying techniques and related research in the domain.

2. Background
2.1. Kubernetes

Kubernetes, developed by Google based on its extensive container management
experience, is an open-source platform for container orchestration. Released in 2014, it has
evolved into a leading project under the Cloud Native Computing Foundation (CNCF),
becoming the de facto standard for containerized infrastructure [12,13].

One of the key features of Kubernetes is its declarative system configuration, wherein
the desired state is specified by the administrator, and the system automatically adjusts
the current state to match it. Contrary to the imperative model, this approach focuses on
the final system state and enables Kubernetes controllers to continuously monitor and
adjust the current state, providing a self-healing mechanism [14]. YAML (YAML Ain’t
Markup Language, Yet Another Markup Language) or JavaScript Object Notation (JSON)
configuration files used in this process facilitate not only source code version management
but also version management of the platform. Combined with modern infrastructure
management methodologies, such as DevOps, GitOps, and Continuous Configuration
Automation, this becomes a fundamental component in realizing Infrastructure as Code
(IaC) [15].

Another key feature of Kubernetes is its scalability and portability. It supports auto-
matic scaling in response to workload increases and allows consistent application deploy-
ment and management across various computing environments, including on-premise,
hybrid, and public clouds. This enables a multi-cloud strategy that mitigates vendor lock-in
and supports concurrent use of various cloud platforms [16].

Figure 1 illustrates the Kubernetes architecture, which explains the roles and interac-
tions between the control plane and worker nodes. Emphasizing how these components
support cluster orchestration and security enforcement. It can also be helpful to understand
how the proposed high-availability architecture is configured, a topic that will be discussed
in detail later in the article. Kubernetes can operate clusters that integrate multiple physical
or logical nodes. These nodes are categorized based on their roles into the control plane or
master node, responsible for centralized control of the cluster, and worker nodes, which

Electronics 2025, 14, 2377

4 of 34

execute application workloads. The control plane (master node) includes key components
like: etcd (stores configuration data), Scheduler (assigns workloads to nodes), API Server
(central communication point), Controller Manger (handles system controllers), and Cloud
Controller Manager (integrates with cloud providers). The worker node includes kubelet
(node agent), kube-proxy (network proxy), Container Runtime (executes containers), and
Pods (groups of containers running application workloads).

In particular, the API Server of the master node serves as the core component for cluster
management, offering a Representational State Transfer (REST) Application Programming
Interface (API) for accessing and modifying cluster resources. It also communicates with
worker nodes to monitor the state of running workloads and transmit information, such as
cluster scheduling. Therefore, a failure in a worker node can directly result in application
workload disruption, while a failure in the master node can result in the loss of entire
cluster management capabilities. To address this, Kubernetes offers a high-availability
architecture through multi-node configurations.

From a security perspective, Kubernetes enhances containerized application security
through diverse security mechanisms, such as Role-based Access Control (RBAC), network
policies, and secret management. Furthermore, it continues to evolve through an active
open-source community and supports customization via various plugins and extensions
tailored to user requirements [17,18].

............................ e e,

Control Plane / Master Node Worker Node
kube- Container Pod :

etcd Scheduler kubelet BToKy Runtime ;

! :

Controller API Server :
Manager 4
Security Profiles :

£ Cloud " :
3 i Securlty Network Pod s
Controller) S i .
Manager : Profiles RBAC Policy ci(:::;{ etc. E

Figure 1. Kubernetes architecture (adapted from Kubernetes documentation [19]).

Continuous Integration and Continuous Deployment (CI/CD) is a methodology that
automates the software development process to boost software development efficiency
and minimize the time required for deployment. It is primarily employed in microservices
architecture (MSA), where different components of an application are segmented into
individual services, as opposed to monolithic architecture, which combines all components
into a single package.

Figure 2 shows the CI/CD pipeline integrated with the Kubernetes environment. It
describes how CI/CD can be used to automate the entire workflow—from code modi-
fication to container image building, testing, and deployment—thereby accelerating the
development cycle. This allows development teams to perform releases more frequently
and apply security patches more promptly when vulnerabilities are discovered.

Electronics 2025, 14, 2377 5 of 34
((Commit Trigger Deliver
Source Code clicD Build Test Package or Deploy
___ Change Pipeline to Production
T ry ry x T
|
Clco Data Flow Reference .
User Interface - a cIcD Production
ource Code i Environment
A Pipeline Database
- Repository E Definition }
Periodic
Schedule | cy/cD Pipeline Flow

Figure 2. CI/CD Pipeline.

Due to these features, Kubernetes has become an essential tool for the development and
operation of modern cloud-native applications and is recognized as a core infrastructure
that supports microservices architecture and DevOps.

2.2. Data Distribution Service (DDS)

DDS is a real-time publish—-subscribe communication middleware standard defined
by the Object Management Group (OMG). DDS supports data-centric communication in
distributed systems and is specifically designed for mission-critical real-time systems that
demand high performance, reliability, and scalability—such as those used in aerospace,
defense, industrial automation, and transportation systems. DDS supports a comprehen-
sive set of QoS policies. These policies can provide precise control over communication
requirements, including data transmission reliability, priority, consistency, and time con-
straints. QoS policies can be configured independently for each data flow, thereby enabling
communication characteristics to be optimized for individual application requirements [20].
Thus, DDS has become a core technology for delivering safe and highly reliable data
communication across diverse industrial sectors.

DDS’s data-centric architecture considers data as the central element of the application.
In conventional message-based communications, data flow depends on the relationship
between sender and receiver. In contrast, DDS is based on the concept of a Global Data
Space (GDS), where data are centrally positioned within the system, thereby lowering
coupling between system components and enhancing reusability. Figure 3 shows the com-
munication architecture of DDS and Global Data Space. The data types utilized in Topics
are defined using the Interface Definition Language (IDL), which enables language- and
platform-independent data exchange. IDL enables automatic translation across multiple
programming languages, thereby facilitating seamless integration between heterogeneous
systems [21].

Publisher Subscriber

. QoS)
Global Domain Space EDatareaderl
Subscriber

Datawriter

Qos]

= Datareader
Publisher
[QoS]
Datawriter
Publisher Subscriber

[Qos] QoS
Datawriter Datareader

Figure 3. DDS communication architecture (adapted from DDS documentation [22]).

Electronics 2025, 14, 2377

6 of 34

DDS offers a dynamic discovery feature that automatically detects and connects
publishers and subscribers over the network. This enhances the system’s flexibility and
scalability, allowing easy node addition or removal. In addition, DDS ensures secure
communication by providing authentication, access control, and data encryption. Through
selective encryption—which enables encryption or access restriction for specific DDS
Topics—DDS optimizes system performance while maintaining robust data security. These
security mechanisms are vital for protecting data integrity and confidentiality from cyber-
security threats, particularly in critical infrastructure systems [23].

DDS employs the real-time publish—subscribe (RTPS) protocol as the standard wire
protocol at the communication layer to ensure interoperability among different DDS im-
plementations. RTPS operates over UDP/IP (User Datagram Protocol/Internet Protocol),
delivering high scalability and efficiency, and supports multicast communication to opti-
mize network resource utilization.

2.3. Front-End Processor (FEP)

FEP is a core component that enables seamless communication between remote layers—
such as Remote Terminal Units (RTUs), Programmable Logic Controllers (PLCs), and Intel-
ligent Electronic Devices (IEDs)—and the SCADA server, which manages data aggregation
and control. By acting as a mediator for bidirectional communication between field equip-
ment and the central control system, FEP directly influences the communication efficiency
and stability of the entire system.

The FEP manages multiple communication lines and can monitor line status, load, and
fault responses. Furthermore, by supporting various physical communication interfaces
and protocols, it facilitates data exchange among heterogeneous field devices. Accordingly,
it performs data preprocessing to make protocols from diverse devices intelligible to
the upper SCADA system and, when necessary, incorporates security measures, such as
encryption, authentication, and firewalls [24,25].

In this article, the proposed FEP is implemented using three representative SCADA
protocols: DNP3.0, IEC 61850, and Modbus.

DNP3.0 is a communication protocol predominantly used in electric power and process
automation systems, developed to ensure interoperability between remote devices, such
as RTUs and IEDs, and a master station. Designed with asynchronous data transmission,
DNP3.0 guarantees data integrity even in cases of network latency or packet loss and is
extensively applied for reliable data exchange in power systems. Furthermore, it supports
event-driven data transmission, which reduces unnecessary traffic and enables efficient use
of limited network resources [26].

IEC 61850 is an international standard for power automation systems that ensures com-
munication interoperability among IEDs in Ethernet-based digital substations. IEC 61850
allows the exchange of device configuration information through Substation Configuration
description Language (SCL) files and employs an object-oriented data model to facilitate
more efficient information exchange among devices. In addition to the manufacturing
message specification (MMS) protocol used over TCP/IP (Transmission Control Proto-
col/Internet Protocol) networks, IEC 61850 includes two additional protocols—Generic
Object-oriented Substation Event (GOOSE) and sampled value (5V)—which are used within
local substation networks (Substation LAN, non-routed networks) [27].

Modbus facilitates data exchange between PLCs and various industrial automation
devices. With its relatively simple protocol structure, Modbus is easy to implement and is
the most widely adopted protocol in industrial settings. Due to its simplicity and broad
compatibility, Modbus can be easily integrated into existing systems and is widely adopted
inindustrial IoT and smart grid environments. Thus, Modbus serves as a simple yet efficient

Electronics 2025, 14, 2377

7 of 34

industrial communication protocol that enables reliable data exchange between SCADA
systems and automation equipment [28]. Modbus exists in two primary versions, one
based on serial communication that supports RTU or ASCII (American Standard Code for
Information Interchange) modes, and the other based on TCP/IP. In this article, the system
was implemented and evaluated using the TCP/IP-based version of Modbus [29,30].

In addition to DNP3.0, IEC 61850, and Modbus—which are widely adopted in power
system automation—numerous other protocols are commonly used across power networks,
particularly as these systems become more interconnected and intelligent. Table 1 is the list
of several other communication protocols used in power networks, as well as data exchange.

Table 1. Communication protocols used in power networks and data exchange.

Protocol Type Common Usage
OPC-UA IP-based Secure and scalable industrial data exchange
DLMS/COSEM Wired /Wireless Smart metering and energy data exchange in utility
networks
ICCP Wired Data exchange between control centers and utility
(IEC60870-6/TASE.2) operators
IP-based, . . .
MQTT Publish/Subscribe Lightweight messaging for IoT, DERs
IP-based, Reliable messaging middleware in distributed energy
AMQP .
Message-oriented systems
PROFINET Ethernet Real-time industrial automation
BACnet Wired / Wireless Building automation and smart grids
- Wireless . . .
Wi-Fi (IEEE 802.11) Local wireless connectivity for smart devices
Bluetooth Wireless Short-range device communication and setup
(Short-range)
ZigB Wireless Low-power sensor and metering networks
ghee (IEEE 802.15.4) P &
LoRaWAN Wireless Low-power wide-area networks (LPWAN) for remote
(Long-range) assets
Wireless . :
6LoWPAN (IPv6 over IEEE 802.15.4) Constrained IoT devices and networks

2.4. Common Information Model (CIM)

The CIM originated from a research project conducted by the Electric Power Research
Institute (EPRI) in the late 1990s and was later standardized as the IEC 61970 series. It is
a standard information model designed to ensure data consistency and interoperability
within power systems. CIM is an information modeling standard defined in the Resource
Description Framework (RDF) format and comprises a set of abstract information classes
that represent equipment, network topology, and system data in generation, transmission,
and distribution systems [31]. By employing this standardized information model, inter-
operability among heterogeneous applications within power systems can be significantly
enhanced. CIM ensures not only structural but also semantic consistency of data, thereby
enabling seamless data integration and exchange between systems [32].

CIM is constructed using an object-oriented modeling methodology based on the
Unified Modeling Language (UML). All components are defined as classes, and object-
oriented relationships, such as inheritance, association, aggregation, and composition, are

Electronics 2025, 14, 2377

8 of 34

used to systematically represent the complex structures and relationships within the power
domain [33]. This modeling approach clarifies the logical relationships among power
system components and enhances both the scalability and maintainability of the model.

Figure 4 illustrates the modeling of an Alternating Current (AC) transmission line seg-
ment (ACLineSegment) using inheritance relationships. ACLineSegment models a single
electrical system, comprising one or more conductors with specific electrical properties,
used to transmit AC within power systems. It is one of the core information classes in
the smart grid domain and is primarily used to represent major transmission components
within electric power networks. Due to its rich set of attributes and inheritance structure,
it effectively illustrates the hierarchical nature of the Common Information Model (CIM).
Moreover, it includes attributes that directly correspond to commonly acquired parameters
such as voltage and reactance in various SCADA protocols, making it a representative entity
for data mapping and performance comparison across protocols. Accordingly, this article
utilizes ACLineSegment as the basis for CIM mapping and for evaluating the performance
of the proposed system.

IdentifiedObject
aliasName
Description
mRID
name

Length

Resistance

Reactance

A
| PowerSystemResource |
A

\ Equipment |

| ConductingEquipment |
N

multiplier: UnitMultiplier
unit: UnitSymbol
value

multiplier: UnitMultiplier

unit: UnitSymbol
value

multiplier: UnitMultiplier

unit: UnitSymbol
value

Conductor.length

Conductor
length: Length

7y

ACLineSegment.r
ACLineSegment.r0

ACLineSegment.x
ACLineSegment.x0

ACLineSegment

r: Resistance
r0: Resistance
x: Reactance
x0: Reactance

Figure 4. ACLineSegment CIM Class UML diagram.

The root class of ACLineSegment is the IdentifiedObject class, which provides a
common identifier to all classes that require Identification and Naming attributes. Power-
SystemResource, which inherits from IdentifiedObject, represents all physical and logical
resources in the power system, while Equipment represents physical devices. ConductingE-
quipment refers to components conductively connected to carry current in an AC power
system, while Conductor represents elements comprising conductive materials with spe-
cific electrical properties used to transmit current between distinct points. ACLineSegment,
the final class in this inheritance hierarchy, is associated with the length, resistance, and
reactance classes—representing length, electrical resistance, and reactance, respectively—
enabling precise modeling of the physical and electrical properties of a transmission line
segment. This systematic class structure of CIM allows for the clear definition of com-
plex components in power systems and their relationships, thereby enhancing system
integration and interoperability [34].

2.5. Related Work

In the smart grid environment, the communication architecture is recognized as a core
element for achieving real-time data acquisition, system scalability, and interoperability
among heterogeneous devices [35,36]. Accordingly, Table 2 illustrates that active research

Electronics 2025, 14, 2377

9 of 34

is being conducted on DDS and cloud-native communication infrastructures, which will be

further discussed in Section 5.

Table 2. Research on DDS and cloud-native communication infrastructure.

. . . . Relationship
Article Title Main Topic Addressed with This Article Ref.
Cloud IEC 61850: DDS Evaluation of DDS-based IED Demonstrates that DDS meets
Performance in Virtualized 61850 automation system in real-time requirements even in [37]
Environment with Opendds virtualized environments virtual/cloud environments
Design and implementation of a
DDS-Based Interoperability DDS-based smart grid testbed Shows DDS enables real-time
Framework for Smart Grid enabling communication and data interoperability among [38]
Testbed Infrastructure synchronization between control heterogeneous devices
nodes
Implementation of DDS Cloud ~ DDS-based sensor data collection Demonstrates a lightweight
Platform for Real-Time Data and visualization using ESP32 real-time data pipeline using DDS ~ [39]
Acquisition of Sensors and Django for smart grid sensing applications
Implementation of DDS Cloud Cloud platform design using Extends DDS architecture to a
Platform for Real-Time Data Real-Time Innovation (RTI) DDS scalable cloud-native platform, [40]
Acquisition of Sensors for a and Node-RED for real-time I[IoT validating its practicality for IloT
Legacy Machine data processing systems
Evaluating Performance of OMG Integration of DDS with Proves enhanced scalability and
DDS in Kubernetes Container Kubernetes for communication management efficiency of DDS [10]
Deployment (Industry Track) performance with container orchestration
Data-Centric Publish-Subscribe .
Approach for Distributed DDS-based deployment of Pre§ents a DDS-integrated
. o architecture for scalable and
Complex Event Processing Distributed Complex Event . [41]
. . . : . QoS-aware real-time event
Deployment in Smart Grid Processing (DCEP) in smart grids .
. processing
Internet of Things
Proposes scalable and interoperable
Intercloud Message Exchange DDS-based Intercloud Message cloud messaging using DDS and [42]
Middleware Exchange (ICME) architecture Web Ontology Language (OWL)
ontology
ngh Ava'llablhty Cont.rol Method High Availability Control Method = Ensures rapid recovery and service
in Container-Based Microservice . . Lt
o . (HACM) with multi-Kubernetes ~ continuity in Energy Management [43]
Applications over Multiple .
clusters System (EMS) environments
Clusters
Kubernetes-Container-Cluster- Reliability modeling of Achieves 99.9999504% system
Based Architecture for an Energy =~ Kubernetes-based EMS using Pod reliability through mathematical [44]
Management System redundancy and Markov model modeling
Microservice-Based Architecture M1crosqv1ce;—based E.MS using Enhances reliability via
Mixed-integer Linear - - :
for an Energy Management . container-level isolation and [9]
Programming (MILP) resource .
System RSO hot-swapping
optimization
DDS and OPC UA Protocol Highlights a research gap in
Coexistence Solution in Real-Time = Gateway architectures between real-time protocol conversion [45]

and Industry 4.0 Context Using
Non-Ideal Infrastructure

DDS and other pub-sub protocols

between DDS and traditional
SCADA protocols

Building on the background and previous work discussed above, we now describe

the architecture and implementation of the proposed system.

Electronics 2025, 14, 2377

10 of 34

3. Materials and Methods
3.1. Kubernetes Cluster

Managed by CNCEF, Kubernetes is inherently designed for deployment in cloud envi-
ronments. This design philosophy allows Kubernetes to be flexibly deployed across a wide
range of infrastructure environments—on-premises, hybrid, or public cloud—depending
on user needs and requirements. In this article, the proposed architecture was imple-
mented by constructing an on-premises cloud environment based on the Proxmox Virtual
Environment (VE).

Proxmox VE is an open-source Type 1 hypervisor based on Debian, supporting both
virtual machine and container virtualization through the Kernel-based Virtual Machine
(KVM) hypervisor and Linux Containers (LXC). It also consolidates multiple devices into
a cluster for efficient management of storage, network, and high availability. Proxmox
VE allows for fine control over resources, such as Central Processing Unit (CPU) cores,
memory, and network bandwidth allocated to each virtual machine (VM) and container,
thereby enabling complete isolation between services. This minimizes external interference,
thereby enhancing the accuracy and reliability of workload execution and analysis, and
also allows for performance evaluation under resource-constrained scenarios [46].

In this article, five physical servers were individually installed with Proxmox VE and
configured into a single cluster. The clustering feature of Proxmox VE allows for centralized
management by grouping multiple nodes into a single administrative entity. Each node
was connected to a gigabit local network. To ensure network stability and prevent address
conflicts, all nodes were configured with static IP addresses and synchronized using time
protocol (NTP). Virtual machines can be provisioned and operated on any node within the
cluster and can be easily migrated to other nodes using the built-in migration functionality.
This Proxmox cluster was used as the foundational infrastructure for deploying both a
Kubernetes cluster and a Load Balancer cluster. Furthermore, the high availability (HA)
features provided by Proxmox were leveraged to construct a fault-tolerant architecture,
enabling automatic recovery in the event of VM failures. These VMs correspond to the
nodes of the Kubernetes and Load Balancer clusters, thereby enhancing the overall resilience
of the system.

The Kubernetes cluster deployed on the Proxmox cluster was constructed using
Kubeadm, Kubernetes's official clustering tool, and designed with high availability in
mind. To maintain a cluster state, Kubernetes internally leverages the Reliable, Replicated,
Redundant, and Fault-tolerant (RAFT) consensus algorithm. As such, the control plane
was configured with a minimum of three Master Nodes, ensuring quorum is preserved
even in the event of a single Master Node failure. While it can be extended to more than
five Master Nodes to further improve fault tolerance and stability of the cluster, this article
does not encompass a quantitative evaluation of Kubernetes cluster reliability. Therefore,
the cluster was constructed under the assumption that simultaneous failures of more than
two Master Nodes would not occur [47].

Additionally, the cluster was configured with three Worker Nodes to ensure efficient
load balancing and optimal resource utilization during workload execution. This 3-Master
and 3-Worker configuration constitutes a medium-scale cluster suitable for research pur-
poses, offering balanced stability and performance, and can be seamlessly scaled to a larger
cluster without structural modifications.

To ensure uninterrupted access to the Kubernetes API Server even during Master Node
failures, reliable connectivity to a healthy Master Node is essential. To achieve this, this
article implemented a load-balancing mechanism by combining HAProxy and KeepAlived,
enabling real-time monitoring of Master Node status and effective redirection of traffic to
healthy Master Nodes [48].

Electronics 2025, 14, 2377

11 of 34

HAProxy is a highly reliable reverse-proxy solution that provides high availability and
load balancing for TCP- and HyperText Transfer Protocol (HTTP)-based applications. By
performing periodic checks to identify healthy Master Nodes, HAProxy ensures automatic
traffic redirection, enabling consistent access to a functioning API Server. To mitigate po-
tential failures of the HAProxy, multiple HAProxy instances were deployed in conjunction
with a KeepAlived service based on the Virtual Router Redundancy Protocol (VRRP). High
availability is ensured by dynamically managing priority among nodes and assigning the
Virtual IP (VIP) address to the node with the highest priority.

Figure 5 illustrates the process by which traffic to the API Server is routed to the
Master Node through the high-availability architecture. When attempting to access the
API Server via a Worker Node or a developer REST AP], the request is initially directed to
the VIP address assigned to the Load Balancer cluster. Because the VIP is assigned to the
Load Balancer node with the highest priority, its HAProxy instance distributes traffic to the
available Master Nodes. This approach eliminates the single point of failure in accessing
the API Server, thereby significantly enhancing the availability and reliability of the entire
Kubernetes cluster.

Worker Node | |Worker Node| |Worker Node

[[|
Traffic for APl Server l_+_l |

VIP
| AL |
Load Balancer Cluster VIP Routing ‘

LB Node | LB Node | -
| Keepalived | | Keepalived | kubectl

| HAProxy | HAProxy

Master Node Master Node Master Node
A 4 \ 4
API Server API Server API Server
Controller-Manager Controller-Manager Controller-Manager
Scheduler Scheduler Scheduler
etcd etcd etcd

Figure 5. Kubernetes cluster high availability setup (adapted from Kubernetes documentation [49]).

3.2. Kubernetes-Based FEP System

Figure 6 presents the overall architecture of the Kubernetes-based FEP system. The
Kubernetes-based FEP system consists primarily of two core components: the FEP Protocol
Converter and DDS Integration Service. The FEP Protocol Converter, the core module
proposed in this article, acquires data from the Outstation Simulator via the SCADA proto-
col and performs conversion into the CIM-based DDS protocol. This protocol conversion
process enables consistent handling of data collected from various Outstation devices
using an integrated protocol. Furthermore, by establishing a clear separation between the
data acquisition and data application layers, inter-component dependencies are reduced,
thereby improving overall system stability and maintainability.

Electronics 2025, 14, 2377

12 of 34

Kubernetes Cluster

- %::f:fat:g? ~ |— FEP Protocol Converter — D (DDS Integration Services ~
FEP CIM Adaptor (Database, Web, etc.)
DNP3.0 || || DNP3.0 L - DDS
slave |TT| Master 2} IDL S| | sub
= |Converter| | | Sos | PBIS
IEC 61850 L IEC 61850 | = + e Ke=! Pub
Server |7 Client 2 o
° DDS =l
Modbus |LL[Modbus | € |publisher|™|?® DDS+WIS
Slave | | Master 'P Eﬁ Sub
_ J ry 2
X PROXMOX Private Cloud
PC #1 PC #2 PC #3 coe PC #N

Physical Network
Figure 6. Kubernetes-based FEP system architecture.

The DDS Integration Service subscribes to the standardized data published by the FEP
Protocol Converter and offers various services, such as storing the data in a database and
enabling real-time monitoring via a web interface. This architecture is designed based on
microservices, allowing independent scaling and deployment of each service. Leveraging
Kubernetes orchestration, the system achieves high availability and self-healing capabilities,
enabling a stable SCADA system.

The Outstation Simulator is implemented to simulate measurement devices of remote
facilities and deployed on a standalone virtual machine, separate from the Kubernetes
cluster. Each remote device—namely the DNP3.0 Slave, IEC 61850 Server, and Modbus
Slave—simulates data corresponding to the entity serving the same role as the ACLine-
Segment described in Figure 4, using a protocol-specific format. For example, in DNP3.0,
the wire length is represented as a point in Group 40 Variation 2 using a 16-bit signed
integer; in IEC 61850, every piece of information of the wire is encoded as a ZLIN element
representing an overhead line; in Modbus, wire resistance is expressed as a 16-bit read-only
word in the Input Register.

3.3. Front-End Processor

The FEP Protocol Converter is a component responsible for acquiring data from remote
devices using SCADA protocols, such as DNP3.0, IEC 61850, and Modbus, and converting
them into CIM-based DDS Topics for use by the DDS Integration Service. The FEP Protocol
Converter comprises two major components: the Front-end Processor and CIM Adaptor.

The FEP acquires data from remote equipment using SCADA protocols and transmits
the data to the CIM Adaptor via a Unix Domain Socket. The Unix Domain Socket is an
efficient mechanism for inter-process communication on the same host, offering lower
overhead and higher bandwidth compared to TCP/IP sockets [50]. This architecture
enables the simultaneous execution of multiple FEP processes that support various SCADA
protocols. Moreover, due to the asynchronous processing method, even if performance
bottlenecks occur in the CIM Adaptor, they do not affect the operation of FEP processes,
thereby ensuring their independent and stable execution.

The FEP was implemented using open-source libraries corresponding to each protocol.
As shown in Table 3, the selected libraries were chosen based on popularity indicators,
such as the programming language used, the number of stars and forks, and the count of

Electronics 2025, 14, 2377

13 of 34

open issues and pull requests on GitHub. As of September 2022, the opendnp3 library was
designated end of life and archived, as development efforts shifted toward stepfunc/dnp3,
a DNP3.0 implementation in Rust. Nonetheless, opendnp3 remains the best C/C++-based
library for this protocol and was thus adopted in this article [51-53].

Table 3. SCADA Protocol Libraries Used.

Opendnp3 [51] Libiec61850 [52] Libmodbus [53]
Protocol DNP3.0 IEC 61850 Modbus

Language CH++ C C

Stars 305 944 3.6k

Forks 233 488 1.8k
Issues archived 152 79
Pull requests archived 44 84

Library Version 3.1.2 1.6.0 3.1.11

3.4. CIM Adaptor

The power data collected by the FEP do not directly conform to the RDF-based CIM
data structure defined by IEC 61970. Therefore, to enable utilization in applications, it is
necessary to analyze the differences in representation between the original data and CIM
data and apply mapping rules accordingly via a CIM-based Adaptor that transforms the
data into the CIM format.

Figure 7 illustrates the architecture of the CIM Adaptor, which consists of three primary
components: the CIM Mapper, IDL Converter, and DDS Publisher.

FEP

CIM Mapper
DNP3O | DNP3OI°P CIM Adaptor
Mast . :
— —| | -+ IEC 61850
IEC 61850 | o el IDL Converter | DDS Publisher
Client T~

1 Convorier

Master

Figure 7. CIM Adaptor.

3.4.1. CIM Mapper

It analyzes the data received from the FEP and converts protocol-specific data—such as
from DNP3.0, IEC 61850, and Modbus—into the CIM format. During this process, mapping
rules appropriate to each protocol are applied.

In the case of IEC 61850, the data are self-descriptive and thus can be mapped into CIM
format while preserving its logical structure. That is, by converting structural elements,
such as Logical Nodes (LN) and Data Attributes defined in IEC 61850 into correspond-
ing components in the CIM Object model, the semantic integrity of the original data
is preserved.

In contrast, DNP3.0 and Modbus fundamentally provide address-based register values
that do not include semantic data. Therefore, to convert such data into CIM data, it must
be mapped based on predefined tag information. The data collected from DNP3.0 and
Modbus are associated with specific CIM Classes and attributes based on a mapping table,
thereby enabling the conversion of each data point into meaningful CIM data.

Algorithm 1 shows the logical flow of the data-to-CIM mapping process for each
protocol as previously described, represented in pseudocode.

Electronics 2025, 14, 2377 14 of 34

Algorithm 1 CIM Mapper

Require: Input Data from FEP (IEC 61850, DNP3.0, Modbus)
Ensure: Mapped CIM Data
1: Initialize CIM Data Structure

2: for each Data Packet received from FEP do
3: Extract protocol type, source ID, and raw values
4: if Protocol == IEC 61850 then
5: Load Mapping Table for IEC 61850
6: Split IEC 61850 Object into hierarchical structure
7 Identify Logical Node (LN) and Data Attribute (DA)
8: Map LN and DA to corresponding CIM Class
9: else if Protocol == DNP3.0 then
10: Load Mapping Table for DNP3.0
11: Extract Object Type and Index Number
12: Identify Data Value associated with Index Number
13: Map Point Number to CIM if rule exists
14: else if Protocol == Modbus then
15: Load Mapping Table for Modbus
16: Extract Register Address and associated Data Value
17: Validate Register Type (Holding, Input, Coil, Discrete)
18: Map Register Address to CIM if within valid range
19: end if
20: Store Mapped CIM Data
21: end for

3.4.2. IDL Converter

It converts the transformed CIM data into a Topic format for use within DDS. IDL, a
language for defining data structure and types, is used to convert CIM data into IDL-based
Topic data, enabling data exchange between heterogeneous systems in a DDS environment.

3.4.3. DDS Publisher

It publishes the converted DDS Topics, making them available for use by other appli-
cations. This allows data collected from various remote devices (RTU, PLC, IED, etc.) to be
converted into IEC 61970-compliant CIM-based DDS data, which can be utilized in diverse
applications (databases, web, etc.).

Algorithm 2 represents the logical flow of publishing the previously converted CIM-
based DDS data in pseudocode.

The DNP3.0 protocol represents data using the concepts of Group and Variation. An
Object Group is a higher-level concept that defines the data type (Binary, Analog, Counter,
Time), while Variation is a subordinate concept specifying the detailed format (integer,
float16/32). Object data with the same Group and Variation are distinguished by their
Index, which is a simple value without any semantic meaning in the protocol standard.
Accordingly, the Master and Outstation must mutually agree on defining the semantics
of each Index, allowing for the determination of which device value is represented by the
respective Object.

To map between DNP3.0 Objects to IEC 61970 CIM Classes, the Binary Output Status
(Object Group 10, Variation 2) and Analog Output Status (Object Group 40, Variation 2) are
primarily used, as these types correspond to most values used in CIM Class definitions.
Table 4 shows part of the mapping table used to associate the ACLineSegment Class of CIM

Electronics 2025, 14, 2377 15 of 34

with DNP3.0. The label g40v2 refers to Group 40, Variation 2, and the Object Indexes are
defined sequentially starting from 0x00.

Algorithm 2 CIM to DDS Topic Publisher (With Source Order)

Require: Initialized DDS Domain Participant, List of CIM Data
Ensure: DDS Message Published Successfully

1: Assume DDS Domain Participant and Publisher are initialized
2: Load IDL Type Definition and Target Topic Name
3: if DataWriter already exists for Topic then
4: Reuse existing DataWriter
5: else
6: Create New DataWriter for Topic
7 Set QoS Parameters: > Example: Reliable, DestinationOrder, KeepLast(10)
8: o Reliability < Reliable
9: o DestinationOrder < BySourceTimestamp
10: e History < KeepLast(10)
11: endif
12: for each CIM_Object in CIM_Data do
13: Extract {ID, Value}
14: Try to BuildMessage(CIM_Object)
15: if Message is Invalid then
16: Log Error and Continue
17: end if
18: Write(DataWriter, DDS_Message)
19: end for

Table 4. DNP3.0 CIM mapping.

DNP3.0 CIM

Group, Variation Index ACLineSegment Class

g40v2 0x00 UnitSymbol
g40v2 0x01 length UnitMultiplier
g40v2 0x02 Value

g40v2 0x03 UnitSymbol
g40v2 0x04 r UnitMultiplier
g40v2 0x05 Value

Both IEC 61850 and IEC 61970 standards provide foundational system information
necessary to construct equipment models for power systems. When representing the
interconnections and configurations of system equipment in a data model, IEC 61850
employs a hierarchical structure, while IEC 61970 utilizes an RDF-based reference structure,
resulting in representational differences between the two standards. Furthermore, while
both standards define core system components, they differ in model names, attributes, and
structural composition, resulting in the existence of mismatched data between the two data
models. Figure 8 illustrates the mapping process of IEC 61850 Object data into the CIM.

The IEC 61850 to CIM Mapper module applies mapping rules to perform the trans-
formation between IEC 61850 and CIM data. IEC 61850 data comprises Objects and their
corresponding Values and are mapped while preserving their logical structure. Accord-
ingly, IEC 61850 data are categorized into hierarchical elements, such as Logical Node (LN),
Function Class (FC), Data Object (DO), and Data Attribute (DA), and are subsequently
mapped to CIM Classes based on the IEC 61850-CIM mapping rules.

Electronics 2025, 14, 2377

16 of 34

CIM Mapping Module
| IEC 61850 Data

Type | IEC 61850 Object | Value

m

CIM Mapper

 DNP3.0
IEC 61850
Modbus

CIM Data

LN | FC | po | DA |

Type

D 1

[CIMClass | CIM Attribute |

IEC 61850-CIM Mapping Rule

N

Data |

[Topic Name | Topic Data

Figure 8. CIM Adaptor—IEC 61850 CIM mapping.

Table 5 presents an example of a matching analysis between LNs in IEC 61850 and
power system model information in IEC 61970 CIM Classes. A minimal system con-
figuration model consists of components, such as generators, loads, transmission lines,
transformers, circuit breakers, and disconnectors.

Table 5. IEC 61850 LN, CIM Class matching.

IEC 61850 Logical Node IEC 61970
Power Overhead line (ZLIN) AcLineSegment
Circuit Breaker (XCBR) Breaker
Disconnector /Switch (XSWI) Switch
PowerTransformer (YPTR) PowerTransformer
Generator (ZGEN) GeneratingUnit

Using ZLIN (LN), which models information about electrical lines, and ACLineSeg-
ment (CIM) as examples, a part of the mapping table derived through comparative analysis
of the two data models is shown in Table 6.

The Modbus protocol represents data using the concept of Offset Addresses based
on the data type. Each data type has a predefined format and size, and values stored
in memory can be read or written based on an address that is offset from a reference
point. Therefore, similar to DNP3.0, Modbus also transmits data based on data types and
addresses. Because each address is a simple value without inherent semantics, the Master
and Slave must mutually agree on assigning meaning to it.

Table 6. IEC 61850 CIM mapping.

IEC 61850 CIM

ZLIN LN ACLineSegment Class
ZLINCFLinLenkm$units$SIUnit UnitSymbol

LinLenkm ZLINCFLinLenkm$units$multiplier length UnitMultiplier
ZLINSPLinLenkm$setMag$f value
ZLINCFRPs$units$SIUnit UnitSymbol

RPs ZLINCFRPs$unitspmultiplier r UnitMultiplier
ZLINSPRPs$setMag$f value

Electronics 2025, 14, 2377

17 of 34

To map Modbus data to IEC 61970 CIM Classes, the Data Type corresponding to
Modbus Input Registers is utilized, enabling compatibility with most attribute values
used in CIM Classes. Table 7 presents a part of the mapping table used to align the CIM
ACLineSegment Class with Modbus. The mapping uses the Input Register as the data type,
with Offset Addresses assigned sequentially beginning from 0x00.

Table 7. Modbus CIM mapping.

Modbus CIM

Data Type Address ACLineSegment Class

Input Register 0x00 UnitSymbol
Input Register 0x01 length UnitMultiplier
Input Register 0x02 Value

Input Register 0x03 UnitSymbol
Input Register 0x04 r UnitMultiplier
Input Register 0x05 Value

3.5. Performance Evaluation Testbed and Scenario

In real-time systems such as smart grids and industrial automation platforms, commu-
nication performance is directly linked to the overall safety and reliability of the system.
Therefore, in this section, performance evaluations of the proposed system—including
the FEP and multiple DDS implementations—were conducted to validate its effective-
ness and to provide key performance indicators for deployment. Among various metrics,
throughput and latency were considered the primary indicators for evaluating system
performance. Table 8 presents the definitions and measurement methodologies for each
metric. Throughput refers to the amount of data a system can process per unit of time and
serves as a key indicator for evaluating system scalability and load-handling capability.
In smart grid environments, where numerous sensors and devices continuously transmit
high-frequency data, failure to maintain sufficient throughput can lead to data loss or
system bottlenecks.

Latency refers to the time it takes for a specific piece of data to travel from the trans-
mission point to the reception point, and is particularly critical in real-time systems where
control commands and acquired data must be delivered without delay. Excessive latency
can introduce timing errors in control signals, potentially leading to equipment malfunc-
tions or reduced operational efficiency. Therefore, minimizing latency is essential to ensure
the real-time responsiveness of the system.

Table 8. Evaluation metrics used in performance evaluation.

Metrics Definition Calculation
Throughput = L;:;Zf“
: The amount of data successfully Nimessages: total number of
Throughput (Mbit/s) successfully processed messages

processed per unit of time : :
Tiotal: the total time duration

of the measurement

Latency (ms)

Latency = Treceive — Tsend

The time delay between when a data Tseng: the timestamp at which
message is sent from the source and the message is sent
when it is received at the destination Treceive: the timestamp at which

the message is received

Electronics 2025, 14, 2377

18 of 34

Outstation
Simulator

Data Request (DNP3.0, [EC61850, Modbus)

3.5.1. FEP Protocol Converter

In this section, the performance of one of the core functionalities of the proposed
system—protocol conversion for SCADA protocols—is evaluated. The FEP Protocol Con-
verter receives data from protocols such as DNP3.0, IEC 61850, and Modbus, and transforms
them into CIM-based DDS Topic messages. As illustrated in Figure 6, throughput and
latency were measured during the transformation process, specifically from the FEP to the
CIM Mapper. This segment includes the mapping of data received from each protocol’s
Master or Client into the Common Information Model format. The subsequent stages,
including the IDL Converter and DDS Publisher, were not evaluated in this section be-
cause their implementations differ depending on the specific DDS vendor. Instead, their
performance is separately assessed in the following section for each DDS implementation.

As previously mentioned, the FEP Protocol Converter employs Unix Domain Sockets—
a form of inter-process communication (IPC)—to maximize communication performance,
given that all components reside on the same host. Accordingly, a multithreaded program
was developed in which the FEP and CIM Mapper were implemented as separate threads,
and this program was used to conduct the performance evaluation.

In the detailed evaluation scenario, the FEP receives data via protocol-specific Master
and Client and maps the data to the ACLineSegment class of the CIM. In this setup, data
were initially acquired once from the Outstation Simulator and then stored in memory,
where it was repeatedly used for conversion operations. This configuration was intended
to minimize variability introduced by the data acquisition process specific to each protocol
and implementation library, thereby enabling a more accurate measurement of the pure
processing performance within the transformation phase. Figures 9 and 10 illustrate the
procedures for measuring throughput and latency, respectively, based on this scenario.

FEP CIM Mapper

>

Data Response (DNP3.0, IEC61850, Modbus)

) Save Data to Local Memory

TimeStart[]) Serialize Protocol Data #1

Transmit Protocol Data #1 > Map Protocol Data #1
into CIM Class

) Serialize Protocol Data #10,000

Transmit Protocol Data #10,000 Map Protocol Data #10,000
TIMEENALH......ceeeeeeee e e e ene e ee e e e seeeeane s s nnsannnens into CIM Class :

: DataSize X K
T Mbit —
hroughput(/S) TimeEnd — TimeStart

,Where K is Count of Transmission

Figure 9. Throughput test sequence diagram for FEP Protocol Converter.

Electronics 2025, 14, 2377 19 of 34
Outstation
Simulator FEP CIM Mapper
B Data Request (DNP3.0, IEC61850, Modbus)
Data Response (DNP3.0, IEC61850, Modbus) >
> Save Data to Local Memory
{
VIS A) Serialize Protocol Data #1
Transmit Protocol Data #1 Map Protocol Data #1
BT =3 =t o - L R > into CIM Class
TimeStart #10,000 [[> serialize Protocol Data #10,000
Transmit Protocol Data #10,000 > Map Protocol Data #10,000
TimeEnd #10,000LH.....coiiiiiiiriieesiiiese e imnssess s ssssseessessssnnssnsssansesnssns into CIM Class
v \

MedLatency(ms) = Med(TimeEnd#i — TimeStart#i)
,Wwhere iis 1..Count of Transmission

Figure 10. Latency test sequence diagram for FEP Protocol Converter.

3.5.2. DDS Implementations

Because the DDS standard defined by OMG is open, multiple DDS implementations
based on this standard are available. This article selects four DDS implementations (i.e.,
RTIDDS, CycloneDDS, FastDDS, and OpenDDS) for comparative performance analysis.
Each DDS implementation provides its performance evaluation library tailored to its
product, but due to vendor-specific configurations and communication methods, it is
difficult to objectively compare their performance. Therefore, a platform named DDS-
PerfTester was developed and used to compare and analyze the performance of multiple
DDS implementations under a uniform structure and configuration [54-57].

Although standard documentation exists for DDS architecture and APIs, implemen-
tation differences—such as in QoS configuration methods—exist across vendors. Fur-
thermore, due to the presence of additional QoS parameters and configurations aimed at
enhancing the performance of each DDS implementation, creating a single performance
evaluation code applicable to all implementations may be impractical. Accordingly, the
performance evaluation code was unified across all implementations, while DDS-specific
configuration and communication codes were separately developed to ensure compatibility,
thereby maintaining consistent architecture and enhancing maintainability.

DDS-PerfTester is a performance analysis tool designed to provide quantitative metrics
for evaluating, comparing, and analyzing the performance of various DDS implementa-
tions. The main goal of the DDS-PerfTester is to manage and run performance analysis
scenarios and compute the corresponding results to enable effective comparison across DDS
implementations. As shown in Figure 11, DDS-PerfTester comprises two modules: DDS-
PerfTest Master (hereinafter referred to as DP-Master) and DDS-PerfTest Slave (hereinafter
referred to as DP-Slave). The DP-Master module is responsible for managing performance
evaluation scenarios and computing results, while the DP-Slave module handles data
transmission control and event delivery via interfaces with specific DDS implementations.

Electronics 2025, 14, 2377

20 of 34

Performance Test

DDS-PerfTest
Master

Performance Test Parameters, Control

Performance Test

Events Events
DDS-PerfTest DDS-PerfTest
Slave #1 Slave #2
Performance Test
DDS Topic DDS
Publisher Subscriber

Figure 11. DDS-PerfTester architecture.

DDS-PerfTester primarily focuses on evaluating and analyzing two key performance
metrics: throughput and latency. Throughput is the number or size of topics that can
be processed per unit of time, whereas latency is the elapsed time from the moment a
Publisher publishes a topic to the moment a Subscriber receives it. The DP-Slave detects
the publish and subscribe timings of topics and transmits them as event data to the Master.
The DP-Master calculates the time differences between the events reported by DP-Slave
to derive the throughput and latency values. This method enables objective measure-
ment and comparison of performance characteristics across various DDS implementations,
thereby providing quantitative indicators for selecting a DDS solution optimized for specific
application environments.

The DDS-PerfTester allows for scenario management and automation via configuration
files in YAML format. Although DDS-PerfTester was developed with the primary purpose
of evaluating DDS implementation performance, it is designed to allow for the substitution
of DDS Publishers and Subscribers with other applications, enabling performance evalua-
tion of non-DDS targets as well. Figure 12 presents an example configuration file for DDS
performance testing. The scenario involves one Publisher and four Subscribers, with a topic
size of 32,768 bytes and a multicast DDS communication model. The DP-Master distributes
the performance evaluation scenario specified in the configuration file to each DP-Slave,
ensuring that all DDS Publishers and Subscribers conduct a performance evaluation for the
same target.

Configuration File Example for DDS Performance Test

mode: throughput # Performance Test Mode (Througput / Latency)

logFile: ddsThroughput.log # Performance Test Log File Name

resultFile: ddsThroughput.res # Performance Test Result File Name

count: 10,000 # Total Data(Topic) Count

protocol:
type: DDS
model: multicast
datasize: 32,768
pubCount: 1
subCount: 4

Performance Test Protocol — Data Distribution Service
Communication Model (Unicast / Multicast)

Topic Size

Count of Publisher

Count of Subscriber

Figure 12. DDS-PerfTester configuration example.

Figure 13 illustrates the method used by DDS-PerfTester to measure throughput. Once
the DP-Master loads the configuration file and distributes it to each DP-Slave, each DP-
Slave applies the received scenario and initiates performance evaluation. Upon receiving
the test initiation event from the DP-Master, the DP-Slave sends a publish—start event
back to the DP-Master. It then publishes a predefined number of topics according to

Electronics 2025, 14, 2377

21 of 34

the performance evaluation scenario. Each time a DDS Subscriber subscribes to a topic,
it reports the corresponding event to the DP-Master. Once the DP-Master receives the
publish—start event and subscription-completion events for all topics, it determines that all
topics have been published and subscribed, and then terminates the test. The time interval
between the publish-start event and the final topic subscription event is then calculated
to determine the total delivery time for all topics, which is used to compute the overall

throughput.
DDS-PerfTest DDS-PerfTest Slave DDS-PerfTest Slave
Master & DDS Publisher & DDS Subscriber
N > Load Sync Time, Sync Time, 112 IN
""""" Configuration Transfer Parameters Transfer Parameters

test_configs

Apply Parameters

Apply Parameters
& Start Performance Test

& Start Performance Test

Event (Start Throughput Test)

Event (DDS Publish Start)

TimeStart 1<

DDS Topic #1, #1, #1

Event (DDS Subscribe #1)

DDS Topic #10,000, #10,000, ..., #10,000

TimeEnd

<.

test_results

Calculate
Test Result

TopicSize X K

Mbit/ y —
Throughput(/S) TimeEnd — TimeStart

,where K is Count of Topics

Figure 13. Throughput test sequence diagram for 1Publisher-NSubscriber case.

Figure 14 illustrates the method used by DDS-PerfTester to measure latency. Similarly
to throughput measurement, the DP-Master loads the configuration file and distributes
it to each DP-Slave, but instead of triggering a throughput test, it sends a latency test
initiation event. Upon receiving this event, the DP-Slave reports a topic-publish event to
the DP-Master before publishing the topic via the DDS Publisher. The DDS Subscriber
that subscribes to the corresponding topic subsequently reports a topic-subscription event
to the DP-Master. The DP-Master calculates the time interval between the topic—publish
event and the subscription event to measure the latency of a single topic transmission.
This process is repeated multiple times, and statistical values, such as the average, me-
dian, and 95th percentile (p95), are calculated from the collected data to derive the final
latency measurement.

To evaluate the performance of each DDS implementation, a testbed was constructed
using a Proxmox VE cluster environment, and individual VMs with the same performance
were allocated for each instance of DDS-PerfTester, Publisher, or Subscriber. The con-
figuration of each VM and the version of the DDS implementation used are detailed in
Table 9. Each VM was allocated four cores from an Intel® Core™ i7-12700 processor (Intel
Corporation, Santa Clara, CA, USA), and 4 GB of memory was assigned to each VM. The
network environment was constructed using Proxmox VE’s Software Defined Network
(SDN) to implement a VLAN environment, with a bandwidth cap of 300 Mbit/s applied
to inter-VM communication to maintain a consistent network setting. The Ubuntu 22.04
LTS Server was used as the operating system. All DDS implementations were compiled
and executed uniformly under the Linux Kernel version 5.15.0-134 and GNU Compiler
Collection (GCC) version 11.4.0.

Electronics 2025, 14, 2377 22 of 34

DDS-PerfTest DDS-PerfTest Slave DDS-PerfTest Slave
Master & DDS Publisher & DDS Subscriber
N [Load Sync Time, Sync Time, 1(2 [N
"""" - Configuration Transfer Parameters Transfer Parameters
test_configs " Apply Parameters {4 ~Apply Parameters
& Start Performance Test < & Start Performance Test

Event (Start Latency Test #1)

DDS Topic #1, #1, ..., #1

ipeS iy { Event (DDS Publish #1)

TimeEnd #1
Event (DDS Subscribe #1)

Event (Start Latency Test #10,000)

limeS #10*000{ Event (DDS Publish #10,000)

TimeEnd #10,000

Event (DDS Subscribe #10,000)

Calculate 4

R J—— Test Result

test_results

MedLatency(ms) = Med(TimeEnd#i — TimeStart#i)

,Where i is 1..Count of Topics

Figure 14. Latency test sequence diagram for 1Publisher-NSubscriber case.

Table 9. Testbed used for DDS performance test.

Hardware
CPU Intel® Core™ i7-12700 4Cores
Memory 4GB
Software
Network Proxmox VE SDN (VLAN)
Bandwidth 300 Mbit/s
(OX) Ubuntu 22.04 LTS Server
Kernel Linux 5.15.0-134
GCC v11.4.0
DDS
RTIDDS v6.1.1
CycloneDDS v0.11.0
FastDDS v3.1.1
OpenDDS v3.28.1

Each DDS implementation provides differing characteristics in its QoS configurations.
Even for QoS policies defined in the OMG standard, default values may differ across im-
plementations. Additionally, vendors may introduce proprietary QoS policies not defined
in the standard to optimize performance. Accordingly, this article adopted a uniform QoS
configuration for all implementations—focusing on core OMG-defined QoS policies (e.g.,
reliability, durability, history) that directly affect communication performance—as shown
in Table 10, to maintain fairness in evaluation. In addition, for vendor-specific QoS policies
not based on the standard, artificial tuning was excluded, and the default values provided
by each vendor were used unchanged. This approach prevents biased results that may
arise from configurations optimized for specific implementations.

Electronics 2025, 14, 2377 23 of 34

Table 10. QoS used in DDS-PerfTester.

QoS Value QoS Value
Reliability Reliable Destination Order B,[},I. Reception
imestamp
History Keep All Latency Budget 0
Durability Volatile Liveliness Automatic
Deadline Infinite Ownership Shared

To derive performance evaluation results, not only were the numerical metrics—
throughput and latency—provided by DDS-PerfTester utilized, but visual analysis using
Wireshark’s I/O graph was also conducted. Wireshark is an open-source network packet
capture and analysis tool that allows the inspection of packet contents or protocol-level
analysis by capturing packets transmitted through a specific network interface. The I/O
graph feature in Wireshark allows packet or protocol data to be visualized as a time-
based graph, assisting with temporal analysis. This enables an intuitive comparison of
packet transmission volume over time and is useful in directly or indirectly analyzing and
comparing the performance of each DDS implementation [58].

Accordingly, performance evaluations for throughput and latency were conducted for
each DDS implementation. Furthermore, performance was measured under various scenar-
ios: the 1Publisher-1Subscriber and 1Publisher-NSubscribers scenarios. In the 1Publisher—
1Subscriber scenario, the number of Subscribers was fixed, while the Topic size was varied
from 128 bytes to 32,768 bytes to observe changes. In the 1Publisher-NSubscribers scenario,
the Topic size was fixed at 32,768 bytes, and the number of Subscribers was increased
from two to eight to examine variations. In the 1Publisher—1Subscriber scenario, unicast
was employed as the DDS communication mechanism, whereas multicast was used in
the 1Publisher-NSubscribers scenario. This allowed for the evaluation of throughput and
latency variations exhibited by each DDS implementation under different environments.

Based on the proposed system design, we conducted a series of experiments to evaluate
its performance, as described in the following section.

4. Results
4.1. Demonstration of the Proposed System

This section presents a practical example of the implemented system to help readers
better understand the operational structure of the proposed architecture. In the detailed
scenario, data are acquired from an Outstation Simulator and transformed into CIM-based
DDS Topic messages through the FEP Protocol Converter. The generated messages are
then published and subsequently subscribed to by other DDS-based applications for use.
To enhance clarity, IEC 61850—a SCADA protocol with relatively well-defined semantic
structures—was employed in this example.

Figure 15 shows an example of the IEC 61850 CIM mapping process as executed during
the operation of the CIM Adaptor. The IEC 61850 Server is configured with a ZLIN LN,
where the data point ZLINSPLinLenkm$setMag$f has a value of 10.25. The following
steps are then performed:

1. The IEC 61850 Client within the FEP retrieves the value from the Server via MMS
communication and forwards it to the CIM Adaptor.

2. The CIM Adaptor converts the data into a DDS Topic format based on CIM mapping
and publishes it via a DDS Publisher.

3. Among the DDS Integration Services, the Database Integration Service (DBIS) sub-
scribes to the Topic and stores the Topic information in a database.

Electronics 2025, 14, 2377

24 of 34

M 1EC 61850.pcapng

Data Attribute : ZLINSSP$LinLenkm$setMag$f

/" Value :10.25
' Outstation o FEP Protocol Converter
“\J~ Simulator — |EC 61850 FEP CIM Adaptor
1 IEC 61850 IMMS | |EC 61850 |, CIM-IDL DDS
Server) Client Mapping | Publisher
| @ DDS/RTPS
e DDS Databus | 3
DDS Integration Services
[DDS (3]
| Sub PGSQL
e DBIS
DDS/RTPS| DDS
l Pub

Figure 15. Protocol conversion scenario.

Figure 16 illustrates the packet flow involved when the FEP acquires the ZLIN sub-
element values via IEC 61850 MMS communication. At this stage, the value 10.25 is
encoded according to the Abstract Syntax Notation One (ASN.1) representation used by
MMS and converted to the IEEE754 floating-point standard format, resulting in the value
0x41240000, which is then delivered to the FEP. The FEP collects not only this value but
also values of the common attributes shared with the mapped CIM Class, ACLineSegment.
It then transmits all this information to the CIM Adaptor via a Unix Domain Socket.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
No. Time Source Destination Protocol Length Info

8141 201.304457 192.168.100.31 192.168.100.21 TCcP 66 58755 » 102 [ACK] Seq=210 Ack=166

8142 201.304571 192.168.100.31 192.168.100.21 MMS/IEC61850 143 GetDataValueRequest PINIED@1C1 Z

8143 201.304577 192.168.100.21 192.168.100.31 TCcP 66 102 » 58755 [ACK] Seq=166 Ack=287

8144 201.304677 192.168.100.21 192.168.100.31 MMS/IEC61850 102 GetDataValueResponse success

8145 201.304681 192.168.100.31 192.168.100.21 TCcP 66 58755 » 102 [ACK] Seq=287 Ack=202—
> Transmission Control Protocol, Src Port: 182, Dst Port: 58755, Seq: 29 00 @2 03 00 45 00
> TPKT, Version: 3, Length: 36 €0, 41 24 99 99 co a8 6: ii co a8

s 3 64 65 ae 7 80 18

> ISO 8073/X.224 COTP.Connectlon Oriented Transport Protocol 0200 45 d0 00 00 01 61 05 @5 cb f1 <0 cb 8 bd
> 150 8327-1 OSI Session Protocol 2f 78 03 00 00 24 02_F@ “B0 01 00 01 00 61 17 30
> ISO 8327-1 0SI Session Protocol 15 @ £ 0e 02 01 01 a4 09 al @7 87
> ISO 8823 OSI Presentation Protocol 25 0f 41 24 090 00
v MmIs a

v confirmed-ResponsePDU [GetDataValueResponse]
invokeID: 1
v confirmedServiceResponse: read (4)

v read

v listOfAccessResult: 1 item
v AccessResult: success (1)

v s ~ ipg-point (7)
floating-point]

[Request In: 8142

[Response Time: ©.000106000 seconds]

Figure 16. Protocol conversion scenario—@ IEC 61850/ MMS.

Upon receiving the data, the CIM Adaptor performs IEC 61850 CIM mapping to
convert it into a CIM-based DDS IDL structure, which is then published through a DDS
Publisher. Figure 17 shows the DDS Publisher publishing the cim-aclinesegment Topic

Electronics 2025, 14, 2377

25 of 34

using the RTPS protocol. While DDS defaults to a big-endian format during message
serialization, a little-endian format can be adopted to accommodate specific system re-
quirements and enhance flexibility. Figure 17 illustrates a case where communication is
conducted using little-endian formatting; hence, the value is transmitted as 0x00002441,
not 0x41240000.

M DDS.peapng = [m] X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

No. Time Source Destination Protocol Lengtl Info
235 20.729516 192.168.100.31 192.168.100.32 RTPS 282 INFO_TS, DATA -> cim-aclinesegment
236 21.730092 192.168.100.31 192.168.100.32 RTPS 282 INFO_TS, DATA -> cim-aclinesegment
237 22.730764 192.168.100.31 192.168.100.32 RTPS 282 INFO_TS, DATA -> cim-aclinesegment =
v Real-Time Publish-Subscribe Wire Protocol 20 00 00 00 00 00 00 20 00 90 00 9@ 08 00 45 00
Magic: RTPS @1 Oc 2e 7a 40 @0 40 11 cl d6 c@ a8 64 1f cO a8

64 20 a@ al c9 12 00 f8 4a 9a 52 54 50 53 02 04

> ipeotocol ension: 2:4 01 03 @1 03 bc 24 11 56 11 ef bl @5 e4 24 09 01

vendorId: 01.83 (Object Computing, Inc. (OCI) - OpenDDS) 08 00 3c 73 45 68 43 e3 89 c8 15 ©5 00 00 90 00
> guidPrefix: @103bc24115611efb105e424 10 00 90 00 00 OO0 00 0 00 O3 00 00 00 00 Qe 00
> Default port mapping (Based on calculated domainId. Might 22 00 20 09 00 20 bo 20 00 @2 a8 00 00 0@ 64 00
v submessageId: INFO_TS (@x@9) 00 43 00 00 00 3e 00
v Flags: @x@1, Endianness 22 90 90 24 41 23 ;; 2: ﬂ g: gi
Doiore iminsain = Reserved: Not set 32 OO O 0O P 53 65 67 6d 65 6e
el =-Resecved: ot sat 74 2§ 41 00 00 00 05’@ “00 @0 53 65 67 20 41 00
. . . 22 o 20 00 00 00 00 00 00 20 00
Endianness: Little-Endian 00 0000 00 24 41]oc 00 00 00 02 00 00 00 06 00
O e e ERNG RN e E 7 90 00 cd ccSc @c 22 00 20 09 20 00 00 03 00
20 00 9a 9999 3f Oc 20 00 @0 02 00 00 00 @5 00
o Coo = iR L e /i 00 00 33 33|b3 3f Oc @0 00 @0 01 00 00 00 04 00

22 00 20 00)co 3f 0a 00 00 @0

veee ..D.ag Timestamp flag: Not set
....... 1 =IEndianness: Little—EndianI

octetsToNextHeader: 8

Timestamp: Jun 8, 2025 11:25:48.783353999 UTC
Vv submessageId: DATA (@x15)

> Flags: 0x05, Data present, Endianness

octetsToNextHeader: @
0000 0200 0000 0RO = Extra flags: ©x0000
Octets to inline QoS: 16
readerEntityId: ENTITYID_UNKNOWN (@x20000000)
writerEntityId: 0x00000003 (Application-defined writer
[Topic Information (from Discovery)]
writerSeqNumber: 14
Vv serializedData

encapsulation kind: D_CDR2_LE (©x0009)

encapsulation options: ©x0000
IserializedDat :{ +

v v v

Figure 17. Protocol conversion scenario—@ DDS/RTPS.

The DBIS serves as a service integrating DDS and databases. It subscribes to designated
DDS Topics to store received data in the database, or maps data from the database to a
DDS Topic for publication. The DBIS in Figure 15 is designed to store the ACLineSegment
Topic data in a PostgreSQL database using Java Database Connectivity (JDBC). PostgreSQL
is an open-source object-relational database system that features scalability, support for
standard Structured Query Language (SQL), and compatibility with Vector DB. It operates
by default on TCP Port 5432 and manages databases via a TCP/IP-based protocol designed
by PostgreSQL. Figure 18 illustrates the process of storing ACLineSegment Topic data in
PostgreSQL using JDBC. Because the INSERT SQL used to store values in a database is
transmitted in text form, the value “10.25” is converted into ASCII codes and delivered as
0x31 (“1”), 0x30 (“0”), 0x2E (“.”), 0x32 (“2”), and 0x35 (“5”).

Figure 19 represents the data stored in the PostgreSQL database via DBIS, where the
value 10.25 from the IEC 61850 server’s ZLINSPLinLenkm$setMag$f is mapped and
stored as the length.value of the ACLineSegment.

Electronics 2025, 14, 2377 26 of 34

M PostgreSQLpcapng = O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
No. Time Source Destination Protocol Lengtl Info
58 3.553089 192.168.100.32 192.168.100.41 TCP 66 35136 » 5432 [ACK] Seq=716 Ack=577 Win=64128
5983°553173 192.168.100.32 192.168.100.41 TCcpP 66 35136 > 5432 [ACK] Seq=716 Ack=601 Win=64128 m====
60 3.556843 192.168.100.32 192.168.100.41 PGSQL 513 >P/B/D/E/S
61 3.556856 192.168.100.41 192.168.100.32 TCP 66 5432 » 35136 [ACK] Seq=601 Ack=1163 Win=64384
62 3.558125 192.168.100.41 192.168.100.32 PGSQL 1e3 <1/2/n/C/Z |
> Frame 60: 513 bytes on wire (4104 bits), 513 bytes captured (4104 bits]| 2060 74 20 28 6c 65 6e 67 74 68 5f 75 6e 69 74 73 7!
> Ethernet II, Src: ProxmoxServe 48:14:40 (bc:24:11:48:14:4@), Dst: Proxr | 297¢ gz :5 3: ZC §§ gg 3; :5 2; Z; ;‘2‘ 23 ;; 25 2: 2‘
. : c c c c ¢
> Intern?t li’rotocol Version 4, Src: 192.168.100.32, Dst: 192.168.100.41 2090 67 74 68 SF 76 61 6¢c 75 65 2c 20 72 S 75 Be &
> Transmission Control Protocol, Src Port: 35136, Dst Port: 5432, Seq: 7 5020 74 73 79 6d 62 6f 6¢c 2c 20 72 Sf 75 6e 69 74 6¢
v PostgreSQL 20bo 75 6C 74 69 70 6C 69 65 72 2c 20 72 S5f 76 61 6«
Type: Parse 20co 75 65 2c 2@ 72 30 5f 75 6e 69 74 73 79 6d 62 &
Length: 411 90d0 6c 2c 20 72 30 5 75 6e 69 74 6d 75 6¢ 74 69 ¢
Statement: 2020 6c 69 65 72 2c 20 72 30 S5f 76 61 6c 75 65 2c 2¢
’ _||eofo 78 5f 75 6e 69 74 73 79 6d 62 6f 6c 2c 20 78 5
Query| - B ey onp UM 0100 /5 6e 60 /% ©6d] 75 6c 74 69 70 6c 69 65 72 2c 24
Parameters: @ 2110 78 5f 76 61 6¢c|75 65 2c 2@ 78 30 5f 75 6e 69 7:
> PostgreSQL 120 73 79 6d 62 6f|6¢ 6¢
> PostgresQL 2130 75 6c 74 69 70j6c| 31 3@ 2e 32 35 |&
> PostgresQL 2140 6¢c 75 65 2c 20] 6e 7
& 2150 6e 61 6d 65 2c|20 6d 72 69 64 2c 2064§?73 6:
> PostgresQL 2160 72 69 70 74 69| 6 68929 20 56 41 4c 5F 45 53 X
21760 28 30 2c 20 30™2e=2®|31 30 2e 32 35|2c 20 32 2«

180 20 36 2c 20 31 2e 31 2c 20 39 2c 20 33 2c 20 3:
919 2e 32 2c 20 35 2c 20 32 2c 20 31 2e 34 2c 20 3¢
2120 2c 20 31 2c 20 31 2e 35 2c 20 27 53 65 67 6d 6!

F- A AA a4 AT AL AA AT Fa FrE rT oAA a4 AT AL AL

Figure 18. Protocol conversion scenario—@ PGSQL (PostgreSQL).

A Properties | I, Data | 58 ER Diagram

: 123 length_value ¥ [\
,1, ‘E‘ @|123Id vrA?mme\ v | az alia v]123 length_value ¥ 123 len
= L =t Seg A 10.25 10.25
. Seg A 10.25
A aclinesegment |[sea 10.25 10.25
Seg A 10.25
5 S=SEgTTenTA— Seg A 10.25 10.25
6 6 Segment A Seg A 10.25
10.25 i
10.25 |,

Figure 19. Protocol conversion scenario—database.

4.2. FEP Performance Evaluation

Table 11 presents the performance measurement results obtained by the FEP Protocol
Converter for each SCADA protocol. For each protocol, data were collected and mapped
to the ACLineSegment class of the CIM. In the experiment, a data packet of 176 bytes
was constructed and transmitted 10,000 times using the same structure to evaluate the
transmission and conversion processes.

Table 11. Performance test results—throughput and latency for various SCADA protocols.

SCADA Protocols and Corresponding Performance Test Results

Throughput (Mb/s) Latency (us)
DNP3.0 1064.81 11.42
IEC 61850 1058.12 11.59
Modbus 1071.05 11.38

The measurement results showed that the performance differences among the proto-
cols were within 5%, and the variations observed in repeated experiments were inconsistent.

Electronics 2025, 14, 2377

27 of 34

Therefore, it is difficult to conclude that the conversion process for any specific protocol
demonstrated superior performance. Consequently, the performance differences among
protocols within the proposed FEP architecture are considered statistically insignificant.

It should be noted that this experiment excluded the actual data acquisition procedures
via SCADA protocols. Therefore, in real-world operational environments, performance
differences may arise, depending on factors such as the level of optimization in protocol
implementation libraries and the frequency of data acquisition.

4.3. DDS Performance Evaluation

Figure 20 shows the throughput when the Topic size is 128 bytes in the 1Publisher—
1Subscriber scenario. CycloneDDS achieved 14.5468 bps and RTI DDS 14.1771 bps, both
significantly outperforming OpenDDS at 8.7475 bps and FastDDS at 7.3389 bps.

Wireshark I/O Graphs: Throughput (128).pcapng
CycloneDDS
70 packets L ———
R i S
RTIDDS
60 packets
£
£
§ 50 packets
OpenDDS
40 packets
FastDDS
0 0.25 0.5 0.75 1 1.25
Time (s)
—— @ CycloneDDS —— ® FastDDS @ —— ® OpenDDS —— @ RTIDDS

Figure 20. Throughput for 1Publisher-1Subscriber case.

Table 12 shows the throughput in the 1Publisher—1Subscriber scenario across varying
Topic sizes. Specifically, when the Topic size was set to 32,768 bytes, RTIDDS showed
the highest throughput at 297.8868 bps, with CycloneDDS close behind at 290.8084 bps.
FastDDS exhibited the lowest throughput at 146.4058 bps. Compared to the 128-byte
Topic case, OpenDDS demonstrated improved performance at 283.9379 bps, becoming
more comparable to the top performers, RTIDDS and CycloneDDS. Additionally, all four
DDS implementations showed increased throughput as the Topic size grew. This can be
attributed to the higher relative overhead of metadata—such as RTPS headers—when the
Topic size is small, resulting in greater time spent on encoding and decoding processes
and, thus, lower effective throughput. Conversely, for larger Topic sizes, the proportion of
payload data increases relative to metadata, causing transmission time over the network
interface to dominate, resulting in throughput values approaching the available bandwidth.

Table 13 shows the throughput for the 1Publisher-NSubscriber scenario. In all test
cases, the Topic size was fixed at 32,768 bytes. Because multicast was employed as the DDS
communication mechanism, one packet can be simultaneously delivered to all Subscribers,
eliminating the need for individual transmissions. Consequently, increases in the number
of Subscribers had minimal impact on throughput. However, in some cases, throughput
declined due to the increased number of Heartbeat and Ack/Nack messages to be processed.
For example, FastDDS dropped from 200.8935 bps to 175.4527 bps, and OpenDDS dropped
from 281.2498 bps to 278.6184 bps. The throughput rankings among DDS implementations

Electronics 2025, 14, 2377 28 of 34

remained consistent with the 1Publisher-1Subscriber scenario when the Topic size was
32,768 bytes.

Table 12. Performance test results—throughput for various topic sizes.

Topic Sizes and Corresponding Throughputs

128 B 512 B 32 KB

(Mb/s) Mbjsy 2 KBMb/s) 8KBMbS))

RTIDDS 14.02 56.67 221.59 288.23 297.88
CycloneDDS 14.45 56.49 219.31 282.82 290.80
FastDDS 7.25 28.72 4757 77.01 146.40
OpenDDS 8.84 33.82 142.58 241.99 283.93

Table 13. Performance test results—throughput for various subscriber counts.

Subscriber Counts and Corresponding Throughputs

1:2 (Mb/s) 1:4 (Mb/s) 1:8 (Mb/s)
RTIDDS 295.24 296.32 297.76
CycloneDDS 290.56 291.18 291.32
FastDDS 200.89 191.15 175.45
OpenDDS 281.24 279.05 278.61

Figure 21 shows the latency for the 1Publisher—1Subscriber scenario when the Topic
size is 128 bytes. FastDDS recorded 0.1662 ms, CycloneDDS 0.1689 ms, and RTIDDS
0.1880 ms, while OpenDDS showed the highest latency at 0.3053 ms, indicating relatively
lower performance.

Wireshark I/O Graphs: Latency (128).pcapng

20 packets

19.5 packets N NV
: , CycloneDDS

RTIDDS

19 packets

18.5 packets //JW

18 packets

Packets/10 ms

17.5 packets
A/\WJ"\ OpenDDS
0 . X

Time (s)

—— ® CycloneDDS @ —— ® FastDDS A —— @ OpenDDS —— ® RTIDDS

Figure 21. Latency for 1Publisher—1Subscriber case.

Table 14 expands on the above analysis by presenting latency measurements based
on varying topic sizes in the 1Publisher-1Subscriber scenario. Notably, when the topic
size is 32,768 bytes, FastDDS recorded a latency of 1.0448 ms, CycloneDDS 1.0542 ms, and
RTIDDS 1.0861 ms, while OpenDDS remained to show low performance at 1.2240 ms.
Compared to the case where the topic size was 128 bytes, as the topic size increased, the
size of metadata per topic remained constant; however, the overall packet size increased.
Consequently, as the Maximum Transmission Unit (MTU)—which denotes the maximum

Electronics 2025, 14, 2377

29 of 34

frame size that can be transmitted over the network—is smaller than the topic size, the data
must be fragmented into multiple packets. This fragmentation increases the time required
to traverse the network interface, resulting in higher latency.

Table 14. Performance test results—latency for various topic sizes.

Topic Sizes and Corresponding Latencies
128 B (ms) 512 B (ms) 2 KB (ms) 8 KB (ms) 32 KB (ms)

RTIDDS 0.1880 0.1802 0.2204 0.3845 1.0861
CycloneDDS 0.1689 0.1779 0.1953 0.3680 1.0542
FastDDS 0.1662 0.1777 0.1852 0.3661 1.0448
OpenDDS 0.3053 0.3138 0.3054 0.4725 1.2240

Table 15 presents the latency in the 1Publisher-NSubscribers scenario. As with the
throughput measurements, the topic size was set to 32,768 bytes across all cases. Due to
the utilization of multicast as the DDS communication mechanism, latency performance
aligns with that observed in the 1Publisher-1Subscriber scenario. However, as the number
of subscribers increased from two to eight, FastDDS and OpenDDS, which had shown
reduced throughput performance, also exhibited degraded latency performance, while
FastDDS showed low latency performance compared to CycloneDDS and RTIDDS.

Table 15. Performance test results—latency for various subscriber counts.

Subscriber Counts and Corresponding Latencies

1:2 (ms) 1:4 (ms) 1:8 (ms)
RTIDDS 1.1218 1.1348 1.1685
CycloneDDS 1.1198 1.1183 1.1411
FastDDS 1.1035 1.1187 1.2135
OpenDDS 1.1919 1.2715 1.3157

The results obtained from the performance evaluation offer several insights, which are
discussed in the next section to interpret their implications and limitations.

5. Discussion

Recent studies have actively explored DDS-based communication architecture with Ku-
bernetes to improve scalability, flexibility, and manageability in smart grid systems [37,38].
These efforts have shown that container orchestration platforms can effectively deploy and
manage DDS-based applications under various network configurations, offering enhanced
service continuity and resource efficiency [41,42]. In parallel, research on cloud-native
architecture for core power grid systems—such as EMS—has demonstrated the feasibility
of achieving high availability and fault tolerance through mechanisms like multi-cluster
redundancy, service-level failover, and dynamic resource optimization [9,43,44].

However, most of these prior works have focused on either the individual benefits
of DDS and Kubernetes or proposed high-availability architecture using microservices.
And, while some studies, such as [45], have examined gateway mechanisms between DDS
and other publish-subscribe messaging protocols, few have addressed real-time protocol
conversion between legacy SCADA protocols and DDS. Moreover, the integration of such
gateways into Kubernetes-based microservice frameworks remains underexplored.

Therefore, this article proposes and implements a Kubernetes-based FEP that enables
real-time data integration between conventional SCADA systems and DDS-based plat-
forms. The proposed system collects data from legacy industrial protocols, such as DNP3.0,

Electronics 2025, 14, 2377

30 of 34

IEC 61850, and Modbus, transforms it according to the CIM, and publishes the result
through DDS, thereby enabling interoperability across multiple protocols required in smart
grid environments.

In addition, virtualization based on Proxmox VE and Kubernetes enabled the system
to be decoupled from physical platforms. This approach provides the flexibility to run
the system consistently across diverse environments and offers the scalability required for
integration with various systems and services.

The performance evaluation of the FEP demonstrated that, despite each message
being only 176 bytes—smaller than the data size used in the DDS performance tests—the
FEP consistently achieved higher throughput than all tested DDS implementations. This
confirms that the FEP itself does not act as a performance bottleneck. In terms of latency,
delays were measured in the microsecond range, indicating that the overhead introduced
by protocol conversion and data transmission does not compromise real-time performance.
These results suggest that the overall real-time capability of the system may depend on the
performance of the selected DDS implementation, highlighting the importance of choosing
a high-performance DDS solution.

The DDS performance evaluation showed that RTT Connext DDS and Cyclone DDS ex-
hibited the highest throughput, while Fast DDS, Cyclone DDS, and RTI DDS demonstrated
the lowest latency in that order. Notably, Cyclone DDS, an open-source implementation
provided by the Eclipse Foundation, delivered performance comparable to that of the com-
mercial RTT Connext DDS, demonstrating its viability as a practical open-source alternative.
Furthermore, the results confirmed that the proposed system architecture enables efficient
data exchange between system components.

Nevertheless, several limitations remain. Since the objective of this experiment was to
measure the theoretical maximum performance of the proposed system, it did not account
for factors commonly encountered in actual smart grid environments, such as complex
data acquisition cycles, network jitter, and concurrent connections from multiple devices.
Although the use of a Kubernetes architecture provides scalability and stability, this article
did not include a quantitative evaluation of system behavior under failure conditions or
the resulting performance degradation.

Future research will focus on establishing mapping rules for a broader range of CIM
Classes to enhance semantic interoperability, as well as validating the proposed system
under large-scale power grid scenarios that simulate real-world operating environments. In
addition, a comparative analysis with alternative messaging middleware solutions such as
MQTT and AMQP will be conducted to gain insights into the most suitable communication
models for different deployment contexts.

Based on these results and implications, the contributions of this article are summa-
rized, and directions for future research are outlined in the conclusion.

6. Conclusions

With the growing complexity of modern industrial environments and the advancement
of IIoT technologies, existing FEPs are increasingly exhibiting limitations in various aspects.
These challenges highlight the need for novel approaches to data communication and
system architecture in smart grid environments.

Traditional FEPs are not well suited for the increasingly large-scale and distributed
nature of modern industrial environments and smart grid architectures. Moreover, existing
solutions are generally difficult to adapt to cloud computing environments and struggle to
ensure high availability or rapid recovery in the event of system failures.

To overcome these limitations, this article proposes a real-time FEP based on the
Kubernetes platform and designs and implements an efficient conversion mechanism

Electronics 2025, 14, 2377

31 0f34

between existing SCADA protocols (DNP3.0, IEC 61850, Modbus) and the DDS protocol.
The proposed FEP enables semantic-level data mapping and conversion between two
systems operating under different communication paradigms, while also ensuring high
availability and scalability by leveraging Kubernetes” auto-scaling and self-healing features.

Furthermore, the performance evaluation demonstrated that the proposed FEP
achieves high throughput and sub-millisecond latency, indicating that it does not introduce
any bottlenecks in the overall protocol conversion process. Among the evaluated DDS
implementations, RTI Connext DDS and Cyclone DDS exhibited superior performance
characteristics. The findings of this article are expected to promote the transformation
of industrial automation systems into cloud-based architectures and contribute to the
modernization of SCADA systems to meet the demands of future industrial environments.

Despite these results, this article does not provide a quantitative evaluation of the
proposed system’s performance under large-scale communication scenarios typical of
real-world smart grid environments. Additionally, the advantages of the Kubernetes
architecture in terms of fault tolerance and system stability were not demonstrated through
quantitative results.

A notable research gap exists in the integration of future-proof security mecha-
nisms, especially emerging threats such as quantum computing, and Advanced Persistent
Threats. There needs to be a consideration of critical security factors within industrial
control systems.

To enhance the proposed FEP for real-world deployment, future research will focus
on the following:

1. Performance and Stability Evaluation Under Large-Scale Scenarios
In real-world smart grid environments, numerous devices operate with varying
communication cycles, and adverse conditions such as system failures and network
jitter frequently occur. Future research will therefore aim to comprehensively evaluate
the performance and stability of the cloud-based FEP under such large-scale and
realistic deployment scenarios.

2. Enhancement of Security Functions Using Post-Quantum Cryptography (PQC)
Most of the cryptographic algorithms currently in use are vulnerable to the advances
of quantum computing. As such, future work will focus on integrating quantum-
resistant security mechanisms, such as PQC, to enhance the security of communica-
tions between SCADA systems and DDS-based platforms.

3. Development of Security Evaluation Scenarios Based on the MITRE ATT&CK
Framework
To proactively identify and mitigate security vulnerabilities, future research will
develop diverse attack scenarios based on the MITRE ATT&CK framework. These
scenarios will be used to conduct security assessments and evaluate the defensive
capabilities of the proposed FEP. This approach is expected to contribute to the sys-
tematic strengthening of the platform’s resilience against cyber threats.

Through these future research directions, the proposed FEP system is expected to
evolve into an advanced cloud-based smart grid solution that not only enhances perfor-
mance but also strengthens security and reliability.

Author Contributions: Conceptualization, T.K. and H.K.; methodology, T.K. and S.C.; software, S.C.
and H.K,; validation, TK. and J.K,; formal analysis, S.C.; investigation, T.K. and H.K.; resources,] K.;
data curation, T.K.; writing—original draft preparation, T.K.; writing—review and editing, H.K. and
B.S.; visualization, Y.K.; supervision, B.S.; project administration, H.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Electronics 2025, 14, 2377 32 of 34

Data Availability Statement: The data presented in this article are available on request from the cor-
responding author. The data are not publicly available due to internal institutional policy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Lee, J.-K;; Lee, S.-Y,; Kim, T.-H.; Ham, K.-S. Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind
Hybrid Power Generation System. Trans. Korean Inst. Electr. Eng. 2016, 65, 811-818. [CrossRef]

2. Horalek, J.; Matyska,].; Sobeslav, V. Communication Protocols in Substation Automation and IEC 61850 Based Proposal. In
Proceedings of the 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest,
Hungary, 19-21 November 2013; pp. 321-326.

3. Mughaid, A.; Alzu’bi, S.; Alkhatib, A.A.; AlZioud, A.; Al Ghazo, A.; AL-Aiash, I. Simulation-Based Framework for Authenticating
SCADA Systems and Cyber Threat Security in Edge-Based Autonomous Environments. Simul. Model. Pract. Theory 2025, 140,
103078. [CrossRef]

4. Pliatsios, D.; Sarigiannidis, P.; Lagkas, T.; Sarigiannidis, A.G. A Survey on SCADA Systems: Secure Protocols, Incidents, Threats
and Tactics. IEEE Commun. Surv. Tutor. 2020, 22, 1942-1976. [CrossRef]

5. Folgado, EJ.; Calderén, D.; Gonzalez, I.; Calderén, A.J. Review of Industry 4.0 from the Perspective of Automation and Supervision
Systems: Definitions, Architectures and Recent Trends. Electronics 2024, 13, 782. [CrossRef]

6. Sverko, M.; Grbac, T.G.; Mikuc, M. Scada Systems with Focus on Continuous Manufacturing and Steel Industry: A Survey on
Architectures, Standards, Challenges and Industry 5.0. IEEE Access 2022, 10, 109395-109430. [CrossRef]

7. Santodomingo, R.; Uslar, M.; Goring, A.; Gottschalk, M.; Nordstrom, L.; Saleem, A.; Chenine, M. SGAM-Based Methodology to
Analyse Smart Grid Solutions in DISCERN European Research Project. In Proceedings of the 2014 IEEE International Energy
Conference (ENERGYCON), Cavtat, Croatia, 13-16 May 2014; pp. 751-758.

8. Yang, C.-T,; Chen, W.-S.; Huang, K.-L.; Liu, J.-C.; Hsu, W.-H.; Hsu, C.-H. Implementation of Smart Power Management and
Service System on Cloud Computing. In Proceedings of the 2012 9th International Conference on Ubiquitous Intelligence and
Computing and 9th International Conference on Autonomic and Trusted Computing, Fukuoka, Japan, 4-7 September 2012;
pp. 924-929.

9. Lyu, Z.; Wei, H.; Bai, X,; Lian, C. Microservice-Based Architecture for an Energy Management System. IEEE Syst. J. 2020, 14,
5061-5072. [CrossRef]

10. Kang, Z.; An, K,; Gokhale, A.; Pazandak, P. Evaluating Performance of OMG DDS in Kubernetes Container Deployment (Industry
Track). In Proceedings of the 21st ACM/IFIP International Middleware Conference (Middleware20), Delft, The Netherlands,
7-11 December 2020.

11. Pu, C; Ding, X.; Wang, P; Xie, S.; Chen, J. Semantic Interconnection Scheme for Industrial Wireless Sensor Networks and
Industrial Internet with Opc Ua Pub/Sub. Sensors 2022, 22, 7762. [CrossRef] [PubMed]

12. Sekigawa, S.; Sasaki, C.; Tagami, A. Toward a Cloud-Native Telecom Infrastructure: Analysis and Evaluations of Kubernetes
Networking. In Proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4-8 December 2022;
pp. 838-843.

13. Kapocius, N. Performance Studies of Kubernetes Network Solutions. In Proceedings of the 2020 IEEE Open Conference of
Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 30 April 2020; pp. 1-6.

14. Church, P; Mueller, H.; Ryan, C.; Gogouvitis, S.V.; Goscinski, A.; Haitof, H.; Tari, Z. SCADA Systems in the Cloud. In Handbook of
Big Data Technologies; Zomaya, A.Y., Sakr, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 691-718. ISBN
978-3-319-49339-8.

15. Paavola, E. Managing Multiple Applications on Kubernetes Using GitOps Principles. Bachelor’s Thesis, Metropolia University of
Applied Sciences, Helsinki, Finland, 2021.

16. Kubernetes. Available online: https://kubernetes.io/ (accessed on 7 April 2025).

17. Rostami, G. Role-Based Access Control (Rbac) Authorization in Kubernetes. J. ICT Stand. 2023, 11, 237-260. [CrossRef]

18. Ali, A.; Imran, M.; Kuznetsov, V.; Trigazis, S.; Pervaiz, A.; Pfeiffer, A.; Mascheroni, M. Implementation of New Security Features
in CMSWEB Kubernetes Cluster at CERN. EP] Web Conf. 2024, 295, 07026. [CrossRef]

19. Kubernetes Components. Available online: https://kubernetes.io/docs/concepts/overview/components/ (accessed on 27 May
2025).

20. OMG Data Distribution Service Version 1.4. Available online: https://www.omg.org/spec/DDS/1.4/PDF (accessed on 27 May
2025).

21. Interface Definition Language Version 4.2. Available online: https://www.omg.org/spec/IDL/4.2/PDF (accessed on 27 May
2025).

22. What Is DDS? Available online: https:/ /www.dds-foundation.org/what-is-dds-3/ (accessed on 27 May 2025).

https://doi.org/10.5370/KIEE.2016.65.5.811
https://doi.org/10.1016/j.simpat.2025.103078
https://doi.org/10.1109/COMST.2020.2987688
https://doi.org/10.3390/electronics13040782
https://doi.org/10.1109/ACCESS.2022.3211288
https://doi.org/10.1109/JSYST.2020.2981095
https://doi.org/10.3390/s22207762
https://www.ncbi.nlm.nih.gov/pubmed/36298115
https://kubernetes.io/
https://doi.org/10.13052/jicts2245-800X.1132
https://doi.org/10.1051/epjconf/202429507026
https://kubernetes.io/docs/concepts/overview/components/
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/IDL/4.2/PDF
https://www.dds-foundation.org/what-is-dds-3/

Electronics 2025, 14, 2377 33 of 34

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

DDS Security Version 1.2. Available online: https://www.omg.org/spec/DDS-SECURITY /1.2/PDF (accessed on 27 May 2025).
I/ A Series® Intelligent SCADA SCADA Platform. Available online: https:/ /paresource.schneider-electric.com/iaseries/pss/21
s2/21s2m1b3.pdf (accessed on 27 May 2025).

Maria, A. GGSN Front End Processor (GFEP) System for SCADA Inter-Domain Communications. US8527653B2, 3 September
2013.

IEEE Std 1815-2012; IEEE Standard for Electric Power Systems Communications: Distributed Network Protocol (DNP3). IEEE
Standards Association: Piscataway, NJ, USA, 2012.

IEC 61850; Communication Networks and Systems for Power Utility Automation. International Electrotechnical Commission:
Geneva, Switzerland, 2013.

MODBUS Application Protocol Specification V1.1b3. Available online: https://www.modbus.org/docs/Modbus_Application_
Protocol_V1_1b3.pdf (accessed on 27 May 2025).

MODBUS over Serial Line Specification and Implementation Guide v1.02. Available online: https://modbus.org/docs/Modbus_
over_serial_line_V1_02.pdf (accessed on 27 May 2025).

MODBUS Messaging on TCP/IP Implementation Guide V1.0b. Available online: https://www.modbus.org/docs/Modbus_
Messaging_Implementation_Guide_V1_0b.pdf (accessed on 27 May 2025).

Uslar, M.; Specht, M.; Rohjans, S.; Trefke, J.; Gonzélez, .M. The Common Information Model CIM: IEC 61968/61970 and 62325-A
Practical Introduction to the CIM; Springer Science & Business Media: Berlin, Germany, 2012.

Schumilin, A.; Duepmeier, C.; Stucky, K.-U.; Hagenmeyer, V. A Consistent View of the Smart Grid: Bridging the Gap between IEC
CIM and IEC 61850. In Proceedings of the 2018 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Prague, Czech, 29-31 August 2018; pp. 321-325.

Specht, M.; Rohjans, S. ICT and Energy Supply: IEC 61970/61968 Common Information Model. In Standardization in Smart Grids;
Power Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 99-114. ISBN 978-3-642-34915-7.

Cim: ACLineSegment. Available online: https://ontology.tno.nl/IEC_CIM/cim_ACLineSegment.html (accessed on 27 May
2025).

Mohammadabadi, S.M.S.; Entezami, M.; Moghaddam, A K_; Orangian, M.; Nejadshamsi, S. Generative Artificial Intelligence for
Distributed Learning to Enhance Smart Grid Communication. Int. J. Intell. Netw. 2024, 5, 267-274. [CrossRef]

Sauter, T.; Lobashov, M. End-to-End Communication Architecture for Smart Grids. IEEE Trans. Ind. Electron. 2010, 58, 1218-1228.
[CrossRef]

Ferreira, R.D.F,; De Oliveira, R.S. Cloud IEC 61850: DDS Performance in Virtualized Environment with Opendds. In Proceedings
of the 2017 IEEE International Conference on Computer and Information Technology (CIT), Helsinki, Finland, 21-23 August 2017;
pp- 231-236.

Youssef, T.A.; Elsayed, A.T.; Mohammed, O.A. DDS Based Interoperability Framework for Smart Grid Testbed Infrastructure. In
Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy,
10-13 June 2015; pp. 219-224.

Ho, M.-H.; Yen, H.-C.; Lai, M.-Y,; Liu, Y.-T. Implementation of Dds Cloud Platform for Real-Time Data Acquisition of Sensors.
In Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),
Hualien City, Taiwan, 16-19 November 2021; pp. 1-2.

Ho, M.-H,; Lai, M.-Y,; Liu, Y.-T. Implementation of DDS Cloud Platform for Real-Time Data Acquisition of Sensors for a Legacy
Machine. Electronics 2022, 11, 2096. [CrossRef]

Zu, X.; Bai, Y.; Yao, X. Data-Centric Publish-Subscribe Approach for Distributed Complex Event Processing Deployment in Smart
Grid Internet of Things. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, China, 26-28 August 2016; pp. 710-713.

Amin, M.B,; Khan, WA_; Awan, A.A,; Lee, S. Intercloud Message Exchange Middleware. In Proceedings of the 6th International
Conference on Ubiquitous Information Management and Communication, Kuala Lumpur Malaysia, 20 February 2012; pp. 1-7.
Ramasamy, B.; Na, Y.; Kim, W.; Chea, K.; Kim, J. Hacm: High Availability Control Method in Container-Based Microservice
Applications over Multiple Clusters. IEEE Access 2022, 11, 3461-3471. [CrossRef]

Li, Z.; Wei, H.; Lyu, Z.; Lian, C. Kubernetes-Container-Cluster-Based Architecture for an Energy Management System. IEEE
Access 2021, 9, 84596-84604. [CrossRef]

Ioana, A.; Korodi, A. DDS and OPC UA Protocol Coexistence Solution in Real-Time and Industry 4.0 Context Using Non-Ideal
Infrastructure. Sensors 2021, 21, 7760. [CrossRef] [PubMed]

Proxmox Virtual Environment. Available online: https://www.proxmox.com/en/products/proxmox-virtual-environment/
overview (accessed on 27 May 2025).

Netto, H.; Pereira Oliveira, C.; Rech, L.D.O.; Alchieri, E. Incorporating the Raft Consensus Protocol in Containers Managed by
Kubernetes: An Evaluation. Int.]. Parallel Emergent Distrib. Syst. 2020, 35, 433—453. [CrossRef]

https://www.omg.org/spec/DDS-SECURITY/1.2/PDF
https://paresource.schneider-electric.com/iaseries/pss/21s2/21s2m1b3.pdf
https://paresource.schneider-electric.com/iaseries/pss/21s2/21s2m1b3.pdf
https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://ontology.tno.nl/IEC_CIM/cim_ACLineSegment.html
https://doi.org/10.1016/j.ijin.2024.05.007
https://doi.org/10.1109/TIE.2010.2070771
https://doi.org/10.3390/electronics11132096
https://doi.org/10.1109/ACCESS.2022.3233159
https://doi.org/10.1109/ACCESS.2021.3081559
https://doi.org/10.3390/s21227760
https://www.ncbi.nlm.nih.gov/pubmed/34833838
https://www.proxmox.com/en/products/proxmox-virtual-environment/overview
https://www.proxmox.com/en/products/proxmox-virtual-environment/overview
https://doi.org/10.1080/17445760.2019.1608989

Electronics 2025, 14, 2377 34 of 34

48.

49.

50.

51.
52.
53.
54.
55.

56.
57.
58.

Han, M.; Yao, D.G.; Yu, X.L. A Solution for Instant Response of Cloud Platform Based on Nginx+ Keepalived. In Proceedings
of the International Conference on Computer Science, Communications and Multimedia Engineering, Beijing, China, 22-23
September 2019; pp. 24-25.

Options for Highly Available Topology. Available online: https://kubernetes.io/docs/setup /production-environment/tools/
kubeadm /ha-topology/ (accessed on 27 May 2025).

Wright, K.; Gopalan, K.; Kang, H. Performance Analysis of Various Mechanisms for Inter-Process Communication; Operating Systems
and Networks Lab, Department of Computer Science, Binghamton University: Binghamton, NY, USA, 2007.

Dnp3/Opendnp3. Available online: https://github.com/dnp3/opendnp3 (accessed on 27 May 2025).
Mz-Automation/Libiec61850. Available online: https:/ /github.com/mz-automation/libiec61850 (accessed on 27 May 2025).
Raimbault, S. Stephane/Libmodbus. Available online: https:/ /github.com/stephane/libmodbus (accessed on 27 May 2025).
RTT Products. Available online: https:/ /www.rti.com/products (accessed on 27 May 2025).

Eclipse-Cyclonedds/Cyclonedds. Available online: https://github.com/eclipse-cyclonedds/cyclonedds (accessed on 27 May
2025).

eProsima/Fast-DDS. Available online: https://github.com/eProsima/Fast-DDS (accessed on 27 May 2025).
OpenDDS/OpenDDS. Available online: https:/ /github.com/OpenDDS/OpenDDS (accessed on 27 May 2025).

Tuli, R. Analyzing Network Performance Parameters Using Wireshark. Int. J. Netw. Secur. Appl. 2023, 15, 1-13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://github.com/dnp3/opendnp3
https://github.com/mz-automation/libiec61850
https://github.com/stephane/libmodbus
https://www.rti.com/products
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eProsima/Fast-DDS
https://github.com/OpenDDS/OpenDDS
https://doi.org/10.5121/ijnsa.2023.15101

	Introduction
	Background
	Kubernetes
	Data Distribution Service (DDS)
	Front-End Processor (FEP)
	Common Information Model (CIM)
	Related Work

	Materials and Methods
	Kubernetes Cluster
	Kubernetes-Based FEP System
	Front-End Processor
	CIM Adaptor
	CIM Mapper
	IDL Converter
	DDS Publisher

	Performance Evaluation Testbed and Scenario
	FEP Protocol Converter
	DDS Implementations

	Results
	Demonstration of the Proposed System
	FEP Performance Evaluation
	DDS Performance Evaluation

	Discussion
	Conclusions
	References

