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Abstract: The ever-growing number of cyber attacks in today’s digitally interconnected
world requires highly efficient intrusion detection systems (IDSs), which accurately identify
both frequent and rare network intrusions. One of the most important challenges in IDSs
is the class imbalance problem of network traffic flow data, where benign traffic flow
significantly outweighs attack instances. This directly affects the ability of machine learning
models to identify minority class threats. This paper is intended to evaluate various
machine learning algorithms under different levels of class imbalances, using resampling
as a strategy for this problem. The paper will provide an experimental comparison by
combining various algorithms for classification and class imbalance learning, assessing the
performance through the Fl-score and geometric mean (G-mean). The work will contribute
to creating robust and adaptive IDS through the judicious integration of resampling with
machine learning models, thus helping the domain of cybersecurity to become resilient.

Keywords: intrusion detection; machine learning; class imbalance; classification; network
security

1. Introduction

In today’s technology-driven world, where industries heavily rely on computers and
the Internet, securing information is a priority. One crucial aspect of information security is
enhancing the ability to identify cyber threats effectively, which calls for the development
of IDS. These systems are built to analyze network traffic data and raise an alarm whenever
an intrusion is detected. However, a major hurdle is the imbalance between the volume of
network traffic data and the relatively few instances of potential attacks. This imbalance
also affects established benchmark datasets, making it challenging for the machine learning
and deep learning algorithms used in IDS.

When dealing with imbalanced training data, models often excel in identifying traffic
(i.e., majority class) but struggle with spotting instances of potential attacks (i.e., minority
class). This problem becomes more pronounced in scenarios involving classes where
rare attack types might be misclassified as other common attack types. In the realm of
cyber security and network traffic analysis, pinpointing minority attack cases holds more
importance than simply identifying regular data.

Researchers have put forward strategies such as resampling techniques to tackle
performance issues stemming from imbalanced datasets. Various methods such as Random
Under Sampling (RUS), Random Over Sampling (ROS), the Adaptive Synthetic Sampling
Method (ADASYN) [1], and a combination of both Synthetic Minority Oversampling
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Techniques (SMOTEs) [2] are used to balance the distribution of classes. They achieve this
by increasing the instances of the minority class or reducing those of the majority class.

The rapid advancement in communication technologies such as 5G and the Internet
of Things (IoT) has resulted in a surge in network traffic, leading to an increased risk of
network breaches. IDSs are a component of organizational cybersecurity infrastructures.
They monitor network activities and identify behavior that may indicate security breaches.
IDSs can be classified into Network IDSs (NIDSs) and Host IDSs (HIDSs), with NIDSs
focusing on analyzing data from the network.

IDSs play a role in establishing defense measures against potential threats to ensure
the security, privacy, and availability of network resources. They are broadly categorized
into signature-based detection, which detects known threat patterns, and anomaly-based
detection, which identifies network behaviors as threats by establishing a baseline normal
behavior pattern. However, one significant challenge faced in implementing IDS is dealing
with imbalanced training datasets.

The evolving landscape of cybersecurity threats underscores the need for intelligent
IDS that can outsmart potential attackers. While traditional signature-based IDS excel in
spotting known threats, they struggle with emerging attacks. This challenge highlights the
significance of anomaly-based detection methods, which can identify deviations from net-
work behavior patterns. However, these approaches often face challenges, with a number
of identifications making it even more complex to uphold a secure network environment.
By utilizing machine learning and artificial intelligence, IDSs can enhance their ability
to detect threats by learning from data to recognize patterns and anticipate future risks.
This strategy does not only boost the precision of threat identification but also aids in
minimizing the occurrence of false alarms that commonly affect anomaly-based systems.

In response to the changing cybersecurity landscape marked by emerging risks and
vulnerabilities, IDSs must evolve by integrating detection techniques and drawing insights
from previous security incidents. Machine learning and artificial intelligence serve as
assets in bolstering IDSs” capabilities by empowering them to learn from information,
identify patterns, and forecast potential cyberattacks. This research contributes to this
progression through an evaluation of diverse machine learning methods in varying data
imbalance scenarios.

This study focuses on overcoming class imbalance in IDS datasets and assessing the
effectiveness of machine learning methods. The goal is to enhance intrusion detection
systems’ efficiency and resilience, offering insights for cybersecurity professionals and
researchers. To do so, this study thoroughly evaluates the effectiveness of IDS techniques
under various ratios of class imbalance (e.g., 1:10, 1:100, 1:500, and 1:1000). The machine
learning methods investigated include Random Forest, Decision Tree, KNN, MLP, Naive
Bayes, Weighted Decision Tree, Easy Ensemble, AdaBoostCost, Under OverBagging, and
RUSBoost. Performance measures such as Fl-score and G-mean are utilized to offer an
evaluation of each technique’s ability to detect intrusions. Beyond tackling the class
imbalance issue, this study delves into how various resampling techniques impact the
performance of IDS. By combining resampling approaches with machine learning models,
this research aims to build resilient and dependable intrusion detection systems that are
capable of effectively handling diverse and dynamic network environments.

The remainder of this paper is organized as follows. Section 2 reviews preliminaries
and related works. Section 3 presents the problem statement and introduces the case study
used in this study. Section 4 overviews the utilized methods and other relevant techniques
for mitigating class imbalance. Section 5 explains the experimental setup and then reports
and analyzes the experimental results. Finally, the paper is concluded in Section 6.



Electronics 2025, 14, 69

30f19

2. Background

This section presents the literature review and explains the preliminaries required for
this study.

2.1. Intrusion Detection Systems

In the realm of network security, the IDS serves a function by pinpointing unauthorized
or malicious activities and facilitating swift responses. As shown in Figure 1, an IDS can be
classified based on factors such as data origin, system structure, and detection techniques.

[ Taxonomy of Intrusion Detection Systems(IDS)
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Figure 1. Taxonomy of different IDS categories.

Familiarity with these groups is vital for choosing and implementing a suitable solu-
tion to meet specific network security needs.

2.1.1. Data Source and Implementation

NIDSs are highly effective for identifying threats such as Distributed Denial of Service
(DDoS) attacks, attempts by malicious actors to intercept communication, and scanning
of network ports by analyzing patterns in data traffic. These systems are strategically
positioned to provide coverage, although they may face challenges when dealing with en-
crypted data and generating a large volume of information that needs advanced processing
capabilities. Despite these obstacles, NIDSs [3] play a role in monitoring large network
environments in real-time.

Hybrid IDSs combine the features of both HIDSs and NIDSs [4] by merging insights
from individual hosts with a comprehensive view [5] of network activities. This integrated
approach boosts the detection rate by linking events across hosts and networks, making
them effective against multi-stage cyber attacks. However, deploying and managing an
IDS requires meticulous integration and coordination due to their complexity.

2.1.2. Architecture and Placement Strategy

The effectiveness of IDS is significantly influenced by their architecture and placement
within the network. IDSs can be centralized, distributed, or hybrid in nature. Centralized
IDSs consolidate monitoring data into a location for analysis, streamlining management
tasks and offering a broad perspective on network security. Nevertheless, they may face
scalability issues, but they serve as a potential single point of failure in larger networks.
Centralized systems are particularly suitable for environments requiring data correlation
to detect advanced threats. Distributed IDSs operate on independent systems spread
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across different network segments. Each system monitors traffic and alerts about any
suspicious activities. This decentralized approach improves scalability and eliminates the
risk of a single point of failure found in centralized systems. Distributed IDSs work well in
segmented networks, providing local insights and quicker detection, though they require
more intricate management and coordination.

Hybrid IDS architectures strike a balance between distributed systems by combining
their advantages. In this setup, detection tasks are divided among nodes, while a central
system handles data aggregation and analysis. This configuration offers scalability along
with analysis, making it effective against complex threats. Hybrid architectures are suitable
for environments with security needs due to their adaptable deployment options.

2.1.3. Detection Methods

Signature-based detection relies on comparing data with a database of known threat
patterns to identify potential security risks. This approach is particularly good at recognizing
attacks [6]. Popular tools such as SNORT and Suricata, which use pattern matching algorithms,
are favored for their accuracy and low false alarm rates. However, while signature-based
methods excel at spotting known threats, they may struggle with detecting emerging dangers,
underscoring the importance of regularly updating the signature database.

Hybrid detection techniques blend the advantages of both anomaly-based and
signature-based strategies. These systems pinpoint recognized threats through signature
matching while also uncovering unfamiliar attacks through anomaly analysis, providing a
comprehensive shield against cyber threats [7]. Albeit effective, these solutions demand
careful integration and continuous oversight to maximize their effectiveness.

2.2. Data-Driven IDS

The advancement of technology has led to a growing dependence on data-driven
and Al-based techniques for analyzing datasets and identifying patterns that could signal
potential cyber threats. Al-based IDSs can be categorized into several groups, as depicted
in Figure 2. Each of these approaches contributes uniquely to improving the effectiveness

e
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Figure 2. Categorization of Al-Based IDSs [8].
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2.2.1. Unsupervised Learning

Unsupervised learning is used to automatically find patterns and associations in
data without standalone labeling. In such methods, data points of a similar nature are
clustered together so that the outliers in the system can be identified. This approach is
particularly suitable for unknown threat detection. For instance, K-means clustering is
used to analyze data based on its similarity. By doing so, individual anomalies may not
fit into any cluster and be flagged as outliers. This ability becomes essential when dealing
with new threats that do not exist in the training data distribution. Neural network-based
unsupervised learners such as Autoencoders can also be used for anomaly detection by
compressing the input representation into a lower-dimensional space and reconstructing
it. The reconstruction error is analyzed to identify deviations from normal patterns of
logs, indicating potential intrusions [9]. Despite the potency of unsupervised learning, it
poses several challenges such as identifying the correct number of clusters and handling
high-dimensional data. Regardless, it enables the IDS to detect threats that have not been
observed before and so is a crucial part of a modern IDS.

2.2.2. Supervised Learning

On the other hand, supervised learning relies on labeled datasets to train models for
recognizing the correlation between input features and their corresponding outputs. This
approach effectively identifies attack patterns similar to the prior knowledge at the time of
the training. Approaches such as Support Vector Machines (SVMs), Decision Trees, and
Neural Networks are examples of this category that are commonly used in IDS.

2.2.3. Deep Learning

Deep learning uses neural networks with a large number of layers to learn features
automatically and recognize complicated patterns from a huge volume of data. For instance,
CNNs are appropriate for image and spatial data, while RNNs are applied in various
sequential data analyses [10]. Particularly, CNNs are effective in image-based analysis and
can accurately find the spatial features in images or other grid-structured data, such as
network traffic. That is why modern IDSs are able to find many patterns and anomalies
which could be hidden by the use of traditional approaches. On the other hand, compared
with RNN, the capability of CNNss in catching temporal variations is limited because CNNs
rely on the snapshot representation of log or flow states without any time-series information.
As a result, their anomaly detection is achieved for isolated time frames only, though
many real-world problems rely on finding patterns across more than one consecutive
timestamp [11]. However, despite the advantages of deep learning models, they are limited
in that they require very large-sized training datasets and computational resources.

2.2.4. Semi-Supervised Learning

Semi-supervised learning generally uses a small amount of labeled data with a large
pool of unlabeled data, which comes in handy when labeled data are not enough compared
with enormous unlabeled data [12]. Using both types of data, models derived from semi-
supervised learning can achieve higher accuracy and robustness [13]. The other major
advantage of this approach is the improvement in model accuracy and generalization
without essentially requiring large labeled datasets, which makes it promising for practice.
This is very helpful in intrusion detection, since labeled data are difficult to obtain. Semi-
supervised algorithms within this domain can generally detect both known and unknown
threats effectively by leveraging labeled data and augmenting it with a smaller amount of
unlabeled data.
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2.2.5. Hybrid Learning

The hybrid model utilizes a combination of various learning techniques to hone its
detection edge. For instance, a combination of supervised, unsupervised, and various cate-
gories of neural networks can increase robustness and accuracy in intrusion detections [7].
Hybrid models employ the power of each technique, creating a holistic solution for discov-
ering both known and unknown threats. The high accuracy of supervised methods and
the versatility of unsupervised models are embodied in the hybrid to provide a win-win
scenario that combines both types. One standard approach is to use supervised learning
(e.g., classify known attacks) in conjunction with unsupervised learning (e.g., detection of
novel threats, etc.).

3. Problem Statement

One of the prevalent challenges in NIDS is related to the class imbalance problem that
is targeted in this work. Addressing the class imbalance is crucial in network intrusion
detection, as real-world datasets tend to follow certain patterns; the vast majority of network
traffic is routine, with only a small fraction representing attack-related incidents [14]. This
imbalance skews model predictions, making it difficult to detect rare but critical types of
attacks, such as user-to-root (U2R) and remote-to-local (R2L) intrusions. With high ratios
of normal-to-attack samples, this issue demands attention to restore balance and improve
detection capabilities.

Class imbalance often increases false negatives, where attack instances are mistakenly
classified as normal traffic patterns [15]. Models trained on imbalanced data tend to overfit
to the majority class, optimizing for overall accuracy while failing to detect the rare attack
cases. To mitigate this, it is essential to address the bias towards the majority class and
accurately represent the minority class, ensuring that the model is equipped to identify
these uncommon but significant threats.

Most conventional methods are designed to consider an equal number of class samples
in the training data. Thus, the IDSs that do not use class imbalance learning must be
handled with extreme care. This is because these models fail to detect minority-class
attacks efficiently. To address this, class imbalance learning techniques such as SMOTE
and ADASYN are usually used to artificially extend the available data. Ensemble and
hybrid models go further and enhance the performance of the skewed datasets. However,
due to evolving cyber threats, for effective performance, an IDS model should possess
the ability to resample and make cost-sensitive decisions to counteract new and emerging
threats [16,17].

Case Study

This study simulates four scenarios by inducing four different ratios of class imbalance
in the CIC-DDo0S2019 dataset. The considered imbalance ratios are 1:10, 1:100, 1:500, and
1:1000, indicating the existing number of major samples in proportion to one minority
sample. In this dataset, the minority class contains benign samples, whereas the major
class includes adversarial samples (Dr_DOS_DNS). The datasets consist of features each
representing an attribute of the data points. Features in this dataset are listed and described
in Table 1.

The CIC-DD0S2019 dataset has been specifically designed to be representative of
real-world network traffic distributions, with severe class imbalance, comprising more
than 50 million DDoS attack records and fewer than 57,000 benign instances. The dataset
includes timestamps for all network flow records; thus, temporal correlations remain intact,
which is vital for studying attack patterns and developing models that are sensitive to
sequence and timing.
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Table 1. Attributes of the network flow that are used in the CIC-DD0S2019 dataset.

Field

Description

Flow ID

Identifier for network flows, helping with tracking and analyzing sessions.

Source IP and Destination IP

Source and destination IP addresses for routing the network traffic.

Source Port and Destination Port

These denote the ports utilized by the source and destination.

Protocol

Indicates the network protocol used in a flow, such as TCP, UDP, or ICMP.

Timestamp

The time when the flow is observed.

Flow Duration

The overall duration of the flow, which can reveal the nature of communication.

Total Fwd Packets and Total Backward Packets

The count of sent packets in each direction offering insights into traffic volume.

Total Length of Fwd Packets and Total Length
of Bwd Packets

The size of packets in the backward directions aiding in understanding data
volume and potential content.

Fwd Packet Length Max/Min/Mean/Std and
Bwd Packet Length Max/Min/Mean/Std

These metrics give insights into sizes in both directions assisting in
detecting anomalies.

Flow Bytes/s and Flow Packets/s

The rate at which bytes and packets are transmitted per second, indicating usage
and flow intensity.

Flow IAT Mean/Std /Max/Min

The average, deviation, maximum, and minimum inter-arrival times of the flow
indicate its burstiness and regularity.

Fwd IAT Total/Mean/Std /Max/Min and Bwd
IAT Total/Mean/Std /Max/Min

Similar statistics for inter-arrival times in both forward and backward directions.

Fwd PSH Flags and Bwd PSH Flags

Determines whether data should be pushed immediately.

Fwd URG Flags and Bwd URG Flags

The TCP packets with flags indicate the data of utmost importance.

Fwd Header Length and Bwd Header Length

Understanding the length of headers in both forward and backward packets is
essential for grasping the intricacies of overhead and protocol details.

Fwd Packets/s and Bwd Packets/s

The rate at which packets are transmitted in both directions.

Min Packet Length and Max Packet Length

The recorded packet lengths in the flow vary from the smallest to the largest
observed lengths.

Packet Length Mean/Std /Variance

Statistical measures of packet length, providing insights into the consistency and
variability of packet sizes.

FIN Flag Count, SYN Flag Count, RST Flag
Count, PSH Flag Count, ACK Flag Count, URG
Flag Count, CWE Flag Count, ECE Flag Count

Counts of various TCP flags, which are crucial for understanding the control
mechanisms of the TCP connections.

Down/Up Ratio

The ratio of download to upload, indicating the balance of traffic direction.

Average Packet Size

The average size of packets in the flow.

Avg Fwd Segment Size and Avg Bwd
Segment Size

The average size of segments in forward and backward directions.

Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk,
Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk,
Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate

Bulk statistics for forward and backward directions, indicating bulk data
transfer patterns.

Subflow Fwd Packets and Subflow Fwd Bytes,
Subflow Bwd Packets and Subflow Bwd Bytes

Subflow statistics, which can help in breaking down larger flows into
manageable parts for detailed analysis.

Init_Win_bytes_forward and
Init Win_bytes_backward

Initial window sizes for forward and backward directions, which are important
for understanding the flow control mechanisms.

act_data_pkt_fwd and min_seg_size_forward

Active data packets in the forward direction and minimum segment size.

Active Mean/Std /Max/Min and Idle

Active and idle times for the flow, providing insights into the flow’s

Mean/Std/Max/Min activity patterns.

SimillarHITTP Indicates 51m11a'r1ty to HTTP traffic, which is useful for identifying
web-based traffic.

Inbound Indicates whether the traffic is inbound.

Label The class label (e.g., BENIGN or DrDoS_DNS).
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4. Class Imbalance Learning

Class imbalance learning (CIL) bears the responsibility of handling the classification
scenarios that engage overwhelming instances of one class compared to the rest. CIL
taxonomy includes techniques on three levels: the data, algorithm, and hybrid level [18,19].
Data-level procedures seek to create a balance in the dataset before the model is trained
by increasing the instance of the minority class or decreasing the incidence of the majority
class [20]. Algorithmic strategies reconfigure the learning strategies in such a way that they
are less biased towards the majority category. The hybrid strategy imitates all the strategies
by utilizing the merits of the two strategies.

4.1. Algorithm-Level

Algorithm-level techniques modify existing algorithms or the process of handling
imbalanced data. These methods incorporate the class imbalance directly into the model
training process. One of the ways to achieve this is through cost-sensitive approaches
whereby there are distinct misclassification costs for the minority and majority classes. This
ensures that the process of learning corrects more on the minority class errors, thus making
the model to be more sensitive to instances of the minority class. Weighted decision trees
and extended cost-sensitive methods, such as AdaCost [21] among others, also excel in this
category [22].

Ensemble methods, such as RUSBoost [23] and SMOTEBoost [24], combine multiple
weak classifiers for improved prediction accuracy [25]. Algorithms like EasyEnsemble
and BalanceCascade target previously misclassified or hard-to-classify samples as part of
model training to boost the overall detection accuracy [26]. Other interesting approaches
that combine cost-sensitive learning with ensemble strategies are EasyEnsemble and Bal-
anceCascade, which also have the ability to improve the identification of minority class
instances. These techniques find a good trade-off between the sensitivity of the minority
class and overall classification accuracy. The introduction of deep learning models such as
generative adversarial networks has also contributed to enhancing the perceptive power of
such unpopular classes [27].

4.2. Data Level

To remedy the issue of class imbalance, there are methods of data pre-processing
that attempt to balance the dataset. Some of these tools such as SMOTE, ADASYN, and
ROS are schemes for sampling where the synthetic observations are prepared for the
underrepresented class [28]. Another approach is RUS [29], which excludes samples from
the overrepresented set at random to create balance in data [30]. These methods may also
be integrated into more hybrid ones, such as SMOTEENN (SMOTE with Edited Nearest
Neighbors) and SMOTETomek, which not only balance the classes but also clean the
dataset of noisy samples [31]. Class imbalance in IDS is mostly addressed using data-level
techniques [32]. However, using these methods may result in introducing noise to the data.

The SMOTE family of methods, or Borderline-SMOTE and Safe-Level-SMOTE, have
been derived to resolve the challenges of class imbalance. Borderline-SMOTE deals with
samples that are located around the decision zone, whereas Safe-Level-SMOTE deals with
the target by sampling at appropriate levels, and Safe-Level-SMOTE deals with the target by
sampling at appropriate levels. Another approach is offered by ADASYN, which increases
the rate of generating extra samples in the area where the ratio of the minority class is low.
This rate increase is aimed at improving classifier performance on imbalanced datasets, as
it tends to focus on more difficult-to-classify areas.
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4.3. Cost-Sensitive

Cost-sensitive learning is a crucial aspect of handling class imbalance at the algorithm
level. It concerns the issue of classifying the instances of different classes correctly by
putting priority or cost on false positives and false negatives. The method employs the
use of a cost matrix, which states how costly information misclassification is so that the
system will direct its learning process to concentrating on reducing the errors of the high
cost. Common cost-sensitive techniques include MetaCost, AdaCost, AdaC1, and AdaC2.
These techniques seek to minimize the decision threshold from the classifiers given a cost
matrix and include cost-sensitive SVMs and decision trees [33]. Cost-sensitive boosting
approaches such as AdaC2 and CSB2 have also been introduced, where the direct boosting
procedure is modified to allow for cost embedding in the boosting process. These methods
make the classifier more focused on the minority class and therefore help the classifier in
the successful classification of minority samples, even when the dataset is very skewed.

4.4. Hybrid

The exchange of the cost-sensitive and data sampling strategy in a hybrid approach
aims to utilize the assets and weaknesses of each minimization technique. These methods
generally involve initial treatment of the data to balance the classes and then apply a
cost-sensitive or adaptive strategy to the altered dataset. Hybrid approaches can provide a
more robust solution to class imbalance by addressing the issue from multiple angles [34].
Techniques such as SMOTEBoost, RUSBoost, and EasyEnsemble leverage both re-sampling
and boosting to enhance the detection capabilities of classifiers.

Recent advancements in hybrid methods include the integration of ensemble tech-
niques with re-sampling methods to create more robust models. For instance, methods
similar to RUSBoost combine RUS with boosting to enhance the model’s performance
on imbalanced datasets. These approaches leverage the strengths of multiple techniques,
providing a more comprehensive solution to the challenges posed by class imbalance.

5. Experimental Results

This section first explains the experimental setup and then proceeds to evaluating and
analyzing the obtained results.

5.1. Experimental Setting

The dataset utilized in this study comprises various features representing different
aspects of network traffic. Each column in the dataset holds specific information that
contributes to the comprehensive analysis of network behavior.

5.1.1. Scenarios

Various ratios of imbalances are investigated to gain insight into the topic. Different
degrees of imbalance can influence how well the model performs in scenarios. The ratios
examined in this research are 1:10, 1:100, 1:1500, and 1:1000. Table 2 reports the class
population for cross-validation splits over different scenarios.

Table 2. Population of samples in the cross-validation splits.

Ratio Benign Samples Dr_DoS_DNS Total Samples Training (90%) Testing (10%)
1:10 1644 16,443 18,087 16,278 1809
1:100 3222 328,691 331,913 298,721 33,192
1:500 3223 1,634,044 1,637,267 1,473,540 163,727
1:1000 3223 3,246,951 3,250,174 2,925,157 325,017
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1. 1:10 Ratio: In this scenario, for every 1 instance of the minority class, there are 10 in-
stances of the majority class. The dataset has 1644 BENIGN samples and 16,443 Dr-
DoS_DNS samples.

2. 1:100 Ratio: At a 1 to 100 ratio, for every 1 instance of the minority class, there
are 100 instances of the majority class. The dataset has 3222 BENIGN samples and
328,691 DrDoS_DNS samples.

3. 1:500 Ratio: With a 1 to 500 ratio, the imbalance is quite high. The dataset has
3223 BENIGN samples and 1,634,044 DrDoS_DNS samples.

4. 1:1000 Ratio: This ratio is extremely imbalanced, where for every 1 instance of
the minority class, there are 1000 instances of the majority class. The dataset has
3223 BENIGN samples and 3,246,951 DrDoS_DNS samples.

5.1.2. Data Processing

The data processing phase involves several crucial steps to prepare the data for
machine learning model training. Initially, redundant features such as “‘Unnamed: 0’, ‘Flow
ID’, ‘Source IP’, ‘Destination IP’, and “Timestamp” are removed to reduce noise in the dataset.
Constant features, which provide unuseful information for the model, are also dropped.
The dataset is then cleaned by handling missing values and removing duplicate entries.

Next, non-numeric columns are encoded using one-hot encoding, specifically for the
‘SimillarHTTP’ column. This transformation converts categorical variables into a format
suitable for machine learning algorithms. Infinite values are replaced with NaNs, and
subsequently, these NaNs are dropped to ensure data integrity.

The dataset is then split into features (X) and the target variable (y). The target labels
are encoded using LabelEncoder to convert them into numeric form. StandardScaler is
applied to scale the features, ensuring that each feature contributes equally to the model.
Feature selection is performed using SelectKBest with the ANOVA F-test (f _classif) to
select the top 20 most important features, which helps in improving model performance
and reducing overfitting.

5.1.3. Model Training

The model training phase involves initializing various classifiers, including Random
Forest, KNN, Decision Tree, Naive Bayes, and MLP. Each classifier is evaluated with differ-
ent resampling techniques to handle class imbalances effectively. The utilized resampling
techniques are RUS, ROS, SMOTE, and ADASYN.

A 10-fold stratified cross-validation is employed to ensure robust and unbiased model
evaluation. The classifiers are trained and evaluated within each fold of the cross-validation.
Hyperparameter tuning is performed for certain models using GridSearchCV and Random-
izedSearchCV to find the best parameters. The obtained parameter setting that leads to
optimal performance is reported in Table 3.

Table 3. Parameter setting used for the employed algorithms. #. indicates the quantity.

Algorithm Parameter Setting

AdaBoostCost 4:1 geosgi?litloisszA Ilvii/,l }lEearning rate = 0.8387,

Weighted Decision Tree fﬂlg}s]s weight = [{0: 100, 1: 1}, {0: 10, 1: 1}, {0: 1, 1: 1}, {0: 1, 1: 10}, {0: 1, 1:
EasyEnsemble li:.l 1e;]stima’cors = (50, 500), sampling strategy = [‘auto’, ‘not minority’,
RUSBoost #. estimators = 50, learning rate = 0.1,

base estimator = decision tree
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Table 3. Cont.

Algorithm Parameter Setting

UnderOverBagging ll:;:’;isrenator = decision tree, sampling strategy = ‘auto’, replacement =
SMOTEBoost #. estimators = 87, learning rate = 0.4262, estimator = decision tree
Random Forest #. estimators = 100, resampling methods = rus, ros, smote, adasyn
KNN k = 3, Resampling methods = rus, ros, smote, adasyn

Decision Tree Resampling methods = rus, ros, smote, adasyn

Naive Bayes Resampling methods = rus, ros, smote, adasyn

MLP Max iter = 300, resampling methods = rus, ros, smote, adasyn

Specialized classifiers, namely AdaBoostCost, Weighted Decision Tree, RUSBoost,
Under Over Bagging, EasyEnsemble, and SMOTEBoost, are also trained and evaluated.
These classifiers are specifically designed to handle class imbalances and improve the
performance of the model on imbalanced datasets.

5.1.4. Evaluation

The evaluation phase involves calculating various performance metrics to assess
the models’ effectiveness. Metrics such as Fl-score and G-mean are calculated for each
model. Confusion matrices are also generated to provide insights into the models’
classification performance.

Results from the cross-validation folds are aggregated and analyzed. Class-specific
results are printed to show the performance of each classifier on individual classes. This
detailed evaluation helps in understanding how well each model performs and which
resampling techniques are most effective.

Visualization techniques, such as box plots, are used to compare the performance
of different models and resampling methods. These visualizations provide a clear com-
parison of the models” performance across various metrics, helping in identifying the
best-performing models and techniques.

5.2. Results” Analysis

At a 1:10 imbalance ratio, most techniques achieve high Fl-scores with minimal
variation. Techniques such as Random Forest+SMOTE and Random Forest (ADASYN)
perform exceptionally well, both achieving perfect F1-scores of 1.000 & 0.0000. Decision
Tree (ADASYN) and KNN (ROS) also score close to 1.000, showcasing their effectiveness in
handling moderate imbalance. The box plot in Figure 3 illustrates tight clusters, indicating
consistent performance across these methods. The results are also detailed in Table 4 in
terms of Fl-score.

In terms of G-Mean, SMOTEBoost, Under Over Bagging, and EasyEnsemble lead with
near-perfect scores, as shown in Table 5. The minimal spread in the box plot (Figure 3)
further underscores their stability in managing a 1:10 class imbalance.

As the imbalance increases to 1:100, F1-scores remain high, but variability starts to
appear. Random Forest (SMOTE) and Decision Tree (ADASYN) continue to perform well,
though methods such as Naive Bayes (ROS) begin to show a slight performance decline.
Despite this, MLP (ROS) and EasyEnsemble maintain robustness, with only minor drops in
F1-scores, as shown in Figure 4.
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Figure 3. Recorded F1-score and G-mean for all methods with a 1:10 imbalance ratio.

Table 4. Ranked F1-Score for different techniques at 1:10, 1:100, 1:500, and 1:1000 imbalance ratios.

Rank Technique 1:10 Ratio 1:100 Ratio 1:500 Ratio 1:1000 Ratio

1 éaMn%OTrg)ForeSt 1.0000 + 0.0000 (1) 0.9997 + 0.0004 (1) 1.0000 + 0.0000 (1) 1.0000 + 0.0000 (1)
Random Forest

1 ADASYN) 1.0000 £ 0.0000 (1) 0.9997 & 0.0004 (1) 1.0000 = 0.0000 (1) 1.0000 = 0.0000 (1)
Decision Tree

1 (ADASYN) 1.0000 =+ 0.0000 (1) 0.9997 + 0.0004 (1) 1.0000 + 0.0000 (1) 1.0000 =+ 0.0000 (1)

2 KNN (ROS) 0.9999 - 0.0001 (2) 0.9997 =+ 0.0004 (1) 1.0000 = 0.0000 (1) 1.0000 = 0.0000 (1)

2 KNN (ROS) 0.9999 + 0.0001 (2) 0.9997 + 0.0004 (1) 1.0000 + 0.0000 (1) 1.0000 + 0.0000 (1)

2 MLP (RUS) 0.9999 + 0.0001 (2) 0.9997 + 0.0004 (1) 1.0000 = 0.0000 (1) 1.0000 = 0.0000 (1)

2 g:;ghtedDemlon 1.0000 + 0.0000 (1) 0.9997 + 0.0005 (2) 1.0000 + 0.0000 (1) 1.0000 + 0.0000 (1)

3 MLP (ROS) 0.9999 =+ 0.0000 (3) 0.9997 + 0.0004 (1) 1.0000 =+ 0.0000 (1) 1.0000 = 0.0000 (1)

3 MLP (ADASYN) 0.9999 = 0.0000 (3) 0.9997 & 0.0004 (1) 1.0000 = 0.0000 (1) 1.0000 == 0.0000 (1)

4 giffosl;’g)me 1.0000 4 0.0000 (1) 0.9997 + 0.0004 (1) 0.9999 + 0.0000 (2) 0.9998 + 0.0001 (3)

5  MLP (SMOTE) 0.9999 - 0.0000 (3) 0.9996 & 0.0004 (3) 1.0000 = 0.0000 (1) 1.0000 = 0.0000 (1)

6  Decision Tree (ROS)  0.9999 - 0.0000 (3) 0.9997 + 0.0004 (1) 0.9999 + 0.0000 (2) 0.9998 + 0.0001 (3)
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Table 4. Cont.
Rank Technique 1:10 Ratio 1:100 Ratio 1:500 Ratio 1:1000 Ratio
6  Random Forest (ROS)  0.9999 + 0.0000 (3) 0.9996 + 0.0004 (3) 0.9999 + 0.0000 (2) 1.0000 + 0.0000 (1)
7 KNN (SMOTE) 0.9999 + 0.0001 (2) 0.9996 + 0.0004 (3) 0.9999 + 0.0000 (2) 0.9997 + 0.0002 (4)
7 KNN (RUS) 0.9999 + 0.0001 (2) 0.9997 & 0.0004 (1) 0.9992 + 0.0006 (6) 0.9999 + 0.0002 (2)
7 KNN (ADASYN) 0.9999 + 0.0001 (2) 0.9996 + 0.0004 (3) 0.9996 + 0.0002 (4) 0.9999 + 0.0002 (2)
8  AdaBoostCost 0.9999 + 0.0000 (3) 0.9992 + 0.0014 (6) 0.9999 + 0.0000 (2) 0.9999 + 0.0000 (2)
9 UnderOverBagging  0.9999 & 0.0000 (3) 0.9995 & 0.0006 (4) 0.9998 + 0.0001 (3) 0.9996 + 0.0002 (5)
9  EasyEnsemble 0.9999 + 0.0000 (3) 0.9994 + 0.0008 (5) 0.9998 + 0.0001 (3) 0.9997 + 0.0002 (4)
9  RUSBoost 0.9997 + 0.0001 (5) 0.9996 + 0.0004 (3) 0.9998 + 0.0001 (3) 0.9997 + 0.0002 (4)
9 gla\j[‘g%a)yes 0.9998 + 0.0001 (4) 0.9915 + 0.0040 (8) 1.0000 + 0.0000 (1) 0.9999 + 0.0000 (2)
10 SMOTEBoost 0.9998 + 0.0001 (4) 0.9995 + 0.0006 (4) 0.9996 + 0.0002 (4) 0.9997 + 0.0002 (4)
11 Decision Tree (RUS)  0.9996 + 0.0002 (6) 0.9996 & 0.0004 (3) 0.9999 + 0.0000 (2) 0.9994 =+ 0.0002 (7)
12 Random Forest (RUS)  0.9999 + 0.0000 (3) 0.9992 + 0.0012 (7) 0.9995 + 0.0002 (5) 0.9995 + 0.0002 (6)
13 Naive Bayes (RUS) 0.9993 + 0.0002 (7) 0.9888 + 0.0044 (9) 0.9980 + 0.0004 (8) 0.9985 + 0.0004 (8)
14 Naive Bayes (ROS) 0.9887 =+ 0.0008 (8) 0.9854 & 0.0044(11)  0.9985 - 0.0004 (7) 0.9985 =+ 0.0004 (8)
Naive Bayes
15 ADASYN) 0.9818 + 0.0012 (9) 0.9876 + 0.0040(10)  0.9911 = 0.0009 (9) 0.9981 + 0.0008 (9)

At a 1:500 ratio, the performance gap widens among techniques. While Random
Forest (SMOTE) and Random Forest (ADASYN) maintain strong performance, others, like
Decision Tree (ROS) and KNN (ADASYN), show increased variability (Figure 5). Despite
the challenges, MLP (ROS) and EasyEnsemble continue to deliver consistent results.

Finally, at the extreme 1:1000 ratio, the difficulty of managing such imbalance becomes
clear. Although Random Forest (SMOTE) and Random Forest (ADASYN) still achieve high
F1-scores, techniques such as Naive Bayes (ROS) and KNN (ADASYN) exhibit significant
drops, as evidenced in Figure 6. However, methods such as Weighted Decision Tree
maintain commendable stability, suggesting their resilience under severe imbalance.

For G-Mean, techniques such as SMOTEBoost and RUSBoost remain competitive,
though variability increases, especially for methods like Naive Bayes (SMOTE) (Figure 6).
Despite the heightened difficulty, Under Over Bagging and EasyEnsemble manage to retain
high G-Means, reflecting their robustness in handling severe data imbalance.
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Tables 4 and 5 provide a comparative performance analysis of various machine learn-
ing techniques across class imbalance ratios of 1:10, 1:100, 1:500, and 1:1000. Each table
is organized by ranking the techniques based on their Fl1-scores and G-Mean metrics, re-
spectively. This ranking helps to identify which methods are most effective at handling
different degrees of class imbalance, which is critical for optimizing model performance in
scenarios where data distribution among classes is uneven. Table 4 focuses on F1-scores,
reflecting the balance between precision and recall, while Table 5 details G-Mean scores,
highlighting the balance between sensitivity and specificity across the classes. These in-
sights are instrumental for selecting appropriate machine learning strategies in practical

applications where the class imbalance is a significant factor.
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Figure 6. Recorded F1-score and G-mean for all methods at a 1:1000 imbalance ratio.

Table 5. Ranked G-mean for different techniques at 1:10, 1:100, 1:500, and 1:1000 imbalance ratios.

Rank

Technique 1:10 Ratio 1:100 Ratio 1:500 Ratio 1:1000 Ratio
1 SMOTEBoost 0.9999 + 0.0002 (1) 0.9999 + 0.0002 (1) 0.9997 + 0.0004 (3) 0.9997 + 0.0006 (7)
2 UnderOverBagging 0.9999 =+ 0.0006 (2) 0.9999 + 0.0006 (2) 0.9997 +£ 0.0005 (4) 0.9997 +£ 0.0005 (6)
3 RUSBoost 0.9998 + 0.0010 (3) 0.9998 + 0.0010 (3) 0.9998 + 0.0010 (2) 0.9997 + 0.0015 (9)
4 EasyEnsemble 0.9997 + 0.0005 (5) 0.9996 + 0.0004 (4) 0.9997 + 0.0005 (4) 0.9996 + 0.0005 (13)
5 KNN (ROS) 0.9990 + 0.0012 (14) 0.9990 + 0.0012 (9) 0.9996 + 0.0007 (6) 0.9997 £ 0.0002 (5)
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Table 5. Cont.
Rank Technique 1:10 Ratio 1:100 Ratio 1:500 Ratio 1:1000 Ratio
6  KNN (SMOTE) 0.9991 £ 0.0008 (13)  0.9988 £ 0.0015 (11)  0.9998 - 0.0008 (1) 0.9997 & 0.0024 (11)
6 E:‘gi‘glﬁ;’re“ 0.9998 + 0.0010 (3) 0.9991 + 0.0008 (8) 0.9996 + 0.0008 (7) 0.9994 + 0.0014 (18)
8  Decision Tree (RUS)  0.9995 & 0.0010 (9) 0.9985 & 0.0012 (13)  0.9995 - 0.0006 (8) 0.9997 & 0.0010 (8)
9  KNN (ADASYN) 0.9993 + 0.0010 (12) ~ 0.9988 &£ 0.0012 (10)  0.9993 + 0.0010 (16)  0.9998 - 0.0019 (4)
10 MLP (SMOTE) 0.9951 & 0.0021 (16)  0.9985 & 0.0027 (14)  0.9995 + 0.0025 (12)  0.9998 + 0.0016 (3)
11 Random Forest (RUS)  0.9998 -+ 0.0010 (3) 0.9983 & 0.0016 (17)  0.9994 £ 0.0009 (14)  0.9996 -+ 0.0004 (12)
12 éaM“g"THE‘)F"reSt 0.9998 + 0.0005 (4) 0.9995 + 0.0010 (6) 0.9989 + 0.0010 (20)  0.9994 = 0.0014 (18)
13 giffg?g)“ee 0.9995 + 0.0009 (8) 0.9982 + 0.0025 (22)  0.9995 & 0.0010 (10)  0.9997 + 0.0020 (10)
14 KNN (RUS) 0.9988 & 0.0021 (15)  0.9986 + 0.0015(12)  0.9995 -+ 0.0008 (9) 0.9995 =+ 0.0005 (16)
15 Decision Tree (ROS)  0.9994 + 0.0008 (11)  0.9983 + 0.0012 (16)  0.9994 + 0.0008 (13)  0.9996 + 0.0006 (14)
16  Random Forest (ROS)  0.9997 + 0.0010 (7) 0.9992 + 0.0012 (7) 0.9987 + 0.0012 (22)  0.9988 = 0.0015 (19)
16 g:;ghtedDe“sm 0.9997 + 0.0009 (6) 0.9996 + 0.0011 (5) 0.9988 + 0.0018 21)  0.9977 + 0.0017 (23)
Decision Tree
18 (ADASYN) 0.9995 + 0.0010 (9) 0.9982 + 0.0022 21)  0.9995 & 0.0010 (10)  0.9995 = 0.0020 (17)
19 gi;[VOeT%a)yes 0.9920 + 0.0040 (19)  0.9982 & 0.0022 (21)  0.9993 + 0.0012 (17)  0.9998 + 0.0012 (1)
19 Naive Bayes (RUS) 0.9920 & 0.0040 (19)  0.9982 & 0.0016 (19)  0.9993 + 0.0013 (18)  0.9998 -+ 0.0015 (2)
21  MLP (ADASYN) 0.9995 = 0.0010 (9) 0.9977 & 0.0037 (24)  0.9997 + 0.0010 (5) 0.9980 = 0.0025 (22)
22 Naive Bayes (ROS)  0.9920 +0.0030 (18)  0.9982 £ 0.0017 (20)  0.9995 4+ 0.0012 (11)  0.9996 = 0.0019 (15)
23 AdaBoostCost 0.9995 & 0.0011 (10)  0.9982 & 0.0013 (18)  0.9993 £ 0.0013 (18)  0.9986 -+ 0.0008 (20)
24 MLP (RUS) 0.9921 £ 0.0037 (17)  0.9984 £ 0.0031 (15)  0.9992 £ 0.0017 (19)  0.9986 - 0.0019 (21)
Naive Bayes
5 ADASYN) 0.9870 + 0.0124 20)  0.9981 £ 0.0019 (23)  0.9994 &+ 0.0012 (15)  0.9980 = 0.0025 (22)

5.3. Discussion

This particular research addresses the problem of class imbalance and does not seek to
model temporal relations explicitly. However, such information can be explored in future
studies using time-series-based methods. Furthermore, synthetic over-sampling techniques
such as SMOTE and ADASYN, which are commonly used for CIL, can introduce overfitting
issues, especially in greater ratio imbalances. To counter this, the proposed method embeds
sophisticated cross-validation and feature selection to boost generalization and reduce
complexity. Moreover, other sophisticated sampling techniques can be studied in future
works in order to reduce overfitting, while the variety of the synthetic samples is preserved.

The scalability of the evaluated techniques is indeed different, especially when it comes
to handling high-dimensional data and supporting real-time detection in large networks.
Distributed architectures are one such scalable solution, where monitoring is decentralized
across network segments to enable faster responses; centralized systems, while much easier
to manage, tend to limit the processing of high-volume data. Feature selection methods,
such as SelectKBest with ANOVA F-tests, work effectively in reducing dimensionality,
thus improving computational efficiency without affecting detection accuracy. These are
ensemble techniques like EasyEnsemble and SMOTEBoost, which show robustness in
performance with a balance in processing demand, thus being more suitable for large-scale
operations. Synthetic over-sampling techniques, such as SMOTE and ADASYN, may
introduce computational overhead and probably cause overfitting problems, especially
for real-time application scenarios. Future development could also consider distributed
processing frameworks or edge computing for scalability enhancement in dynamic and
high-volume network environments.

Discretization, as presented in works such as [35], can have a remarkable impact on the
performance of intrusion detection methods. As it was underlined, the discretization may
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enhance the interpretability of algorithms and reduce computational complexity, but if the
intervals are defined imprecisely, information loss is possible. Discretization, when applied
to the proposed methods, might improve the performance of ensemble methods such as
Random Forest and AdaBoostCost, since it simplifies feature spaces, which helps in the
formation of decision boundaries. Methods relying on synthetic sample generation, such
as SMOTE, ADASYN, and their boosting variants, might suffer from reduced effectiveness,
since discretization may disrupt interpolation and limit the diversity of synthetic data.
Similarly, for neural network-based approaches, though discretization may simplify input
patterns, it may detract from the network’s ability to capture fine-grained continuous
feature relationships.

6. Conclusions

To summarize this study on machine learning approaches for IDS, we found that tech-
niques such as Random Forest (ADASYN) and KNN (ROS) stood out as effective options for
addressing imbalanced datasets across various scenarios, with elevated class imbalance ra-
tios. These methods consistently scored well in terms of F1-score and G-mean metrics. They
displayed reliability and consistency when paired with sophisticated sampling methods. In
addition, Under Over Bagging and SMOTEBoost are two methods that handle the balance
between precision—recall and sensitivity—specificity across various imbalance ratios. On the
other hand, EasyEnsemble along with different KNN and Decision Tree versions displayed
consistency but might need some fine-tuning for better results. Conversely, Naive Bayes
variations such as Naive Bayes (ADASYN) were not deemed ideal for imbalanced datasets,
suggesting a combination with other techniques to improve performance.

The examination of how Random Forest (RUS) and KNN (RUS) deal with degrees of
class imbalance revealed interesting trends. When faced with an imbalance ratio like 1:10,
Random Forest (RUS) displayed strong performance with an F1-score of 0.9996 & 0.0003.
However, with an increase in the imbalance ratio, both Random Forest (RUS) and KNN
(RUS) showed signs of performance deterioration, especially when handling a 1:500 ratio
imbalance situation. A similar pattern was observed at the 1:1000 ratio, where several
methods showed a decline in performance and an increase in variability.

At levels of imbalance in Random Forest (RUS) as well as in KNN (RUS), the decline
in performance was mainly due to RUS. This technique involves decreasing the size of
the training dataset by sampling from the majority class to align it with the minority class.
This results in significant data loss and may cause overfitting to the minority class or
underfitting to the majority class. As the class imbalance worsens, so does the influence
of this data reduction on the model’s capacity to generalize effectively. This higlights the
necessity of approaches and improved sampling methods to enhance the model’s resilience
in datasets, with significant imbalances.

This study opens up several avenues for future work. Firstly, this work can be
validated further by expanding the evaluations to diverse datasets. Temporal correlations in
the CIC-DD0S2019 dataset should be exploited using time-series-based models. Exploring
advanced sampling techniques could address the overfitting risks associated with synthetic
sampling. Finally, the adaptation of those approaches for real-time intrusion detection in
dynamic networks remains a critical challenge that requires further research.
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dation, V.S.; formal analysis, V.S. and E.H.; investigation, V.S.; resources, R.R.-F,; data curation, E.H;
writing—original draft preparation, V.S.; writing—review and editing, R.R.-F. and E.H.; visualization,
V.S.; supervision, R.R.-F.; project administration, R.R.-F. All authors have read and agreed to the
published version of the manuscript.
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