i}lg electronics

Article

An Automatic Code Generation Tool Using Generative Artificial
Intelligence for Element Fill-in-the-Blank Problems in a Java
Programming Learning Assistant System

Zihao Zhu *, Nobuo Funabiki "*, Mustika Mentari !, Soe Thandar Aung !, Wen-Chung Kao ? and Yi-Fang Lee 3

check for
updates

Academic Editor: Manuel Mazzara

Received: 22 March 2025
Revised: 8 May 2025
Accepted: 12 May 2025
Published: 31 May 2025

Citation: Zhu, Z.; Funabiki, N.;
Mentari, M.; Aung, S.T.; Kao, W.-C.;
Lee, Y.-F. An Automatic Code
Generation Tool Using Generative
Artificial Intelligence for Element
Fill-in-the-Blank Problems in a Java
Programming Learning Assistant
System. Electronics 2025, 14,2261.
https:/ /doi.org/10.3390/
electronics14112261

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

Department of Information and Communication Systems, Okayama University, Okayama 700-8530, Japan;
pqt85hm5@s.okayama-u.ac.jp (M.M.); soethandar@s.okayama-u.ac.jp (S.T.A.)

Department of Electrical Engineering, National Taiwan Normal University, Taipei 10610, Taiwan;
jungkao@ntnu.edu.tw

Department of Industrial Education, National Taiwan Normal University, Taipei 10610, Taiwan;
ivana@ntnu.edu.tw

* Correspondence: pjcoSfyn@s.okayama-u.ac.jp (Z.Z.); funabiki@okayama-u.ac.jp (N.F.)

Abstract: Presently, Java is a fundamental object-oriented programming language that
can be mastered by any student in information technology or computer science. To assist
both teachers and students, we developed the Java Programming Learning Assistant System
(JPLAS). It offers several types of practice problems with different levels and learning
goals for step-by-step self-study, where any answer is automatically marked in the system.
One challenge for teachers that is addressed with JPLAS is the generation of proper exercise
problems that meet learning requirements. We implemented programs for generating new
problems from given source codes, as collecting and evaluating suitable codes remains time-
consuming. In this paper, we present an automatic code generation tool using generative Al to
solve this challenge. Prompt engineering is used to help generate an appropriate source
code, and the quality is controlled by optimizing the prompt based on the outputs. For
applications in JPLAS, we implement a web application system to automatically generate
an element fill-in-the-blank problem (EFP) in [PLAS. For evaluation, we select the element
fill-in-the-blank problem (EFP) as the target type in JPLAS and generate several instances
using this tool. The results confirm the validity and effectiveness of the proposed method.

Keywords: JPLAS; Java programming learning; learning requirements; generative Al;
prompt engineering; quality control; prompt optimization

1. Introduction

Java has remained one of the most popular programming languages since its inception
in 1995. From embedded systems to web development, big data, and cloud computing,
Java is a vast and mature ecosystem. Its extensive libraries and robust frameworks have
made it the preferred choice for enterprise development. Java developers continue to be in
high demand worldwide [1], making the systematic learning of Java as essential as ever.

In practice, the learning of Java presents challenges for both students and teachers.
Beginners often find abstract concepts in object-oriented programming difficult to under-
stand. Teachers struggle to design effective exercise problems that help students grasp
key concepts.

To address this issue, we developed the web-based Java Programming Learning Assistant
System (JPLAS) [2]. JPLAS offers several types of Java programming exercise problems

Electronics 2025, 14, 2261

https://doi.org/10.3390/ electronics14112261

https://doi.org/10.3390/electronics14112261
https://doi.org/10.3390/electronics14112261
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics14112261
https://www.mdpi.com/article/10.3390/electronics14112261?type=check_update&version=2

Electronics 2025, 14, 2261

20f27

ranging from studying code reading and syntax practice to hands-on coding using object-
oriented programming concepts. With JPLAS, teachers can upload prepared exercise problems,
and students can study and review them in the system at their own pace.

Currently, JPLAS provides grammar-concept understanding problems [3], element fill-
in-the-blank problems [4], code completion problems, value trace problems, statement element
fill-in-the-blank problems, and code writing problems.

To reduce the load for teachers in preparing problems, we developed programs that
automatically generate new problems from given appropriate source codes [4]. However,
teachers still need to collect and evaluate source codes that align with their teaching
contents, which remain a time-consuming tasks. Fortunately, with the development of
generative Al models such as chatGPT [5], source codes can be generated automatically;
however, due to several issues including inaccurate prompts or unclear evaluation methods,
the source codes generated by Al models sometimes do not meet the requirements of
novices for learning programming.

In this study, we propose an automatic code generation tool based on generative Al,
which leverages prompt engineering techniques to assist in generating high-quality source
code suitable for novice learners. Unlike approaches that require model fine-tuning, our
method enhances code quality by analyzing the Al model’s output and optimizing the in-
put prompts accordingly. We systematically compare three prompting strategies—zero-shot,
chain-of-thought (CoT), and black-box prompt optimization (BPO) [6]—across three representa-
tive models: ChatGPT-4o [7], DeepSeek-R1-7B [8], and LlaMA3.2-1B [9].

The experimental results indicate that, in resource-constrained environments, mid-
range models such as DeepSeek-R1-7B combined with CoT and BPO strategies provide a
strong balance between performance and efficiency. In contrast, high-performance models
like ChatGPT-40 deliver the best results when the application demands robustness across a
wide range of task difficulties. Lightweight models such as LIaMA3.2-1B, while limited in
capability, still prove useful in scenarios with very limited computational resources or for
basic-level tasks. Moreover, user study experiments with student participants validate the
system’s educational effectiveness.

As a practical application of this tool in the JPLAS educational platform, we imple-
ment a web-based system for automatically generating element fill-in-the-blank problems
(EFPs). The system integrates various open-source components including Spring Boot [10],
jQuery [11], Ollama [12], and Docker [13]. Functional testing on ten beginner-level topics
confirms that, with well-crafted prompts, even small Al models can efficiently generate
high-quality EFP instances on a PC.

We emphasize that our system offers the following key advantages: it supports fully
offline deployment (ensuring data privacy), is suitable for low-resource educational environments,
and improves code generation quality through prompt engineering without requiring
expensive model fine-tuning. Overall, this work provides a flexible, secure, and locally
deployable Al-based solution for programming education, particularly suited for localized
and personalized learning scenarios.

The rest of this paper is organized as follows: Section 2 introduces the related works
in the literature. Section 3 reviews our preliminary work leading to this paper. Section 4
proposes the methodology of our system. Section 5 shows the evaluation results of this
method. Section 6 presents the implementation of a web application system for EFP instance
generation. Finally, Section 7 concludes this paper with a discussion of future work.

2. Related Works

In this section, we introduce some related works in the literature.

Electronics 2025, 14, 2261

3 0f27

2.1. Programming Education

First, we introduce works on programming education.

In [14], McGill et al. proposed a framework for analyzing students” knowledge of
programming and pointed out that, in programming education assessments, students’
mastery should be evaluated from three dimensions: syntactic, conceptual, and strategic.

In [15], Altadmri et al. collected error messages and Java code from around 265,000 users
worldwide through a black-box project. By analyzing these novice students’ mistakes, their
research effectively helped to understand students’ misconceptions and guide the design
of programming teaching methods.

In [16], Gomes et al. highlighted that the challenges students faced in learning com-
puter programming were primarily due to a lack of problem-solving and algorithm design
skills. They reviewed several educational tools that have successfully been used to sup-
port programming education and proposed a new computational system aimed at further
addressing common learning difficulties.

In [17], Sorva et al. conducted a comprehensive survey of the generic program visual-
ization systems designed to teach novice programmers about program runtime behavior.
They covered the tools developed over three decades, examined their features and empirical
evaluations, and discussed the role of learner engagement. The authors found that many
systems were short-lived prototypes, although recent trends aimed to support more inter-
active and engaging user experiences. While the evaluation results generally supported
the use of program visualization in introductory programming education, the research at
the time was insufficient to draw detailed conclusions about learner engagement. Based
on their review, the authors proposed future research directions related to engagement,
cognitive load, task authenticity, and integration into programming pedagogy.

In [18], Medeiros et al. conducted a systematic review on teaching and learning
introductory programming in higher education, focusing on more recent research from
2010 to 2016. They proposed a categorization of the key challenges faced by students
and teachers, emphasizing that problem-solving and mathematical ability are critical for
students’ success. The review identified persistent difficulties such as low motivation,
challenges with programming syntax, and the lack of scalable and personalized teaching
methods, highlighting areas for future research and improvement.

In [19], Lindberg et al. investigated programming education guidelines in K-12 curricula
across seven countries, reviewed commercially available programming-related games, and com-
pared the findings to suggest appropriate age groups for these games. Their results provided
insights for educators and curriculum designers interested in gamifying programming education.

In [20], Olsson et al. explored how visualization and gamification enhanced learner
control and motivation in online programming courses. Their research, conducted through
evaluations and group discussions in two Moodle-based courses, showed that progress
bars helped students navigate complex course content, although the effectiveness of such
visualization varied with learner style. They also found that the digital badges used for
gamification had different motivational effects across study groups, with traditional grades
remaining more influential in conventional programs. The study concluded that software
visualization could be a promising approach to improve programming education.

Based on the above literature review, several prominent trends in the research on
and practice of programming education can be identified. Firstly, an increasing number
of studies are emphasizing students’ cognitive misconceptions and learning difficulties
in programming education, particularly in problem-solving skills, algorithm design abil-
ities, and mastery of programming syntax. By analyzing students” errors and feedback,
researchers are able to provide valuable data to improve programming teaching methods.
Additionally, program visualization and gamification are widely regarded as effective ways

Electronics 2025, 14, 2261

4 0f27

to enhance student engagement and motivation, especially among beginners, helping them
better understand program execution and master programming concepts.

In the future, programming education will place greater emphasis on diversified
learning tools, personalized teaching methods, and active student participation. The goal
is to cultivate programming talent with advanced thinking skills and the ability to solve
real-world problems. As programming education evolves, it will increasingly focus on
fostering student engagement through interactive and personalized learning experiences
to develop students” higher-order thinking and problem-solving capabilities.

2.2. Generative Al

Second, we introduce the works on generative Al used in programming educations.

In [21], Luckin et al. found that by establishing a suitable Al model, educational content
can be made more engaging and effective to realize the goal of personalized education.

In [22], Chen et al. assessed the impact of Al on education, ascertaining that Al has
been extensively adopted in education, has helped teachers work more effectively, and has
enhances overall teaching quality.

In [23], Baidoo-Anul et al. studied some potential benefits and drawbacks of ChatGPT
in promoting teaching and learning and offered recommendations on how ChatGPT could
be leveraged to maximize its impact on teaching and learning.

Coding Rooms [24] is an online platform designed for real-time programming education.
It allows instructors to create interactive coding assignments, conduct live coding sessions,
and monitor student progress in real time. The platform supports various programming
languages such as Python, Java, and C++. In recent updates, Coding Rooms has integrated Al
features to enhance both teaching and learning experiences. These Al tools can automat-
ically evaluate student submissions, provide instant feedback, detect common mistakes,
and even offer code hints or explanations. Additionally, instructors can use Al to generate
test cases or grading rubrics, improving scalability and efficiency in classroom settings.

Khan Academy [25] is a well-known nonprofit educational platform offering free courses
in subjects such as mathematics, science, and programming. In recent years, it has inte-
grated Al into its platform through a tool called Khanmigo [26], developed in collaboration
with OpenAl. Khanmigo functions as an Al-powered virtual tutor and classroom assistant.
It uses large language models (LLMs) to provide personalized feedback, help students under-
stand complex concepts, and support teachers in managing classroom interactions. The Al
tutor can simulate Socratic questioning, assist with debugging code, and offer step-by-step
guidance tailored to a learner’s level.

GitHub Copilot [27] is an Al-powered coding assistant developed by GitHub in collab-
oration with OpenALl. It leverages the Codex language model to provide real-time code
suggestions, auto-completions, and function generation within widely used code editors
such as Visual Studio Code and JetBrains. Copilot supports multiple programming languages,
including Python, JavaScript, Java, and C++. In terms of Al application, GitHub Copilot
demonstrates the integration of LLMs into programming environments. It utilizes natural
language understanding to interpret code comments and generate relevant code snippets.
Additionally, it learns from the surrounding context and user behavior to offer intelligent
and context-aware suggestions. This enhances coding efficiency and supports learners in
solving programming tasks with minimal prior knowledge.

Based on the above literature review, Al-assisted systems each have distinct character-
istics and advantages. Firstly, ChatGPT has demonstrated a high accuracy rate in answering
user questions, providing students with accurate and timely feedback, particularly when
addressing programming-related queries. Its natural language processing capabilities are
especially impressive. GitHub Copilot, on the other hand, is more focused on programming

Electronics 2025, 14, 2261

5o0f 27

assistance, enhancing coding efficiency through auto-completion and code suggestions. It
effectively reduces errors and helps students understand and master programming lan-
guages, particularly for common programming tasks. Additionally, platforms like Coding
Rooms and Khanmigo, by integrating Al features, can generate personalized practice prob-
lems in real time based on students’ learning progress and needs, which offers a significant
advantage in personalized education. However, the common issue across these systems is
the high consumption of computational resources, and their responsiveness and accuracy
may be affected in the absence of a stable network.

After analyzing the characteristics of existing Al-assisted systems, we also need to
consider an important issue—data security and privacy protection. Many current Al
systems rely on cloud computing to provide real-time feedback and suggestions. This
means that all data (such as students’ code, problem descriptions, learning progress, etc.)
are transmitted to servers for processing and storage, which introduces certain risks of
data breaches and privacy leaks. For educational institutions, especially when dealing with
students’ personal information and learning data, this cloud-based processing approach
could pose significant security risks. Therefore, offline Al has become an important solution.
By localizing Al models, educational systems can avoid uploading sensitive data to external
servers, thus reducing the risk of data leakage.

Our proposed system focuses on school-level, self-developed learning tools and is
designed to address core limitations such as the dependency on online services, high
computational requirements, the lack of customization, and privacy concerns.

2.3. Prompt Engineering

Third, we introduce the works on prompt engineering.

In [6], Chen et al. highlighted the crucial role of prompt engineering in enhancing
the capabilities of large language models (LLMSs) as well as explored both fundamental and
advanced prompt engineering techniques, such as self-consistency, chain-of-thought (CoT),
and generated knowledge.

In [28], Cheng et al. introduced black-box prompt optimization (BPO) as a novel align-
ment approach to solve the alignment problem in LLMs and demonstrated its effectiveness
in optimizing prompts without modifying model parameters. They highlighted the advan-
tages of BPO over traditional training-based methods, showing that it had a 22% and 10%
higher win rate than ChatGPT and GPT-4, respectively.

In [29], Agarwal et al. proposed PromptWizard, a fully automated framework for
discrete prompt optimization. By utilizing a feedback-driven critique and synthesis mecha-
nism, it iteratively refines both instructions and in-context examples to improve prompt
quality. PromptWizard demonstrates strong performance across 45 tasks, maintains effec-
tiveness with limited data and smaller LLMs, and significantly reduces API usage and
operational costs.

In [30], Fernando et al. proposed PromptBreeder, a self-referential self-improvement
framework that evolves prompts for specific domains using LLM-driven mutation and
evaluation. By simultaneously optimizing both task prompts and mutation prompts,
PromptBreeder outperformed hand-crafted strategies like Chain-of-Thought and Plan-and-
Solve on arithmetic, commonsense reasoning, and hate speech classification tasks.

Recent studies have shown that prompt engineering plays a crucial role in enhancing
the capabilities of LLMs. Compared to traditional fine-tuning methods, prompt engineering
offers a more flexible and cost-effective optimization approach. By designing and refining
prompts, researchers can significantly improve the performance of AI models on specific
tasks, while avoiding complex adjustments to model parameters.

Electronics 2025, 14, 2261

6 of 27

In this study, prompt engineering was applied to a local Al model to generate suitable
educational source code. Compared to traditional fine-tuning methods, prompt ngineer-
ing provides a more flexible and efficient way to optimize the Al model’s performance,
especially when generating code that meets specific programming requirements. By de-
signing and optimizing specific prompts, the local Al model can be guided to generate
programming code that better aligns with teaching needs, thereby helping students better
understand programming concepts and improve their programming skills.

3. Preliminary Works

In this section, we review our work conducted prior to that in this study.

3.1. Java Programming Learning Assistant System (JPLAS)

We developed JPLAS as a software platform to support the programming teaching and
learning. Students can use this platform for the independent learning of basic knowledge
of Java programming, identifying gaps in their understanding through solving practice
problems, and focusing on targeted learning. At the same time, teachers can easily collect
and manage data on students’ learning progress and performance.

Originally, JPLAS ran on a server, with practice problems stored in a database. Teachers
could easily adjust the practice questions based on teaching goals and progress. At the
same time, students’ performances were uploaded and saved in real time, allowing both
teachers and students to promptly assess learning progress.

Subsequently, to facilitate learning in environments without Internet access, we devel-
oped an offline version of [PLAS. This version was deployed using Docker containers, with
LocalStorage of JavaScript replacing the database. Additionally, the answers to the problems
were encrypted using the SHA256 algorithm.

JPLAS provided various types of problems for students, ranging from grammar-concept
understanding problems (GUPs) and value trace problems (VTPs), focusing on reinforcing
fundamental concepts, to element fill-in-the-blank problems (EFPs), code completion problems
(CCPs), and code writing problems (CWPs), helping develop correct programming habits.
This step-by-step learning approach in JPLAS has proven effective in helping beginners
to self-learn Java programming concepts, in cultivating programming thinking, and in
assisting teachers with targeted instruction.

3.2. Element Fill-in-the-Blank Problem

In this paper, we select the EFP as the application target of the proposed code genera-
tion tool for Java programming learning. An EFP instance requests students to fill in the
blank elements in the given source code. Among all the exercise problems, the creation
of EFPs is relatively challenging. It is necessary to choose a source code that aligns with
the target knowledge points and has an appropriate difficulty level to achieve the best
teaching results. At the same time, the source code must meet certain requirements that
are necessary for question generation. Therefore, collecting a sufficient number of suitable
source codes has become a major challenge.

Here, we give a detailed introduction to the EFP as well as generation algorithms from
a source code.

3.2.1. Definition of an Element

An element is the smallest unit of a source code, consisting of a reserved word, an
identifier, a control symbol, or an operator.

* Reserved words are predefined sequences of characters that serve specific functions, such as
“private” or “public”.

Electronics 2025, 14, 2261

7 of 27

¢ Identifiers are names defined by the programmer to represent variables, classes, or methods.

",

¢ Control symbols include punctuation marks used in the syntax, such as “.” (dot), “:” (colon),
;" (semicolon), “()” (parentheses), and “{}” (curly brackets).
¢ Operators are used in conditional expressions to define logical conditions, such as

//<r/ and /I&&II.

3.2.2. Blank Element Selection Algorithm

The blank element selection algorithm identifies the maximum number of feasible blank
elements in a given source code using graph theory [4].

In the first step, the algorithm constructs a compatibility graph by treating each candidate
blank element as a vertex. An edge is created between two vertices if they can be blanked
simultaneously. To ensure correctness, certain conditions are defined to prevent elements
from being blanked together to avoid ambiguity.

In the second step, the algorithm extracts a maximal clique from the compatibility graph
to determine the largest possible set of blank elements. It is obvious that the EFP difficulty
increases as more elements are blanked. By selectively blanking a subset of these elements,
a variety of fill-in-the-blank problems can be generated at different difficulty levels. The
algorithm follows these detailed steps:

1. Vertex generation for the constraint graph: each potential blank element is selected
from the source code and represented as a vertex in the constraint graph.

2. Edge generation for the constraint graph: an edge is added between any two vertices
that should not be blanked simultaneously to ensure uniqueness.

3. Compatibility graph construction: the complement of the constraint graph is taken
to create the compatibility graph, which represents pairs of elements that can be
blanked together.

4. Clique extraction: a maximal clique is identified using a simple greedy algorithm
to select the largest possible set of blank elements with unique answers with the
following steps:

* Select the vertex with the highest degree in the compatibility graph.
* Remove this vertex and all its non-adjacent vertices.
* Repeat until no vertices remain.

3.2.3. Coding Rule Check Function

Coding rules define a set of conventions for writing high-quality source code. Following
these rules ensures code uniformity and improves its readability, maintainability, and
scalability. The coding rules cover naming conventions, coding styles, and potential problems.
To enforce these standards, we implemented a coding rule check function, which automatically
verifies the compliance of the source code [31].

1. Naming rules: Naming rules help identify naming errors in source code. We adopt
the camel case as the standard Java naming convention:

® Variables, methods, and method arguments: the first letter should be lowercase,
with each subsequent word capitalized.

¢ Classes: the first letter of each word should be uppercase.

e Constants: all letters should be uppercase.

* Identifiers must be meaningful English words; Japanese or Romanized Japanese
should not be used.

2. Coding styles: Coding style rules ensure a consistent code layout by checking ele-
ments such as indentation, bracket placement, and spacing. Following these rules
improves code clarity and uniformity, making it easier to read and maintain.

Electronics 2025, 14, 2261

8 of 27

3. Potential problems: Potential issues refer to code segments that can be compiled
successfully but may introduce functional errors or bugs. These include:

* Dead code: portions of the code that are never executed.
* Overlapping code: multiple code segments with similar structures and functions.

3.2.4. EFP Generation Steps

Using the programs described above, a valid new EFP instance can be generated
through the following steps:

1. Select a source code that covers the syntactic topics to be studied.

2. Apply the coding rule check function to detect and fix the issues with naming rules,
coding styles, or potential problems.

3. Apply JFlex and Jay [32] to tokenize the source code into a sequence of lexical units or
elements ,and classify each element type.

4. Apply the blank element selection algorithm to choose the blank elements that have
grammatically correct and unique answers.

5. Upload the generated EFP instance to the JPLAS server.

4. Methodology for Proper Code Generation

In this section, we present the methodology for generating proper source code for
Java programming learning. With the increasing demand for educational content in JPLAS,
there is a growing need to develop a method for generating a source code that is not only
correct and efficient but also contains the educational content for reinforcing learning.

4.1. Adopted Approach for Al

Recent advancements in Al have significantly influenced the field of programming
education. There have been many attempts to use and studies on using Al to generate
content that aligns with educational materials. However, ensuring Al-generated content
meets human needs remains a challenge, where existing alignment methods primarily
focus on further training these models. The additional training required for LLMs is often
expensive in terms of GPU computing resources. Additionally, some models, such as
certain versions of ChatGPT, are not accessible for the user-demanded training. Under the
situations, our study aimed to generate high-quality Java source code across different Al
models using various prompt engineering strategies without further training.

4.2. Code Quality Assessment

First, we designed an objective function to assess the quality of Al-generated code.
This function consists of four evaluation criteria:

e Code accuracy;
* Code relevance to the topic;

e Code difficulty;
e Feasibility of problem generation.

4.2.1. Code Accuracy

Code accuracy refers to the correctness of the code. First, it must comply with the
standard syntax, ensuring it can be compiled and executed. Additionally, it should follow
the proper coding conventions. In this paper, we use the coding rule check function for
validation. This function automatically detect issues in Java code related to naming rules,
coding styles, and potential problems.

Electronics 2025, 14, 2261

9 of 27

The faccuracy score is determined based on a comprehensive evaluation of the coding
rule check function and the JUnit [33] test results using the following formula:

faccuracy =u- Srule + (1 - D‘) ' Stest/ (1)

where

* Sue € [0,1] is the score obtained from the coding rule check function, calculated as the
proportion of passed checks over total checks.

* Siest € [0,1] is the score from the JUnit test results, calculated as the proportion of
passed test cases.

* « € [0,1] is a tunable parameter that adjusts the relative importance of style versus
functionality. Here, we set « = 0.4 to emphasize functional correctness.

In practical applications, especially in the context of educational code, the accuracy of
coding standards is crucial. Educational code serves as a learning example and must be
free from errors, as it is not just executable code but also a foundation for students’ learning
and reference. Therefore, in addition to basic syntax rules, aspects such as code readability,
naming conventions, and style consistency must be strictly enforced.

In this study, since the JUNIT test cases were automatically generated by EvoSuite [34],
although it is a powerful tool, the generated test cases were not perfect: sometimes, they
missed certain edge cases or failed to comprehensively cover all code paths. Therefore, a
minimum pass rate threshold was set to 70%.

4.2.2. Java Learning Topics

There have been many studies on learning sequences and methods for Java program-
ming language [35]. In this paper, first, we refer to the classical learning paths outlined
in textbooks. Then, we divide the Java learning process into three stages, with each stage
further broken down into multiple topics following a conventional learning sequence. Here,
we give a detailed introduction to the three stages:

1. Primary stage: Java basic grammar learning.

* Variables and data types;

* Operators (arithmetic, logical, bitwise, assignment);

* Control flow (if-else, switch-case, for-loop, while-loop, do-while-loop, break,
continue);

* Arrays (one-dimensional array, multi-dimensional array, array iteration);

* Methods (method declaration, parameters and return values, overloading);

* C(Classes and objects (class declaration, object instantiation, constructor, this,
encapsulation).

2. Intermediate stage: object-oriented and API learning.

* Inheritance (extends, super, override);

¢ Polymorphism (upcast, downcast);

e Abstract classes and interfaces (abstract, interface, default method);

* Inner classes (member inner class, local inner class, anonymous inner class);

e String handling (immutability, StringBuilder, StringBuffer, charAt, substring,
indexOf, split);

e Exception handling (try-catch-finally, throws, throw, custom exception);

* Collections framework (List, Set, Map, Iterator);

e I/O streams (File, InputStream, OutputStream, Reader, Writer, BufferedReader,
BufferedWriter).

Electronics 2025, 14, 2261

10 of 27

3. Advanced stage: advanced syntax programming learning.

* Generics (generic class, generic method, wildcards);

e Lambda expressions (functional interface, consumer, function, predicate);

e Stream API (one-dimensional array, multi-dimensional array, array iteration);
e Reflection;

e Multithreading (thread, runnable, synchronized, lock, executor).

Users need to select topics from the list above to generate the required source code.

4.2.3. Code Relevance to the Topic

Code relevance refers to the correlation between the Al-generated code and the user-
specified topic.

At different stages, the requirements for the code relevance vary due to different
teaching objectives.

In the primary stage, the requirement of code relevance is to help students grasp the
fundamentals of Java syntax and lay a solid foundation for further learning. The containing
content should focus on the current learning topic, and the generated code should closely
align with the learning objectives, avoiding the premature introduction of complex logic or
data structures. This ensures an engaging learning experience while minimizing frustration.

In the intermediate stage, the requirement will focus on mastering object-oriented
concepts and developing API application skills. At this stage, the teaching content can
introduce cross-chapter knowledge points to deepen understanding and connections. The
generated source code should emphasize object-oriented principles, incorporate API usage,
and appropriately review fundamental concepts.

In the advanced stage, students need to integrate various programming concepts,
develop programming and system design skills, and understand advanced Java features.
The teaching content can be more challenging, and the generated code should demonstrate
a certain level of complexity and comprehensiveness.

For beginners, the learning material should avoid intermediate or advanced content.
Similarly, intermediate learners should not be exposed to advanced content.

In this study, we used the JavaParser framework [36] to count the number of syntax
elements appearing in the source code and calculate the relevance index between the code
and the selected topic. Although the intermediate and advanced stages of learning involve
previously learned topics, we avoided the previous topics to overshadow the main content.
We assigned weights of 1, 2, and 3 to primary, intermediate, and advanced knowledge
points, respectively, and used the following formula to calculate the code relevance:

Y (Ni x wq)

k= Y(N2 x ws)

)

where

* Nj represents the number of appearances of the selected syntax elements;

* N, represents the number of appearances of all syntax elements;

* w; and w; represent the weights of the selected syntax elements and all syntax ele-
ments, respectively.

The frelevance Score is determined by this code relevance R using the following formula:

N,
frelevance = max (O, R—A\- penalty) (3)
total

Electronics 2025, 14, 2261

11 of 27

where

_ E(Npxwq)
* R=Fmm)

® Npenaityis the number of syntax elements that should not appear at the current

is the original relevance index;

learning stage;

® Niotal is the total number of syntax elements in the code;

e A € [0,1] is the penalty weight, controlling the influence of inappropriate content.
Here, we set A = 0.5 for the primary stage and A = 0.3 for the intermediate stage.

In practical applications, to ensure that teaching objectives are met and based on
our previous findings, the relevance of current topic should not fall below 50% in any
learning stage.

4.2.4. Code Difficulty

Code difficulty refers to the complexity of a source code. Our previous study on
the JPLAS recommendation function in [31] presents a way of dividing the difficulty weight
according to syntax topics and calculating it. First, we assign the weights to the syntax
topics based on their difficulty in Java learning:

1. Syntax Topics with Weight 1:

e Variable;

e Access Modifier;

* Primitive Data Type;
e Wrapper Class;

¢ Operator;

e Control Statement;

e Array;

e Common Word;

e Code Block.

2. Syntax Topics with Weight 2:

. String Functions;
* Exception;

e Package;
e I/0.

3. Syntax Topics with Weight 3:
e (lass;

e Interface;

* Regular Expression;

. Recursion;

e (Collections Framework.

Then, we extract the keywords of different syntax topics from the source code to
calculate the summation of the weights. The same keyword is counted only once, even if it
appears multiple times, and the calculated weight is the difficulty level of the code.

Building on our previous work, we evaluated the code difficulty based on a combina-
tion of factors, including the difficulty level of the syntax elements, the number of methods
and classes, the code length, and the depth of inheritance and nested structures.

The requirements for code difficulty vary across different learning stages due to differing
teaching objectives.

For the primary and intermediate stages, the generated code should be as simple as
possible to foster interest and reduce frustration.

Electronics 2025, 14, 2261

12 of 27

For the advanced stage, the difficulty of the generated code can be appropriately
increased to challenge students and enhance their learning experience.
We use the following formula to calculate the code difficulty:

D=uw;) (ws-S)+waM+wsL +wy(I+N) (4)

where

¢ D represents the overall code difficulty.

* Srepresents the number of syntax elements.

* w, represents the weight of syntax elements.

* M represents the number of methods.

e L represents the total lines of code.

e I represents the depth of inheritance.

* N represents the number of nested structures.

* Wi, wy, w3, wy represent the weights assigned to each factor.

Additionally, the weights satisfy the following constraint:
w1 +wy+wz+wyg =1 (5)

For different learning stages, the weight distribution is adjusted accordingly:

* Primary stage: we set w; = 0.6, w, = 0.15, w3 = 0.15, and wy = 0.1 to emphasize
basic syntax comprehension while minimizing structural complexity.

e Intermediate stage: we set w; = 0.4, wp, = 0.2, w3 = 0.2, and wy = 0.2 to balance
syntax, method usage, code length, and structural complexity as students build
deeper understanding.

* Advanced stage: we set wy = 0.25, wp = 0.2, w3 = 0.15, and w4 = 0.4 to place greater
emphasis on structural complexity and advanced programming concepts.

e Rationale for weight selection: The weight distribution was determined based on
an analysis of standard teaching materials and historical student learning perfor-
mance. We referred to widely used introductory programming textbooks and teaching
materials to identify which elements are most emphasized at different stages of learn-
ing. Additionally, we reviewed past records of student progress and performance to
align the weights with the actual learning challenges encountered at different pro-
ficiency levels. While the weighting process inherently involved some subjectivity,
it was grounded in established educational practices and designed to align with the
cognitive progression of novice to advanced learners.

The standard difficulty value Dgq4 and the deviation tolerance value D, for a given
topic are computed using the D formula based on a set of high-quality benchmark code for

that topic.
1 n
Dga =~) Di (6)
mi3
1 & 5
Dol = Y (Dj — Dyq) 7)

i=1
The faifficuity scoreis then determined by the deviation between the actual code diffi-
culty D and the standard difficulty level D4, as well as the deviation tolerance Dy, of the
topic, using the following formula:

iculty = exp [————=tdl 8
f difficulty P(Dio ()

Electronics 2025, 14, 2261

13 of 27

Here, D is the difficulty value of the generated code. The function ensures that the
scores fall within the interval (0, 1], rewarding code that closely matches the target difficulty
and penalizing significant deviations.

In practical applications, it is essential to ensure that the generated code strictly adheres
to the scope of the current learning stage. Any content that exceeds the complexity or
concepts intended for a particular stage may overwhelm learners and hinder their process.
Therefore, no content should exceed the scope of the current learning stage at any time.

4.2.5. Feasibility of Problem Generation

Problem generation feasibility evaluates whether the generated code can be used for
problem creation through the blank element selection algorithm. An excellent code should not
only be accurate but also provide more opportunities for problem generation.

The ffeasibﬂity score is determined by the ratio of the number of blank elements in the
source code to the total number of tokens in the code using the following formula:

B
f feasibility — T)

* Brepresents the number of blank elements selected for problem generation.
e T represents the total number of tokens in the source code.

4.2.6. Objective Function

Based on the above four evaluation criteria, we propose the following objective func-
tion F to evaluate the quality of the generated source code for Java programming learning:

F =100 x (wa : faccuracy + Wy - ffeasibility + Wy - frelevance +wg - fdifficulty) (10)

where

* w, represents the weight for accuracy;
* wy represents the weight for feasibility;
* w, represents the weight for relevance;
* w, represents the weight for difficulty.

The values of w,, w £ Wr, and wy; can vary depending on the learning topic. In the
initial stage, we set the values of both w,, w fr Wr, and wy to 0.25. During actual system
usage, users can adjust these weights according to their specific instructional needs and
learning objectives.

4.3. Generative Al

The history of generative Al can be traced back to early artificial neural networks,
with key milestones including the introduction of artificial neurons in the 1950s and the
back-propagation algorithm in the 1980s [37]. In 2017, the introduction of the transformer
architecture by Vaswani et al. [38] laid the foundation for modern large-scale models.
Since then, LLMs, represented by ChatGPT, have demonstrated remarkable natural lan-
guage generation capabilities. Recently, research and products applying LLMs into the
field of education have emerged rapidly. Generative Al is continuously evolving, offering
groundbreaking possibilities for Al-driven content creation and automation.

Al Model Introduction

In this study, we selected three representative Al models for experiments. Here, we
provide a brief overview of their performance.

Electronics 2025, 14, 2261

14 of 27

ChatGPT-40 is OpenAl’s latest model, performing the best performance on general
tasks, in reasoning abilities, and in multimodal support. However, it is closed-source and
only available through OpenAl’s APl and ChatGPT platform.

DeepSeek-R1-7B is an open-source transformer model that balances performance and
efficiency, making it suitable for local deployment with consumer-level GPUs.

LlaMA3.2-1B is a lightweight, open-source model, making it ideal for low-power
devices and edge computing. It is designed to be fast and efficient, and can run on a PC
without GPUs.

4.4. Prompt Engineering

Prompt engineering refers to the optimization of input prompts to maximize the quality
and accuracy of Al-generated outputs. It is a key technique for enhancing Al-generated
content and is widely used in natural language processing, question answering, code
generations, text summarization, and other fields.

Due to device or network limitations, it is not always possible to use the optimal Al
model. Therefore, adopting suitable prompt strategies to obtain the required output has
become a more economically viable approach.

Based on the working principles of and practical experience with LLMs, prompt engi-
neering includes the following core concepts:

1. Clarity: prompts should be clear, specific, and avoid ambiguity.

2. Context: providing relevant background information improves accuracy.

3. Instruction-based: the model is directly instructed on what to do, such as “list the
steps” or “summarize briefly.”

4. Examples (few-shot learning): providing examples helps guide Al to generate re-
sponses in the expected format.

5. Constraints: setting limits on word count, format, or style ensures the output meets
specific requirements.

6. Temperature and top-p: the temperature parameter controls the randomness of the
output—lower values result in more deterministic responses, and, the top-p parameter
governs nucleus sampling, a technique that introduces controlled randomness to the
model’s output.

Based on the above core concepts and extensive practical experience, the following are
the common prompt engineering techniques:

1. Zero-shot and few-shot: Zero-shot and few-shot are two key prompting techniques
used in LLMs to control how they generate responses. Zero-shot means that the
model is given a prompt without any example and is expected to generate a correct
response based on its pre-trained knowledge. It relies entirely on the Al's pre-existing
understanding of language and concepts. Few-shot, on the other hand, means that the
model is provided with a few examples in the prompt before being asked to generate
a response. The examples help the model understand the pattern and produce more
accurate results.

Example:

® Zero-shot: “What is the capital of France?” The model will respond, “Paris.”
* Few-shot: “The capital of Italy is Rome. The capital of Germany is Berlin. What is
the capital of France?” The model will respond, “Paris.”

2. Chain-of-thought (CoT): CoT prompting is a technique used in LLMs to improve
reasoning and problem solving by encouraging the model to break down its thought
process step by step. Instead of directly generating an answer, the model explains its

Electronics 2025, 14, 2261

15 of 27

reasoning before reaching a conclusion. By mimicking human thought processes, CoT
prompting helps Al produce more accurate and explainable responses.

Example:

When asked, “What is 37 multiplied by 6?”, the model might respond with:
“First, | multiply 30 by 6, which gives me 180. Then, I multiply 7 by 6, which
gives me 42. Finally, I add 180 and 42, which gives me 222.”

This step-by-step breakdown demonstrates reasoning before arriving at the final answer.

Black-box prompt optimization (BPO): BPO is a technique for improving prompts
used in LLMs without knowing the internal workings of the model. Since the LLM is
treated as a “black box”, the optimization is achieved by evaluating different prompts
based on output performance rather than analyzing the model’s structure or gradients.
It presents a practical way of refining Al interactions without accessing the model’s
internal mechanisms.

Example:

* Initial prompt: “Tell me the benefits of regular exercise.”
* Revised prompt: “What are the top three benefits of daily physical activity for
mental health?”

The model’s response to the initial prompt might not fully meet the expectations in
terms of detail or relevance. By evaluating the response, the prompt is refined to focus
more specifically on the mental health benefits. This optimization continues iteratively
based on the quality of the generated responses to each version of the prompt.

5. Experiments

In this study, we conducted extensive experiments to evaluate the performance of

three prompt engineering methods with three Al models for generating proper source codes

for Java programming learning.

5.1. Prompt Strategies

To avoid overfitting and reduce human bias, we did not provide sample code in the

prompt. Below is the prompt used for the experiment, taking the “For Loop” topic as

an example.

Zero-shot:

Input:
Please help me generate a piece of code using java, the subject is: for loop.

Chain-of-thought (CoT):

Input:
Ineed to generate a piece of Java code related to the topic: for loop. Before
generating the code, let us break down the process step by step:

1. Understanding the topic:

- The subject is “For Loop”, so the generated code must showcase a
for loop in a meaningful way.
— The code should be correct and syntactically valid in Java.
2. Evaluating difficulty and structure:

- The code should not be too simple (e.g., just printing numbers in
a loop) but also not too complex.

Electronics 2025, 14, 2261 16 of 27

- It should demonstrate a common programming pattern using a
for loop.

3. Ensuring questionability:

- The code should be suitable for generating programming exercises.
- It should have elements that can be modified or extended for
students to practice.

4. Code generation:

- Now, generate a Java program that meets these requirements.
— Ensure the code compiles correctly.

* Black-box prompt optimization (BPO):
Figure 1 shows a flow chart of BPO processing.

Al Model

Automatically Refine the prompt

Not Pass
Check Accuracy

Pass

Not Pass

Check Relevance

Pass

Not Pass

Pass

Not Pass

Check Feasibility

Output

Figure 1. Flow chart of BPO processing.

Input:
Your task is to generate a Java program related to the topic: for loop.

After generating the code, the program calls the objective function F to evalu-
ate it. It systematically checks whether the code meets the four evaluation
criteria. If any criteria is not met, the program provides feedback along with
the previously generated code, guiding the Al to refine and improve it.

Below are some example prompts for guiding the Al in making targeted
modifications.

Electronics 2025, 14, 2261

17 of 27

Possible Input:
The above is the for Llop code you just generated. I noticed that the class
name does not follow the required naming convention. Please correct it.

Possible Input:
The above is the for loop code you just generated. I noticed that it is not
well-uited for fill-in-the-blank questions. Please revise it accordingly.

Possible Input:
The above is the for loop code you just generated. I think the difficulty is a bit
too high for beginners. Please simplify it.

Possible Input:
The above is the for loop code you just generated. I think it contains some
advanced concepts beyond the intended scope. Please remove them.

Possible Input:
The above is the for loop code you just generated. I think it is not closely
aligned with the topic. Please revise it to better fit the theme.

5.2. Experiment Design
5.2.1. Objective

We aimed to compare the performance of different prompting strategies across various

Al models (ChatGPT-4o0, DeepSeek-R1-7B, Llama3.2-1B) and different difficulty levels of Java
learning topics (primary, intermediate, and advanced). Additionally, we sought to deter-

mine the optimal number of BPO calls required to achieve a relatively high score under dif-

ferent conditions, providing guidance for system deployment and real-world application.

5.2.2. Variables

The experiment involved the following variables:

AI Models: ChatGPT-40, DeepSeek-R1-7B, Llama3.2-1B.
Prompt strategies:

— Zero-shot: direct generation without additional reasoning or optimization.

- CoT (chain of thought): applying step-by-step reasoning during generation.

- BPO (black-box prompt optimization): performing up to 3 optimization calls
per generation.

- CoT + BPO: first applying CoT reasoning, then optimizing with BPO (maximum
3 calls).

Difficulty levels: primary, intermediate, advanced.

5.2.3. Procedure

1.

For each combination of an Al model, a prompt strategy, and a topic difficulty level,
generate outputs.
For BPO-related strategies, continue optimization until either

* The score does not improve compared to the previous attempt; or
¢ The maximum limit of 3 calls is reached.

Repeat each experimental condition 20 times independently to ensure statistical
significance.

5.2.4. Evaluation Metrics

Each generated output was evaluated using the objection function in Section 4.

Electronics 2025, 14, 2261

18 of 27

5.2.5. Statistical Analysis
After completing the 20 repetitions for each condition:

¢ Calculate the average score and the average BPO call times across the 20 trials.
¢ Usethe average score and the average BPO call times as the final performance indicator
for comparison among different strategies and models.

5.3. Result and Analysis

As the most advanced commercial Al model, ChatGPT-40 exhibits strong performance
across all Java topic levels. As shown in Table 1, in primary and intermediate tasks, all
strategies (Zero-shot, CoT, BPO, CoT+BPO) achieve relatively high scores, and the gap
between strategies remains small. This reflects ChatGPT-40’s inherently strong reasoning
and generalization ability.

Table 1. Performance comparison for ChatGPT-4o.

Prompt Strategy Difficulty Avg.Score BPO Calls
Zero-shot Primary 79.6 -
Zero-shot Intermediate 75.1 -
Zero-shot Advanced 65.6 -

CoT Primary 794 -
CoT Intermediate 78.6 -
CoT Advanced 66.3 -
BPO Primary 83.8 0.8
BPO Intermediate 79.5 15
BPO Advanced 719 2.5
CoT+BPO Primary 82.3 0.6
CoT+BPO Intermediate 81.4 1.6
CoT+BPO Advanced 73.5 2.3

However, in advanced tasks, a notable performance drop is observed for zero-shot
(65.6) and CoT (66.3), while BPO-based strategies push the scores above 70. This suggests
that when the task complexity increases, prompt optimization becomes necessary even for
top-tier models.

Moreover, CoT+BPO achieves higher first-generation quality (fewer BPO rounds re-
quired) compared to pure BPO. This indicates that explicitly guiding the model’s reasoning
before optimization is more efficient for complex tasks.

As shown in Table 2, DeepSeek-R1-7B demonstrates strong competence on primary
tasks, with zero-shot achieving over 73 points. However, as task difficulty increases, the
performance degrades significantly under basic strategies, indicating its limitations in
complex reasoning.

Compared to ChatGPT-40, the benefit of BPO and CoT+BPO is more pronounced in
DeepSeek-R1-7B, especially at the intermediate and advanced levels. CoT+BPO consistently
outperforms thr other strategies, suggesting that combining structured reasoning (CoT)
with optimization (BPO) can compensate for the model’s native reasoning deficiencies.

Furthermore, the number of BPO calls for DeepSeek-R1-7B tends to be higher than
ChatGPT-4o, reflecting the need for more refinement cycles to achieve acceptable output.

As shown in Table 3, the lightweight Llama3.2-1B model presents a more challenging
case. Its baseline performance under zero-shot drops sharply as task complexity increases,
especially at the advanced level (only 44.3 points).

Electronics 2025, 14, 2261 19 of 27

Table 2. Performance comparison for DeepSeek-R1-7B.

Prompt Strategy Difficulty Avg.Score BPO Calls
Zero-shot Primary 73.3 -
Zero-shot Intermediate 63.7 -
Zero-shot Advanced 62.1 -

CoT Primary 75.6 -
CoT Intermediate 64.2 -
CoT Advanced 63.9 -
BPO Primary 76.1 1.8
BPO Intermediate 66.3 1.9
BPO Advanced 64.7 3
CoT+BPO Primary 74.9 1.5
CoT+BPO Intermediate 67.6 1.6
CoT+BPO Advanced 65.8 2.9

Table 3. Performance comparison for Llama3.2-1B.

Prompt Strategy Difficulty Avg.Score BPO Calls
Zero-shot Primary 70.7 -
Zero-shot Intermediate 57.4 -
Zero-shot Advanced 443 -

CoT Primary 715 -
CoT Intermediate 59.5 -
CoT Advanced 51.8 -
BPO Primary 722 22
BPO Intermediate 61.5 3
BPO Advanced 55.8 3
CoT+BPO Primary 71.3 1.9
CoT+BPO Intermediate 61.8 3
CoT+BPO Advanced 58.3 3

Both BPO and CoT+BPO show clear improvement, but the absolute scores remain
lower than higher-parameter models. Importantly, BPO calls reach the maximum limit
(three) in almost all intermediate and advanced tasks, indicating the model struggles to
refine its outputs without extensive optimization.

Overall, BPO and CoT+BPO are critical for enabling small models to perform accept-
ably, but they cannot fully bridge the gap in the performance of larger models.

As shown in Table 4, allowing unlimited BPO iterations highlights the limitations of
small models. For Llama3.2-1B, even after multiple optimization rounds (up to 6.7 iterations
for advanced tasks), the final scores remain lower than larger models.

Table 4. Performance of infinite BPO across Al models.

Al model Task Difficulty Score and Iterations
Primary Score: 82.6, Iterations: 0.7
ChatGPT-40 Intermediate Score: 79.3, Iterations: 1.5
Advanced Score: 72.5, Iterations: 2.3
Primary Score: 75.8, Iterations: 1.6
DeepSeek-R1-7B Intermediate Score: 66.7, Iterations: 1.8
Advanced Score: 66.9, Iterations: 3.8
Primary Score: 71.2, Iterations: 1.9
Llama3.2-1B Intermediate Score: 65.3, Iterations: 4.3

Advanced Score: 62.8, Iterations: 6.7

Electronics 2025, 14, 2261

20 of 27

This shows that while BPO can substantially improve small model outputs, its effect
diminishes beyond a certain point. In contrast, large models like ChatGPT-40 achieve high
scores with minimal optimization, suggesting that BPO is more cost-effective for large
models and becomes increasingly expensive and less effective for smaller ones.

Summary

The experimental results demonstrate that

e For top-tier models (e.g., ChatGPT-40), prompt strategy has a limited influence on
simple tasks but becomes critical in complex tasks.

e For mid-range models (e.g., DeepSeek-R1-7B), combining CoT and BPO yields the best
performance across all difficulty levels.

e For lightweight models (e.g., Llama3.2-1B), BPO is necessary but insufficient to fully
close the performance gap.

* BPO iterations should be carefully managed: unlimited iterations can significantly
increase computation cost with diminishing returns, especially for small models.

These findings provide practical insights into selecting appropriate prompting strate-
gies and models for different deployment scenarios.

For environments with limited computational resources, mid-range models with
CoT+BPO are strong candidates, while high-performance models like ChatGPT-40 are
ideal for applications demanding top-tier performance across a wide range of task diffi-
culties. Lightweight models like Llama3.2-1B can still serve in specific scenarios when the
computational resources are limited or only primary stage tasks are required.

5.4. Student Participation Testing and Evaluation

To further evaluate the practical effectiveness of this system, we conducted a student
participation test involving eight participants (four with prior Java learning experience and
four without).

Participants were asked to complete exercises based on two types of problems:

. EFP with source code manually selected by instructors;
e EFP with source code generated by different Al models with the highest scores from
previous experiments.

Importantly, the participants were not informed of the origin of the exercises. The four
participants with Java learning experience completed the intermediate-difficulty exercises,
while the other four without prior learning experience completed the primary-difficulty
exercises. Half of the participants worked on Al-generated exercises, while the other half
worked on manually selected exercises.

After completing the exercises, the students were asked to evaluate each exercise
on four aspects—difficulty, correctness, topic relevance, and helpfulness to their learn-
ing—using a five-star rating system.

To enhance the statistical credibility of the findings despite the limited sample size, we
calculated the 95% confidence intervals (as shown in brackets) and effect sizes (Cohen’s d)
for each evaluation aspect. The results are summarized as follows:

e Difficulty: manually selected exercises were rated slightly higher (Cohen’s d = —1.22),
indicating a potentially noticeable difference in perceived difficulty.

* Correctness: both groups assigned identical average scores with overlapping confi-
dence intervals, suggesting no meaningful difference (Cohen’s d = 0.00).

* Topicrelevance: Al-generated exercises performed slightly better (Cohen’s d = 0.71),
reflecting a moderate positive effect.

Electronics 2025, 14, 2261

21 of 27

e Helpfulness: manually selected exercises had a moderate advantage (Cohen’s
d =—0.71).

As shown in Table 5, although individual differences existed, the average scores across
all four evaluation aspects (difficulty, correctness, topic relevance, and helpfulness) were
comparable between Al-generated and manually selected exercises. The Al-generated
exercises demonstrated quality and educational effectiveness similar to those of manually
selected ones.

Table 5. Student evaluation results (average scores out of 5, with 95% confidence intervals).

Evaluation Aspect Al-Generated Exercises =~ Manually Selected Exercises
Difficulty 4.00 [4.00, 4.00] 4.25[3.90, 4.60]
Correctness 4.75[4.40, 5.10] 4.75[4.40, 5.10]
Topic Relevance 4.50 [4.00, 5.00] 4.25[3.90, 4.60]
Helpfulness 4.00 [3.50, 4.50] 4.25 [3.90, 4.60]

5.5. Functional Testing and Evaluation

To validate the effectiveness and efficiency of this system, we conducted a series of
functionality tests focusing on different aspects of the system performance on a PC with an
i5-11400H CPU, 16 GB of RAM, and Llama3.2-1B. Since this system was primarily designed
for beginners, we referred to the book Java: A Beginner’s Guide and the website W3Schools
and selected 10 learning topics suitable for beginners to conduct the tests.

As shown in Table 6, the overall execution time and results were within an acceptable range.

Table 6. Functionality test.

Java Topic CPU Time (s) Lines of Code BPO Iterations EFP Blanks Difficulty Score
Variable 2.2 16 0 5 19
Control Statement 3.4 22 1 8 32
Class 4.3 35 2 7 35
Exception Handling 5.8 40 2 9 60
Operators 2.8 32 0 7 40
Collections Framework 6.1 37 2 10 56
I/0 Operations 5.5 20 2 6 42
Arrays 3.8 22 1 5 30
String Manipulation 45 30 2 8 48
Interface 5.1 44 2 13 70

The results demonstrate that this system effectively adapts to different Java learning
topics, ensuring the performance, correctness, and feasibility for EFP instance generations.

6. Application to Element Fill-in-the-Blank Problem Creation

In this section, we present an application of the optimal prompt strategy of generating
source codes for Java programming learning that was derived from experiments. As an
application, we implemented a web-based system that automatically createsda proper
element fill-in-the-blank problem (EFP) instance in J[PLAS without manually selecting the
source code.

6.1. Adopted Open Source Software
For this web application system, we adopted the following open-source software:

1. Spring Boot: Spring Boot is an open-source framework used to simplify the devel-
opment of Java-based applications. It provides a set of conventions and tools for
building production-ready, stand-alone, and microservice-based applications. Spring

Electronics 2025, 14, 2261

22 of 27

Boot allows developers to focus on business logic, while it handles the setup, configu-
ration, and dependencies of the application. It includes embedded servers like Tomcat,
which means developers can run Spring Boot applications directly without needing
external servers.

2. jQuery: jQuery is a fast, lightweight, and feature-rich JavaScript library. It simplifies
HTML document traversal and manipulation, event handling, and animation, making
it easier to work with JavaScript. jQuery provides an intuitive syntax for tasks like
DOM manipulation, Ajax requests, and cross-browser compatibility. Widely used
in web developments, jQuery allows developers to create interactive and dynamic
websites quickly and efficiently.

3. Ollama: Ollama is a platform designed for deploying and running LLMs locally
on personal computers. It enables developers to utilize LLMs in a wide range of
applications without relying on cloud-based solutions, ensuring better data privacy
and control over the models. Ollama supports various models, including Llama3,
and allows for integration with Al-driven systems in multiple industries, including
education, healthcare, and more.

4. Docker: Docker is a platform that allows developers to package applications and their
dependencies into containers, ensuring that the application works seamlessly across
different environments. Containers are lightweight, portable, and consistent, which
makes deploying and managing applications much easier. Docker simplifies software
distribution, improves scalability, and provides isolation, making it an essential tool
for modern DevOps practices and microservice architectures.

We chose Spring Boot, jQuery, Ollama, and Docker as the technology stack for this system.
Spring Boot provided an efficient development experience and simplified configuration
management, making it ideal for building and maintaining backend services that need to
interact with Al models and the frontend. While modern frameworks like React [39] and
Vue [40] were more popular at the time, we chose jQuery due to its use in our previous
system. This approach avoided changes to existing functionality and ensured system
stability and compatibility. Additionally, jQuery’s simplicity and broad support helped
quickly implement dynamic pages and handle backend interactions. Ollama allowed us to
run LLMs locally, reducing reliance on cloud-based services and enhancing data privacy
and control, which are especially valuable for applications in the education field. Finally,
Docker, as a containerization technology, helped us package the system and its dependencies
into containers, simplifying deployment, improving maintainability and scalability, and
enabling code reuse across different environments.

6.2. Software Architecture
Figure 2 presents an overview of our system, which consists of four key components:

* Frontend (jQuery) handles the user interactions, such as selecting a topic, modifying
an Al-generated code, and managing problems.

* Backend (Spring Boot) manages API requests, processes user inputs, communicates
with the Al model, and provides the necessary logic for evaluations and refinements.

¢ Al component (Ollama) generates a Java source code based on the selected topic and
refines it according to user instructions.

¢ Containerization (Docker) packages the entire system into a Docker container, al-
lowing for the easy deployment and installation with a single command across
different environments.

Electronics 2025, 14, 2261

23 of 27

Contact

1. Send usér request 5. Réturn results to the user
information i

Application layer

4, Determine
whether the
prompt needs
to be modified

3. Return Al generated

2. Generate prompt .
i results

and request Al

Al Service layer

Container Service

Figure 2. EFP creation system overview.

6.3. Functional Overview

Our system provides four core functions: Figure 3 presents the user interface for setting
parameters. Figure 4 presents the user interface for generating code. Figure 5 presents the
user interface for modifying questions. Figure 6 presents the user interface for management.
1. Code generation based on topic selection:

* The user selects a Java programming topic.
* Theback end generates the optimal prompt for the selected topic and calls Ollama
Al to generate a Java code.

2. Al-guided code modification:

* The user can provide specific modification requirements, such as simplifying the
code or aligning it better with a given topic.

¢ The system sends the existing code along with the modification instructions to
Ollama, which generates a refined version.

e This iterative process helps improve the quality and suitability of the generated code.

3. Automated question generation:

* Once a valid Java code is generated, the system automatically creates an EFP
instance using the blank element selection algorithm.

4. Problem downloading:

* The user can download the generated source code and EFP instance for future use.

Figure 7 presents one of generated source code.

Electronics 2025, 14, 2261 24 of 27

Parameter Settings =

SourceCode Topic: [For-Loop %]
Y

Primitive TypeData

ReferenceTypeData

if-else

lo while-Loop

lexception

stringFunctions

Figure 3. User interface for parameter setting.

Generate Question x

Question type: IOode Completion Problem (CCP) 4]

Element Fill-in-blank Problem (EFP)
IEEEEINERIE Code Completion Problem (CCP)

If you have any special requirements for the question, please fill

in here, up to 500 characters

characters: 0/500 m

Figure 4. User interface for generating code.

Modify Options:

Please enter your modification suggestion, up to 500 characters

characters: 0/500

Figure 5. User interface for modifying questions.

Electronics 2025, 14, 2261 25 of 27

Management

Parameter Settings

Generate Source Code Modify Source Code Generate Question

Save Question

Figure 6. User interface for management.

Source Code

Here's a sample Java code that demonstrates the use of a “for™ loop:
T java
public class forlLoop {

public static void main(String[] args) {

// Initialize an array to store numbers from 1 to 10
int[] numbers = new int[10];

// Use a for loop to populate the array with numbers from 1 to 10
for (int i = @; i < numbers.length; i++) {

System.out.printf("%d ", numbers[i]);
3

// Print a newline after each number
System.out.println();

Figure 7. Generated source code.

7. Conclusions

This paper experimentally analyzed the effectiveness of generating Java source codes
for learning using three prompt strategies and Al models as well as identified the optimal
prompt strategy for different tasks. The prompt strategy was integrated into the system,
ensuring code quality while reducing the burden on teachers in preparing teaching materi-
als. Prompt engineering does not require fine-tuning or additional training of the model.
Instead, it significantly improves the quality of the generated code by simply optimizing
the prompt text, thereby reducing the cost of optimizing the Al outputs. Moreover, this
approach is not limited to Java code generation but can also be extended to other languages,
providing an efficient optimization method for Al applications in programming education.

Despite the results achieved in this study, there are still some limitations. First, this
prompt strategy was only proven effective for a specific version of the Al model. Its
effectiveness may not hold if the model is updated. Second, this study focused only on
Java programming tasks, and its applicability to other programming languages or more
complex software engineering tasks remains unverified. Additionally, the evaluation
primarily relied on experimental data, lacking long-term validations in large-scale real-
world classroom settings.

Our research can be expanded in the following directions:

1. Cross-model adaptability: we will investigate the applicability of the optimal
prompt strategy across different AI models to develop a more general and robust
optimization method.

2. Multi-language code generation: we will explore the effectiveness of this approach
in other programming languages, such as Python and C++, to further validate
its applicability.

3. Large-scale user testing: we will deploy the system in real educational settings, collect
student usage data, and analyze the impacts of different prompt strategies on learning
outcomes to further refine Al-assisted programming education.

Electronics 2025, 14, 2261 26 of 27

In summary, this study provides a low-cost and efficient optimization strategy for
Al applications in programming education. Future work will focus on expanding its
applicability and refining it based on real-world teaching scenarios.

Author Contributions: Methodology, Z.Z.; software, Z.Z.; investigation, M.M. and S.T.A.; data
curation, M.M. and S.T.A.; writing—original draft, Z.Z.; writing—review and editing, Z.Z. and N.F,;
supervision, W.-C.K. and Y.-EL.; project administration, N.F. All authors have read and agreed to the
published version of this manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in this
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Netguru. IsJava Still Used? Current Trends and Market Demand in 2025. Available online: https://www.netguru.com/blog/is-
java-still-used-in-2025 (accessed on 18 February 2025).

2. Ishihara, N.; Funabiki, N.; Kuribayashi, M.; Kao, W.-C. A software architecture for Java programming learning assistant system.
Int.]. Comput. Softw. Eng. 2017, 2, 116. [CrossRef] [PubMed]

3. Aung, S.T.; Funabiki, N.; Syaifudin, YW.; Kyaw, H.H.S.; Aung, S.L.; Dim, N.K.; Kao, W.-C. A Proposal of Grammar-Concept
Understanding Problem in Java Programming Learning Assistant System. J. Adv. Inf. Technol. 2021, 12, 342-350.

4. Funabiki, N.; Zaw, K.K,; Ishihara, N.; Kao, W.C. A Graph-Based Blank Element Selection Algorithm for Fill-in-Blank Problems in
Java Programming Learning Assistant System. IJAENG Int.]. Comput. Sci. 2017, 44, 247-260.

5. OpenAl ChatGPT. Available online: https://openai.com/index/chatgpt/ (accessed on 15 March 2025).

6. Chen, B.; Zhang, Z.; Langrené, N.; Zhu, S. Unleashing the Potential of Prompt Engineering in Large Language Models:
A Comprehensive Review. arXiv 2023, arXiv:2310.14735.

7. OpenAl GPT-40: OpenAl’s Newest Model. Available online: https://openai.com/index/hello-gpt-40/ (accessed on 15 March 2025).

8. DeepSeek. DeepSeek-R1 Model on Ollama. Available online: https:/ /ollama.com/library /deepseek-r1 (accessed on 15 March 2025).

9. Meta. LLaMA 3.2 Model on Ollama. Available online: https:/ /ollama.com/library/llama3.2 (accessed on 15 March 2025).

10. Spring. Spring Boot. Available online: https:/ /spring.io/projects/spring-boot (accessed on 15 March 2025).

11. jQuery. jQuery: The Write Less, Do More, JavaScript Library. Available online: https:/ /jquery.com/ (accessed on 15 March 2025).

12. Ollama. Ollama: Run AI Models Locally. Available online: https://ollama.com/ (accessed on 15 March 2025).

13. Docker. Docker: Empowering Developers to Build, Share, and Run Applications. Available online: https://www.docker.com/
(accessed on 15 March 2025).

14. McGill, T.; Volet, S. A Conceptual Framework for Analyzing Students” Knowledge of Programming. J. Res. Comput. Educ.
1997, 29, 276-297. [CrossRef]

15. Altadmri, A.; Brown, N.C. 37 Million Compilations: Investigating Novice Programming Mistakes in Large-Scale Student Data. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO, USA, 4-7 March 2015;
pp. 522-527. [CrossRef]

16. Gomes, A.; Mendes, A.J. An Environment to Improve Programming Education. In Proceedings of the 2007 International
Conference on Computer Systems and Technologies, Rousse, Bulgaria, 14-15 June 2007; Volume 88, pp. 1-6. [CrossRef]

17. Sorva, J.; Karavirta, V.; Malmi, L. A Review of Generic Program Visualization Systems for Introductory Programming Education.
Acm Trans. Comput. Educ. 2013, 13, 15. [CrossRef]

18. Medeiros, R.P; Ramalho, G.L.; Falcao, T.P. A Systematic Literature Review on Teaching and Learning Introductory Programming
in Higher Education. IEEE Trans. Educ. 2019, 62, 77-90. [CrossRef]

19. Lindberg, R.S.; Laine, T.H.; Haaranen, L. Gamifying Programming Education in K-12: A Review of Programming Curricula in
Seven Countries and Programming Games. Br.]. Educ. Technol. 2019, 50, 1979-1995. [CrossRef]

20. Olsson, M.; Mozelius, P; Collin, J. Visualisation and Gamification of E-Learning and Programming Education. Electron. |. E-Learn.
2015, 13, 452-465.

21. Luckin, R.; Holmes, W. Intelligence Unleashed: An Argqument for Al in Education; Pearson: London, UK, 2016.

22. Chen, L; Chen, P; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264-75278. [CrossRef]

23. Baidoo-Anu, D.; Ansah, L.O. Education in the Era of Generative Artificial Intelligence (Al): Understanding the Potential Benefits

of ChatGPT in Promoting Teaching and Learning. J. AI 2023, 7, 52-62. [CrossRef]

https://www.netguru.com/blog/is-java-still-used-in-2025
https://www.netguru.com/blog/is-java-still-used-in-2025
http://doi.org/10.15344/2456-4451/2017/116
http://www.ncbi.nlm.nih.gov/pubmed/40442811
https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://ollama.com/library/deepseek-r1
https://ollama.com/library/llama3.2
https://spring.io/projects/spring-boot
https://jquery.com/
https://ollama.com/
https://www.docker.com/
http://dx.doi.org/10.1080/08886504.1997.10782199
http://dx.doi.org/10.1145/2676723.2677258
http://dx.doi.org/10.1145/1330598.1330691
http://dx.doi.org/10.1145/2490822
http://dx.doi.org/10.1109/TE.2018.2864133
http://dx.doi.org/10.1111/bjet.12685
http://dx.doi.org/10.1109/ACCESS.2020.2988510
http://dx.doi.org/10.61969/jai.1337500

Electronics 2025, 14, 2261 27 of 27

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.
40.

Coding Rooms. Coding Rooms: Developer Training & Enablement Platform. Available online: https://www.codingrooms.com/
(accessed on 15 March 2025).

Khan Academy. Khan Academy: For Every Student, Every Classroom. Real Results. Available online: https:/ /www.khanacademy.org/
(accessed on 15 March 2025).

Khanmigo. Khanmigo: An Al-Powered Tutor and Teaching Assistant. Available online: https://www.khanmigo.ai/
(accessed on 15 March 2025).

GitHub Copilot. GitHub Copilot: Your Al Pair Programmer. Available online: https://github.com/features/copilot
(accessed on 15 March 2025).

Cheng, J.; Liu, X,; Zheng, K.; Ke, P.; Wang, H.; Dong, Y.; Huang, M. Black-Box Prompt Optimization: Aligning Large Language
Models Without Model Training. arXiv 2023, arXiv:2311.04155.

Agarwal, E.; Singh,].; Dani, V.; Magazine, R.; Ganu, T.; Nambi, A. PromptWizard: Task-Aware Prompt Optimization Framework.
arXiv 2024, arXiv:2405.18369.

Fernando, C.; Banarse, D.; Michalewski, H.; Osindero, S.; Rocktédschel, T. PromptBreeder: Self-Referential Self-Improvement via
Prompt Evolution. arXiv 2023, arXiv:2309.16797.

Wint, S.S.; Funabiki, N. A proposal of recommendation function for element fill-in-Blank problems in Java programming learning
assistant system. Int. J. Web Inf. Syst. 2021, 17, 140-152. [CrossRef]

JFlex. JFlex: A Lexical Analyzer Generator for Java. Available online: https://www.jflex.de/ (accessed on 18 February 2025).
JUnit. JUnit. Available online: https://github.com /junit-team /junit5/ (accessed on 18 February 2025).

EvoSuite. EvoSuite: Automated Test Suite Generation for Java. Available online: https://www.evosuite.org/
(accessed on 27 April 2025).

Niemeyer, P.; Knudsen, J. Learning Java; O'Reilly Media, Inc.: Newton, MA, USA, 2005.

JavaParser. JavaParser: The Most Popular Parser for the Java Language. Available online: https://javaparser.org
(accessed on 18 February 2025).

Cao, Y,; Li, S;; Liu, Y,; Yan, Z; Dai, Y.; Yu, PS.; Sun, L. A comprehensive survey of Al-generated content (AIGC): A history of
generative Al from GAN to ChatGPT. arXiv 2023, arXiv:2303.04226.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998-6008.

React. React. Available online: https:/ /reactjs.org/ (accessed on 18 February 2025).

Vue. Vue js. Available online: https://vuejs.org/ (accessed on 18 February 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.codingrooms.com/
https://www.khanacademy.org/
https://www.khanmigo.ai/
https://github.com/features/copilot
http://dx.doi.org/10.1108/IJWIS-11-2020-0070
https://www.jflex.de/
https://github.com/junit-team/junit5/
https://www.evosuite.org/
https://javaparser.org
https://reactjs.org/
https://vuejs.org/

	Introduction
	Related Works
	Programming Education
	Generative AI
	Prompt Engineering

	Preliminary Works
	Java Programming Learning Assistant System (JPLAS)
	Element Fill-in-the-Blank Problem
	Definition of an Element
	Blank Element Selection Algorithm
	Coding Rule Check Function
	EFP Generation Steps

	Methodology for Proper Code Generation
	Adopted Approach for AI
	Code Quality Assessment
	Code Accuracy
	Java Learning Topics
	Code Relevance to the Topic
	Code Difficulty
	Feasibility of Problem Generation
	Objective Function

	Generative AI
	Prompt Engineering

	Experiments
	Prompt Strategies
	Experiment Design
	Objective
	Variables
	Procedure
	Evaluation Metrics
	Statistical Analysis

	Result and Analysis
	Student Participation Testing and Evaluation
	Functional Testing and Evaluation

	Application to Element Fill-in-the-Blank Problem Creation
	Adopted Open Source Software
	Software Architecture
	Functional Overview

	Conclusions
	References

