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Świetlicka, Aleksandra

Kawala-Sterniuk and Dariusz

Mikołajewski

Received: 6 February 2025

Revised: 17 May 2025

Accepted: 23 May 2025

Published: 30 May 2025

Citation: Yeo, J.-Y.; Youm, S.; Shin,

K.-S. Enhancing Interprofessional

Communication in Healthcare Using

Large Language Models: Study on

Similarity Measurement Methods

with Weighted Noun Embeddings.

Electronics 2025, 14, 2240. https://

doi.org/10.3390/electronics14112240

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

electronics

Article

Enhancing Interprofessional Communication in Healthcare
Using Large Language Models: Study on Similarity
Measurement Methods with Weighted Noun Embeddings
Ji-Young Yeo 1 , Sungkwan Youm 2,* and Kwang-Seong Shin 3,*

1 College of Nursing, Hanyang University, 222, Wangsimni-ro, Seongdong-gu,
Seoul 04763, Republic of Korea; shine73@hanyang.ac.kr

2 Department of Information and Communication Engineering, Wonkwang University,
Iksan 54538, Republic of Korea

3 Department of Computer Engineering, Sunchon National University, 255, Jungang-ro,
Suncheon-si 57922, Republic of Korea

* Correspondence: skyoum@gmail.com (S.Y.); waver@scnu.ac.kr (K.-S.S.)

Abstract: Large language models (LLMs) are increasingly applied to specialized domains
like medical education, necessitating tailored approaches to evaluate structured responses
such as SBAR (Situation, Background, Assessment, Recommendation). This study devel-
oped an evaluation tool for nursing student responses using LLMs, focusing on word-based
learning and assessment methods to align automated scoring with expert evaluations. We
propose a three-stage biasing approach: (1) integrating reference answers into the training
corpus; (2) incorporating high-scoring student responses; (3) applying domain-critical to-
ken weighting through Weighted Noun Embeddings to enhance similarity measurements.
By assigning higher weights to critical medical nouns and lower weights to less relevant
terms, the embeddings prioritize domain-specific terminology. Employing Word2Vec and
FastText models trained on general conversation, medical, and reference answer corpora
alongside Sentence-BERT for comparison, our results demonstrate that biasing with ref-
erence answers, high-scoring responses, and weighted embeddings improves alignment
with human evaluations. Word-based models, particularly after biasing, effectively dis-
tinguish high-performing responses from lower ones, as evidenced by increased cosine
similarity differences. These findings validate that the proposed methodology enhances
the precision and objectivity of evaluating descriptive answers, offering a practical solution
for educational settings where fairness and consistency are paramount.

Keywords: corpus; fast text; LLM; SBAR; Word2Vec

1. Introduction
The Situation, Background, Assessment, Recommendation (SBAR) framework is

widely utilized in medical communication training to enhance clarity and reduce errors in
clinical settings [1,2]. However, traditional SBAR assessments rely heavily on subjective
human evaluation, leading to inconsistencies in grading and difficulties in maintaining
standardized assessment criteria [3].

Word and sentence similarity measurement plays a crucial role in various natural
language processing (NLP) applications, such as automated grading systems, information
retrieval, and document summarization [4,5]. By quantifying how closely two text inputs
resemble each other, similarity measurement enables systems to perform tasks such as
automatic feedback generation and text-based assessments with improved accuracy.
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In medical communication training, accurately assessing student responses within
the SBAR framework requires precise similarity measurement. Given that responses
may vary in structure while conveying the same essential meaning, a robust similarity
metric must account for both lexical and semantic equivalence [6]. Conventional evaluation
methods often fail to capture subtle linguistic nuances, leading to inconsistencies in grading.
Therefore, the development of reliable similarity assessment methods tailored to SBAR
responses is essential.

Recent advancements in NLP, including unsupervised learning [7], few-shot
learning [8], and GPT-based models [9], have expanded similarity measurement
techniques [10–12], with cosine similarity widely applied in essay assessments [13–15].
Various NLP-based approaches have been developed for measuring text similarity, each
with its own strengths and applications. One of the most widely used methods is cosine
similarity, which calculates the cosine of the angle between two word or sentence vectors,
making it useful in vector space models for tasks such as information retrieval and text
classification [16]. Another widely adopted approach is Word2Vec and FastText, which
generate word embeddings based on co-occurrence statistics within large text corpora.
FastText, in particular, is advantageous for domain-specific tasks as it represents words as
subword units, enhancing its effectiveness in handling medical terminology [17].

Despite the effectiveness of these techniques, general NLP models often struggle with
domain-specific language, particularly in medical and educational contexts. Standard
embedding models trained on general corpora may not adequately capture the structured
nature of SBAR communication. As a result, fine-tuning models on specialized datasets is
necessary to achieve higher accuracy in SBAR response evaluation [18].

While LLMs have demonstrated remarkable performance in various NLP tasks, their
application in medical training assessments, particularly structured evaluations such as
SBAR, remains an underexplored area. Existing LLM-based evaluation systems primarily
focus on general text similarity measurement, often utilizing BERT-based models [19,20].
However, these models struggle to effectively capture the structured and domain-specific
nature of SBAR responses.

Recent studies further underscore the potential of LLMs in healthcare and educational
contexts. For instance, Hang et al. [21] developed an LLM-driven system for generating
multiple-choice questions to support personalized learning, demonstrating how LLMs
can adapt to educational tasks through prompt engineering and retrieval-augmented
generation. Similarly, Burisch et al. [22] proposed a protocol to evaluate ChatGPT-4’s
performance in German continuing medical education, exploring its utility in structured
healthcare assessments. These works highlight the growing application of LLMs in domain-
specific training, yet they also reveal a gap in tailored approaches for structured tasks like
SBAR, where fine-tuning on small, specialized datasets remains underexplored. Our study
builds on this foundation by addressing this gap with a focused biasing methodology.

In addition, previous studies on automated medical response evaluation often rely
on simple similarity scores without incorporating contextual adaptation [23]. This limita-
tion results in inadequate performance when evaluating structured medical assessments,
where key domain terms and response format significantly impact evaluation accuracy.
Furthermore, LLMs trained on general corpora may fail to recognize the importance of
medical-specific phrasing, leading to inconsistencies in automated scoring. These chal-
lenges highlight the need for a more domain-adaptive approach to similarity measurement
in medical training.

To address these challenges, we propose a three-stage biasing approach for LLM-based
similarity measurement. First, Reference Answer Integration involves training the model
with expert-curated reference answers to establish a baseline for accurate similarity com-
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parisons. Second, High-Scoring Student Response Incorporation integrates top-performing
student responses into the training corpus, ensuring that the model aligns with real-world
variations in high-quality answers. Finally, Domain-Critical Token Weighting applies
Weighted Noun Embeddings to prioritize domain-specific terminology and key medical
phrases, assigning higher weights to critical medical nouns and lower weights to less
relevant terms. This approach enhances the alignment between automated scoring and
human evaluations, leading to greater accuracy in SBAR assessments.

Experimental results demonstrate that models fine-tuned with reference answers and
high-scoring student responses achieve significantly higher correlations with expert ratings.
Among the models tested, FastText exhibited a higher correlation in handling domain-
specific vocabulary, making it a strong candidate for practical implementation in medical
education [24].

The remainder of this paper is organized as follows: Section 2 details the similarity
measurement methods and corpora used in this study. Section 3 presents our experimental
setup and results, and Section 4 discusses the implications of our findings. Finally, Section 5
concludes the study and suggests future research directions.

2. Materials and Methods
2.1. Similarity Analysis Methods

To evaluate the similarity between student SBAR responses and reference answers, we
employed three metrics: Cosine Similarity, Euclidean Distance, and Manhattan Distance.
These metrics provide complementary perspectives on text similarity, capturing directional
alignment, magnitude differences, and coordinate-wise disparities, respectively.

2.1.1. Cosine Similarity

Cosine Similarity is a widely adopted metric for measuring text similarity, as it focuses
on the angular difference between two vectors, normalizing for magnitude to mitigate the
influence of response length [25]. This makes it particularly suitable for SBAR responses,
which vary in length but share common domain-specific tokens. For two vectors vs (student
response) and vr (reference answer), Cosine Similarity is defined as follows:

Cos(vs, vr) =
vs · vr

∥vs∥∥vr∥
, (1)

where · denotes the dot product, and ∥ · ∥ represents the Euclidean norm. The similarity
score is scaled to [0, 100] for consistency. Vectors are generated by averaging noun embed-
dings (extracted using the Mecab morphological analyzer [26]) weighted by domain-critical
tokens, as described in Section 2.3.

2.1.2. Word2Vec

Word2Vec generates word embeddings by training a shallow neural network to predict
word contexts, capturing semantic relationships. We used a pre-trained model on a medical
corpus, fine-tuned with reference answers and high-scoring student responses. Vectors
are 100-dimensional, and sentence embeddings are computed as weighted averages of
noun embeddings.

2.1.3. FastText

FastText extends Word2Vec by representing words as bags of character n-grams,
enhancing robustness for morphologically complex medical terms [27]. Like Word2Vec, it
was pre-trained on a medical corpus and fine-tuned, producing 100-dimensional vectors
aggregated into sentence embeddings.
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2.1.4. Sentence-BERT

Sentence-BERT (S-BERT) generates 768-dimensional sentence embeddings via a
Siamese BERT architecture optimized for semantic similarity tasks [28–30]. We fine-tuned
a pre-trained Ko-SRoBERTa model using Contrastive Learning to align high-scoring re-
sponses with references.

2.2. Corpus Utilization

The study utilized three distinct corpora to provide diverse linguistic contexts for the
evaluation of SBAR responses. The Conversational Corpus, comprising 2.9 million tokens
of general dialogue, served as a source of everyday language patterns. The Medical Corpus,
with 42 million tokens of healthcare-related texts, offered domain-specific terminology
and context relevant to medical communication. Finally, the Reference Answer Corpus,
containing 732 tokens of expert-crafted SBAR responses, enabled targeted fine-tuning
to enhance the precision of SBAR evaluation. These corpora collectively supported the
development and refinement of the similarity measurement models used in the study.

2.3. Weighted Noun Embeddings

To prioritize domain-critical tokens, we assign weights to nouns based on their mem-
bership in predefined groups. The weight w(n) for a noun n is defined as follows:

w(n) =

wk if n ∈ Gk, k ∈ {1, 2, . . . , K},

wdefault otherwise,
(2)

where Gk represents the k-th group of nouns, wk is the corresponding weight, and wdefault

is the default weight for nouns not in any group. In this study, we use K = 4 groups:

• G1: High-scoring nouns, w1 = 1.5,
• G2: Positive domain terms, w2 = 1.0,
• G3: Mid-scoring nouns, w3 = 0.1,
• G4: Low-scoring nouns, w4 = 0.001,

With wdefault = 0.3. Sentence embeddings are computed as the weighted average of
noun embeddings, enhancing the influence of critical medical terms.

2.3.1. Word2Vec and FastText Fine-Tuning

For Word2Vec and FastText, we updated the pre-trained models using a dataset
combining reference answers and high-scoring student responses. Let R = {r1, r2, . . . , rM}
denote the set of reference answers for M sections (e.g., M = 4 for SBAR), and Shigh =

{s1, s2, . . . , sN} represent the set of high-scoring students. For each section i ∈ {1, 2, . . . , M},
the training data are defined as follows:

Ti =
R⋃

k=1

{ri} ∪ {Hj,i | sj ∈ Shigh}, (3)

where ri ∈ R is the reference answer for section i, Hj,i is the response of student sj for
section i, and R is the number of repetitions of the reference answer. In this study, we
set R = 30 to amplify the influence of reference answers and used N = 3 high-scoring
students. The models were trained for 50 epochs with negative sampling (15 negative
samples), updating the vocabulary and embeddings to prioritize domain-critical tokens.
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2.3.2. Sentence-BERT Fine-Tuning

S-BERT was fine-tuned using Contrastive Learning to align high-scoring responses
with references while distinguishing mid- and low-scoring ones. The training dataset
comprised positive pairs {(ri, hj,i) | ri ∈ R, hj,i ∈ H} labeled 1.0 and negative pairs
{(ri, mk,i) | ri ∈ R, mk,i ∈ M} labeled 0.0, where M includes mid- and low-scoring
responses. The loss function is as follows:

L = ∑
(x1,x2,y)∈D

max(0, 1 − y · Cos(vx1 , vx2) + ϵ), (4)

where D is the set of training pairs, y ∈ {0, 1} is the label, vx1 , vx2 are sentence embeddings,
and ϵ is a margin (set to 1). The training was conducted for 10 epochs with a batch size of
4 and 5 warmup steps.

2.4. Experimental Setup

The models were implemented using Python’s gensim for Word2Vec and FastText
and sentence-transformers for S-BERT. Fine-tuning was performed on a standard CPU
with 16 GB RAM, leveraging the lightweight nature of the Reference Answer Corpus
(732 tokens). The Mecab analyzer processed texts to extract nouns, ensuring consistency
across models.

2.5. Experiment Setup

We employed Python’s gensim library (version 4.3.3) to train Word2Vec and FastText
models on each of the three corpora. We then applied additional fine-tuning with the
Reference Answer Corpus to assess whether it would improve agreement with human
evaluators. During training, we used extended epochs when corpora were small, ensuring
that the model fully captured the domain-specific vocabulary.

The fine-tuning process for FastText and Word2Vec began with pre-trained models
initially developed using a medical corpus with noun weighting adjustments, as outlined
earlier. For additional training, we constructed a dataset by combining tokenized reference
answers and high-scoring student responses. The reference answers, consisting of expert-
crafted SBAR responses, were sourced from a text file and tokenized using the Mecab
morphological analyzer, isolating the response text from each entry. High-scoring student
responses were extracted from a CSV file containing SBAR answers from 13 students,
with the top three performers identified based on human evaluations. For each high-scoring
student, responses across the four SBAR sections (Situation, Background, Assessment,
Recommendation) were concatenated into a single sentence and tokenized with Mecab.
To prioritize these exemplary responses, they were repeated five times in the training data
and combined with the reference answers.

The training was conducted for an additional 5000 epochs using the gensim library’s
training functionality, with the total number of sentences in the combined dataset defin-
ing the training sample size. Other hyperparameters, such as vector size, window size,
and learning rate, were inherited from the pre-trained models, as the objective was to bias
the embeddings toward the reference and high-scoring data rather than retrain from scratch.
This process was performed on a standard personal computer equipped with a single CPU
and approximately 16 GB of RAM within a Python environment managed by Anaconda.
Given the small dataset size and the lightweight nature of FastText and Word2Vec, no
GPU resources were necessary. The fine-tuned models were saved for subsequent analysis,
enabling reproducible evaluation.
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3. Results
3.1. SBAR Scenario and Data Collection

An assessment involving 13 participants was conducted to evaluate students’ SBAR
communication skills in a pediatric scenario. Each student was presented with a situation
involving a pediatric patient and asked to respond using SBAR (Situation, Background,
Assessment, Recommendation). All participants voluntarily participated in the study after
providing informed consent. Table 1 shows the reference answer used in our experiments.
Students’ textual responses were segmented according to the SBAR structure, and each
response was given a cumulative score based on the cosine similarity to the reference
answer components. A similarity score above a certain threshold (e.g., 60) was considered
a success.

Table 1. Reference answer in a pediatric nursing scenario.

SBAR Contents

Situation

Hello, I am Kim Jiwoo, a nurse in the emergency room. Are you Dr. Choi Junsu? I am
contacting you regarding a 6-year-old boy, Kim Rian, who has a history of asthma and

has been admitted to the emergency room with difficulty breathing, coughing,
and fever symptoms.

Background
The symptoms started a week ago, and he was treated with medication at a local clinic,

but there has been no improvement. He was brought in today due to a fever and
difficulty breathing.

Assessment
Vital signs measurements show a pulse rate of 92 beats per minute and a respiratory rate
of 28. He took an antipyretic two hours ago, but he is still showing symptoms of fever

and difficulty breathing. His SpO2 is checked at 94%.

Recommendation
The child is in a lot of distress, and the guardian wishes to see the primary physician.
Please come quickly to assess the patient’s condition and prescribe medication and

oxygen as necessary.

3.2. Corpus Statistics

Table 2 summarizes the main characteristics of the three corpora: Conversational,
Medical, and Reference Answer. The Conversational Corpus has 2.9 million tokens, while
the Medical Corpus is much larger at 42 million tokens. The Reference Answer Corpus is
small but has a high vocabulary diversity relative to its size.

Table 2. Training corpus characteristics.

Characteristic Conversation Corpus Medical Corpus Reference Answers

Total Tokens 2,922,486 42,093,425 732
Vocabulary Diversity 0.0184 0.0057 0.4249
Number of Sentences 65,117 1,106,104 49

Average Sentence Length 44.88 38.06 14.94
File Size 18 MB 433 MB 8 KB

The experiment’s sample of 13 students, while sufficient for this proof-of-concept,
limits conclusiveness on a larger scale, and future work should incorporate a broader
external test set to validate results beyond this initial dataset.

3.3. Token Frequency and Embedding Analysis

Figure 1 shows the normalized frequency distribution of nouns in both medical and
general corpora, which were analyzed by two different morphological analyzers (Okt and
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Mecab). The 2 × 2 grid comparison reveals distinct noun frequency patterns across different
domains and analyzers.

Figure 1. Comparison of noun frequency distributions across corpora and analyzers, with top
10 nouns translated from Korean to English (e.g., ‘number’, ‘thing’) for accessibility. (Top left) Medical
corpus analyzed by Okt shows frequent functional terms. (Top right) Medical corpus analyzed by
Mecab refines noun extraction. (Bottom left) General corpus analyzed by Okt highlights common
terms. (Bottom right) General corpus analyzed by Mecab shows consistent patterns, supporting
Mecab’s role in training data preparation. Font sizes increased for readability.

The analysis demonstrates significant differences both between corpora and between
analyzers. Processing times notably differed: Okt required 144.86 s for the medical corpus
and 240.43 s for the general corpus, while Mecab completed the same analysis in 8.86 and
31.99 s, respectively. In the medical corpus, we observe domain-specific terminology
dominating the frequency distribution, while the general corpus shows higher frequencies
of everyday vocabulary. Mecab consistently demonstrated faster processing speeds while
maintaining comparable accuracy in noun identification, particularly excelling in medical
terminology analysis. This performance difference suggests Mecab’s potential advantage
for large-scale medical text processing applications.

To visualize how student-response vectors compare under different training condi-
tions, we used dimension-reduction techniques to analyze the SBAR (Situation, Background,
Assessment, Recommendation) sections separately. Figures 2 and 3 show the Word2Vec
and FastText embeddings of student responses for each SBAR section.

To evaluate the effectiveness of our three-stage biasing approach—integrating ref-
erence answers, incorporating high-scoring student responses, and applying domain-
critical token weighting—we analyzed the embeddings of student SBAR responses using
Word2Vec, FastText, and Sentence-BERT models. These models were fine-tuned on a com-
bined corpus comprising general conversational data, medical texts, and the Reference
Answer Corpus, supplemented with high-scoring student responses repeated five times to
emphasize exemplary patterns. The fine-tuning process aimed to shift the embedding space
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such that high-performing student responses align more closely with the reference answers,
enhancing the models’ ability to distinguish between high- and low-scoring responses in a
domain-specific context.

Figure 2. Word2Vec-based dimensionality reduction (t-SNE) of student responses across SBAR
sections with noun count-weighted Cosine Similarity, visualizing clustering proximity to reference
answers (blue star). Average similarities to references: Situation (High: 89.15, Low: 79.75, Diff: 9.40),
Background (High: 79.83, Low: 90.89, Diff: −11.06), Assessment (High: 91.74, Low: 72.79, Diff: 18.95),
Recommendation (High: 84.30, Low: 66.85, Diff: 17.45).

Figures 2–4 visualize the 3D t-SNE projections of student response embeddings
across the four SBAR sections (Situation, Background, Assessment, Recommendation) for
Word2Vec, FastText, and Sentence-BERT, respectively. Each figure depicts high-scoring re-
sponses (green), low-scoring responses (red), and the reference answer (blue star), with clus-
tering reflecting Cosine Similarity weighted by noun counts. The t-SNE algorithm reduces
high-dimensional embeddings (100D for Word2Vec and FastText, 768D for Sentence-BERT)
into a 3D space, providing a spatial representation of semantic similarity.



Electronics 2025, 14, 2240 9 of 15

Figure 3. FastText-based dimensionality reduction (t-SNE) of student responses across SBAR sections
with noun count-weighted Cosine Similarity, illustrating clustering proximity to reference answers
(blue star). Average similarities: Situation (High: 89.10, Low: 79.92, Diff: 9.17), Background (High:
79.97, Low: 90.84, Diff: −10.87), Assessment (High: 91.74, Low: 73.90, Diff: 17.84), Recommendation
(High: 84.73, Low: 64.93, Diff: 19.80).

In Figure 2 (Word2Vec), high-scoring responses generally cluster closer to the reference
answer compared to low-scoring responses, particularly in the Assessment (High: 91.74,
Low: 72.79, Diff: 18.95) and Recommendation (High: 84.30, Low: 66.85, Diff: 17.45) sections.
This indicates that fine-tuning with reference answers and high-scoring responses effec-
tively aligns the embedding space with expert expectations. However, the Background sec-
tion shows an inverse trend (High: 79.83, Low: 90.89, Diff: −11.06), suggesting limitations
in capturing context-specific nuances with Word2Vec’s word-level embeddings, possibly
due to its sensitivity to word co-occurrence patterns rather than structural coherence.
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Figure 3 (FastText) exhibits similar trends, with high-scoring responses achieving
higher similarities in most sections (e.g., Assessment: High 91.74, Low 73.90, Diff: 17.84;
Recommendation: High 84.73, Low 64.93, Diff: 19.80). The positive differences highlight
FastText’s strength in leveraging subword information, enhancing its sensitivity to medical
terminology and morphological variations in the SBAR context. Like Word2Vec, the Back-
ground section shows an inverse pattern (High: 79.97, Low: 90.84, Diff: −10.87), indicating
challenges in modeling background context, potentially due to the diverse phrasing of
student responses.

Figure 4. Sentence-BERT-based dimensionality reduction (t-SNE) of student responses across SBAR
sections with noun count-weighted Cosine Similarity, illustrating clustering proximity to reference
answers (blue star). Average similarities: Situation (High: 91.37, Low: 88.88, Diff: 2.50), Back-
ground (High: 90.65, Low: 92.98, Diff: −2.33), Assessment (High: 94.55, Low: 79.14, Diff: 15.41),
Recommendation (High: 90.61, Low: 76.83, Diff: 13.78).
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In contrast, Figure 4 (Sentence-BERT) shows more consistent clustering, with high-
scoring responses achieving higher similarities in Assessment (High: 94.55, Low: 79.14, Diff:
15.41) and Recommendation (High: 90.61, Low: 76.83, Diff: 13.78). However, the differences
are smaller than those observed with FastText and Word2Vec, particularly in Situation
(Diff: 2.50) and Background (Diff: −2.33). The inverse trend in Background suggests
that Sentence-BERT, despite its contextual embedding capabilities, may prioritize broader
semantic patterns over the structured, domain-specific nuances of SBAR responses. This
could stem from its training on general-purpose corpora, even after fine-tuning, limiting its
ability to fully align with the specialized SBAR format.

Tables 3–5 quantify the impact of fine-tuning on FastText, Word2Vec, and Sentence-
BERT embeddings by comparing cosine similarities before and after biasing for healthcare
trainees’ SBAR responses. Before fine-tuning, using baseline models trained on medi-
cal data, high-scoring responses exhibit greater similarity to the reference compared to
low-scoring ones, though differentiation is moderate. For instance, in the FastText Situa-
tion section (Table 3), high-scoring responses score 86.71, low-scoring 72.97 (Diff: 13.74),
with an average difference of 16.63 across sections. Word2Vec shows similar trends (Table 4),
with Situation scores of High: 87.05, Low: 72.39 (Diff: 14.66), and an average difference
of 17.15. Sentence-BERT (Table 5) yields smaller differences, e.g., Situation High: 92.56,
Low: 91.54 (Diff: 1.02), with an average difference of 5.01, reflecting its broader semantic
focus. After fine-tuning with reference answers, high-scoring responses, and weighted
noun embeddings (emphasizing critical terms like “vital signs” via frequency adjustments),
differentiation improves significantly. For FastText, Situation scores shift to High: 88.21,
Low: 60.65 (Diff: 27.56), with an average difference of 27.38. Word2Vec shows Situation
High: 88.26, Low: 58.11 (Diff: 30.15), with an average difference of 28.20. Sentence-BERT
improves to Situation High: 90.56, Low: 80.78 (Diff: 9.79), with an average difference of
12.61. Notably, Assessment and Recommendation sections show consistent gains across
models (e.g., Word2Vec Assessment Diff: 38.97 to 40.28; FastText Recommendation Diff:
25.86 to 40.70), indicating robust alignment of high-scoring responses with the reference.
These results, scalable to n performance tiers, demonstrate that fine-tuning refines the mod-
els’ semantic understanding of SBAR responses, though the small sample size (13 trainees)
and single pediatric scenario limit generalizability, as discussed in Section 4.

The results in Table 6 reveal several key patterns in the similarity evaluation of student
responses. Students rated as High by both evaluators (e.g., students 05, 06, 08) consistently
exhibit higher similarity scores across all models, with student 05 achieving the highest
scores (Word2Vec: 373.85, FastText: 375.45, Sentence-BERT: 394.40), indicating strong
alignment with the reference answers. Conversely, students rated Low by at least one
evaluator (e.g., students 03 and 09) show varied performance: student 03 scores 0.00 across
all models, suggesting a complete mismatch with the reference, possibly due to missing
or irrelevant responses, while student 09 maintains relatively high scores (e.g., Word2Vec:
348.02, FastText: 348.08), likely due to partial use of relevant medical terminology despite
lower human ratings. Students rated Average generally fall within a moderate range (e.g.,
student 01: Word2Vec 368.05, FastText 367.85), reflecting typical performance aligned with
expected proficiency.

Notably, Sentence-BERT produces higher absolute scores across all students (e.g.,
student 05: 394.40 vs. FastText: 375.45), likely due to its contextual embeddings capturing
broader semantic relationships in full-sentence inputs, compared to the noun-focused,
weighted embeddings of Word2Vec and FastText. Despite these absolute differences,
the relative distinctions between high- and low-scoring students remain consistent across
models, underscoring the robustness of our fine-tuning and domain-specific weighting
approach. These scores form the foundation for correlation analysis with human evalua-
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tions, demonstrating the models’ ability to reflect expert judgments, with FastText showing
particular promise due to its subword modeling capabilities, which enhance sensitivity to
morphological variations in medical terminology.

Table 3. Comparison of FastText average cosine similarities (rounded to two decimal places) between
high-scoring and low-scoring student responses before and after fine-tuning across SBAR sections,
using noun-only embeddings with domain-specific weighting. Before uses the unbiased model for
all responses, and After uses the fine-tuned model for high-scoring responses and is unbiased for
low-scoring responses. Differences (High–Low) are included, complementing Figure 3.

SBAR Section FastText—Before FastText—After

High Low Diff. High Low Diff.

Situation 86.71 72.97 13.74 88.21 60.65 27.56
Background 77.99 89.27 −11.28 76.80 74.29 2.51
Assessment 89.60 51.39 38.21 90.55 51.80 38.75
Recommendation 79.66 53.80 25.86 82.10 41.40 40.70

Avg. Difference 16.63 27.38

Table 4. Comparison of Word2Vec average cosine similarities (rounded to two decimal places)
between high-scoring and low-scoring student responses before and after fine-tuning across SBAR
sections, using noun-only embeddings with domain-specific weighting. Before uses the unbiased
model for all responses, and After uses the fine-tuned model for high-scoring responses and is
unbiased for low-scoring responses. Differences (High–Low) are included, complementing Figure 2.

SBAR Section Word2Vec—Before Word2Vec—After

High Low Diff. High Low Diff.

Situation 87.05 72.39 14.66 88.26 58.11 30.15
Background 76.79 89.16 −12.37 75.58 74.63 0.95
Assessment 88.99 50.02 38.97 90.55 50.26 40.28
Recommendation 79.92 52.59 27.33 81.69 40.27 41.42

Avg. Difference 17.15 28.20

Table 5. Comparison of Sentence-BERT average cosine similarities (rounded to two decimal places)
between high-scoring and low-scoring student responses before and after fine-tuning across SBAR
sections, using noun-only embeddings with domain-specific weighting. Before uses the unbiased
model for all responses, and After uses the fine-tuned model for high-scoring responses and is
unbiased for low-scoring responses. Differences (High–Low) are included, complementing Figure 4.

SBAR Section Sentence-BERT—Before Sentence-BERT—After

High Low Diff. High Low Diff.

Situation 92.56 91.54 1.02 90.56 80.78 9.79
Background 93.08 93.74 −0.66 89.85 84.84 5.01
Assessment 95.53 85.24 10.29 93.93 77.71 16.22
Recommendation 92.94 83.55 9.38 89.11 69.68 19.43

Avg. Difference 5.01 12.61
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Table 6. Results of similarity evaluation for student responses using Word2Vec, FastText, and Sentence-
BERT.

id Eval.1 Eval.2 Word2Vec FastText Sentence-BERT

01 Average Average 368.05 367.85 388.38
02 Average Average 248.66 247.68 281.31
03 Low Average 0.00 0.00 0.00
04 Average Low 312.16 313.59 377.90
05 High High 373.85 375.45 394.40
06 High High 345.61 349.74 388.83
07 Average Average 336.66 337.53 386.65
08 High High 357.51 356.88 384.59
09 Low Low 348.02 348.08 362.24
10 Average Average 306.23 309.22 364.65
11 Average Average 236.58 236.55 281.09
12 Average Average 266.01 266.09 288.47
13 Average Average 355.65 359.26 375.77

4. Discussion
Our study demonstrates that a compact Reference Answer Corpus (49 sentences,

732 tokens; Table 2) can effectively bias lightweight language models like Word2Vec and
FastText, aligning high-performing healthcare trainees’ SBAR responses with reference
vectors, as shown in t-SNE visualizations (Figures 2 and 3). By applying Weighted Noun
Embeddings, where critical medical nouns (e.g., “vital signs”, “oxygen”) were assigned
higher weights (1.5) and less relevant terms (e.g., “measurement”) lower weights (0.001),
and adjusting word frequencies during fine-tuning to emphasize domain-specific terms,
we enhanced model sensitivity to clinical vocabulary. This approach achieved strong
correlations with human evaluations (Table 6), with Word2Vec and FastText showing robust
alignment with Evaluator 1 (r = 0.77 for Reference Corpus), suggesting that minimal
reference data can suffice for structured SBAR tasks in resource-constrained healthcare
training settings.

The inclusion of the Reference Answer Corpus, combined with weighted fine-tuning,
shifted embedding distributions, clustering high-performing trainees’ responses closer to
reference vectors, as evident in visualizations (Section 3.3). Post-biasing, cosine similarity
differences between high- and low-scoring responses increased significantly (Word2Vec:
0.09 to 0.26; FastText: 0.09 to 0.23; Tables 3 and 4), reflecting refined differentiation across
SBAR sections. Sentence-BERT, while producing higher absolute scores (Table 5), showed
smaller differences, indicating its strength in broader semantic patterns but less precision
in capturing SBAR’s structured nuances. Notably, weighted fine-tuning, by amplifying
critical nouns’ frequency, modestly improved differentiation beyond the Medical Corpus
baseline, highlighting the synergy of large-scale and curated datasets.

This proof-of-concept validates biasing lightweight LLMs with small, weighted
datasets for healthcare training, achieving strong alignment with human evaluations across
three performance tiers (High, Average, Low; Table 6). The methodology’s scalability to n
tiers enhances its flexibility for diverse grading schemes, supporting broader educational
applications. However, the study’s scope—relying on a single pediatric scenario with
13 trainee responses (Section 3.1) and a cosine-based metric—limits generalizability.
The small Reference Answer Corpus, while practical, restricts validation across varied
contexts, which is a trade-off prioritizing feasibility in data-scarce settings.

Future research should expand the Reference Answer Corpus beyond 49 sentences
and increase the trainee sample to test scalability across healthcare training domains
(e.g., nursing, allied health). Incorporating external test sets and diverse scenarios would
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validate robustness. Exploring alternative metrics (e.g., Spearman’s rank) and larger or
more complex transformer-based models could further enhance applicability, though our
focus on lightweight models suits resource-limited environments. This study provides a
practical SBAR grading solution with the potential for broader impact through expanded
evaluation, a direction we aim to pursue.

5. Conclusions
This study developed an LLM-based tool to assess SBAR responses from healthcare

trainees using a three-stage biasing approach: integrating reference answers, incorporating
high-scoring responses, and applying domain-critical token weighting. Weighted Noun
Embeddings assigned higher weights (1.5) to key medical nouns and lower weights to irrel-
evant terms. During fine-tuning, word frequencies were adjusted based on these weights
to emphasize domain-specific terms, enhancing clinical relevance. Results show that
Word2Vec and FastText, fine-tuned with a compact Reference Answer Corpus (49 sentences,
732 tokens), effectively aligned automated cosine similarity scores with human evalua-
tions, improving differentiation across three performance tiers (High, Average, Low) for
13 trainees. The Medical Corpus (42 million tokens) ensured domain coverage, while
targeted fine-tuning refined alignment. This approach, scalable to n performance tiers,
offers a practical, objective solution for SBAR grading in resource-limited settings. Future
work should expand the corpus and sample size and explore contextual models for broader
healthcare training applications.
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