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Abstract: To address the performance degradation of violation action recognition mod-
els due to changing operational scenes in power grid operations, this paper proposes a
Few-shot Adaptive Network (FSA-Net). The method incorporates few-shot learning into
the network design by adding a parameter mapping layer to the classification network
and developing a task-adaptive module to adjust the network parameters for changing
scenes. A task-specific linear classifier is added after the backbone, allowing the adaptive
generation of classifier weights based on the changing task scene to enhance the model’s
generalizability. Additionally, the model uses a strategy of freezing the backbone net-
work and iteratively updating only certain module parameters during training in order
to minimize training costs. This approach addresses the challenge of iteratively updating
difficulties in the original model, which are caused by limited image data following scene
changes. In this paper, 2000 samples under power grid scenarios are used as the experimen-
tal dataset; the average recognition accuracy for violation actions is 81.77% for images after
scene changes, which represents a 4.58% improvement when compared to the ResNet-50
classification network. Furthermore, the model’s training efficiency is enhanced by 40%.
The experimental results show that the method enhances the performance of the violation
action recognition model before and after scene changes and improves the efficiency of
the iterative model by updating with a smaller sample size, lower model design cost, and
lower training cost.

Keywords: power grid violation; few-shot learning; action recognition; parameter mapping
layer; task adaptive module; task-specific linear classifier

1. Introduction
With the expansion of power grid construction and renovation projects, electric power

construction sites have become widely distributed and often involve multiple construction
teams, making safety risk control increasingly challenging. Violations in grid operation
scenarios typically stem from operator carelessness, non-compliance, unfamiliarity with
procedures, or equipment failures [1,2]. Such behaviors can have significant impacts on the
safety and reliability of a power system [3–5]. Non-compliance with safety procedures in a
grid scenario can result in severe consequences, including substantial property damage
and risks to personal safety. For instance, improper use of grid equipment or failure to
conduct regular inspections can cause hazardous conditions such as partial discharges [6].
Adherence to safety procedures is crucial for ensuring the continuous and stable operation
of a power grid. Traditional identification and prevention of grid operation violations
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currently require significant human resources [7,8]. Additionally, many potential vio-
lations are challenging to detect. Consequently, there is an urgent need for intelligent
monitoring and control systems in grid operation behavior identification to enhance the
security, compliance, and efficiency of power system operations and maintenance [9–11].
With the advancement of machine learning and deep learning, intelligent violation action
recognition technology has increasingly been adopted in the power grid sector. However,
the operating environment often undergoes subtle changes in real grid scenarios. For
instance, the operation scene is frequently influenced by complex environmental condi-
tions, including adverse weather, low light, dust, and vegetation [12]. These objective
factors can cause slight variations in the operation scene, resulting in the degradation of the
original violation recognition model’s performance in grid operation scenarios. Addition-
ally, the limited amount of image data following a scene change complicates the iterative
updating of the original model, hindering its adaptability to the modified operation scene.
Therefore, it is essential to develop a model with robust generalization and rapid iterative
updating capabilities.

Currently, there are fewer studies on few-shot learning in grid scenarios [13,14]. Fur-
thermore, these methods are designed for processing one-dimensional data, such as in
predicting future electricity loads based on historical load data. These models cannot
process two-dimensional image inputs and are, therefore, unsuitable for violation action
recognition in grid scenarios. In summary, the industry currently lacks few-shot models
tailored for violation action recognition in grid scenarios. Our approach provides an idea
for few-shot learning in grid scenarios. The main contributions of this paper are as follows:

To address the shortcomings in the existing technology, this paper proposes a few-shot
adaptive network for grid violation action recognition. We add a parameter mapping layer
to the convolutional block of the classification network, which maps the features to adapt
to the task in the changing scenarios. Additionally, we integrate a task adaptation module
parallel to the backbone network, which supplies weights to the parameter mapping layer
based on the specific task scenario. To further enhance the model’s generalization, we
develop task-specific linear classifiers that enable the model to generate distinct classifier
weights for different scenarios. Finally, we employ a training strategy that involves freezing
the backbone network and fine-tuning selected structures to lower iterative update costs.
Extensive experiments have demonstrated that our approach increases the accuracy and
efficiency of potential violation recognition in typical power grid operation scenarios.

2. Related Works
2.1. Grid Violation Action Recognition

Currently, the primary methods for safety risk monitoring in field operations are
manual safety monitoring and intelligent monitoring [15]. The currently employed manual
safety monitoring methods primarily involve assigning dedicated supervisors to oversee
operators’ behavior and activities [16]. However, supervisors cannot guarantee compre-
hensive supervision of operators and are equally susceptible to external factors that may
distract them, potentially resulting in safety incidents. With advances in computer technol-
ogy, some researchers have utilized image processing methods for safety risk identification.
Cai et al. [17] proposed an image recognition method for substation signage using tradi-
tional image processing techniques, which helps prevent substation operators from entering
incorrect compartments, thereby ensuring their safety. Long et al. [18] introduced a helmet
detection method based on a deep convolutional neural network (DCNN), capable of
detecting instances of entering the workplace without a helmet using monitoring data,
thereby enhancing operator safety. Liu et al. [19] developed a universal pointer meter
detection and identification method using a target detection model and FAST R-CNN
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neural network, enabling automatic meter reading and minimizing operator exposure to
high-voltage environments. Wang et al. [20] introduced a new framework for substation
video monitoring using artificial intelligence technology to reduce human accidents and
provide functionalities such as helmet detection, automatic fire alarms, and automated
alerts for staff entering hazardous areas. However, all of these violation recognition algo-
rithms are trained using large-scale datasets. These datasets are typically collected in fixed
grid scenarios, which means the models are primarily effective in a single scenario, leading
to significant performance degradation when confronted with changing grid environments.
Moreover, new grid scenarios with limited samples often hinder the model’s ability to adapt
quickly to the new conditions. Therefore, there is an urgent need for an effective method
that enables models to be updated quickly and iteratively, even with limited samples.

2.2. Few-Shot Learning

Few-shot learning refers to scenarios where the number of samples is limited, restrict-
ing the model’s training to this constrained data. Current research on few-shot learning
primarily investigates three dimensions: data, models, and optimization algorithms. Data-
centric approaches enhance learning by augmenting samples and feature information.
Model-centric strategies aim to reduce the hypothesis space through structural and pa-
rameter design. Optimization-oriented methods increase the likelihood of identifying the
optimal hypothesis by modifying search strategies within a defined hypothesis space. Lim-
ited data volumes primarily affect the accuracy and stability of feature selection throughout
the process. Data augmentation diversifies datasets without incurring additional sam-
pling costs, thereby preventing overfitting and enhancing the utility of small datasets [21].
Generative Adversarial Networks (GANs) concurrently train two adversarial models: a
generator network that creates artificial data by capturing the original data distribution
from noise and a discriminator network that learns to differentiate between generated and
real data [22]. However, standard GANs face challenges such as training instability, mode
collapse, and difficulties in evaluation [23,24], which hinder the generator’s ability to learn
diverse data distributions [24]. Typical optimization-oriented small sample learning meth-
ods, such as Model-Agnostic Meta-Learning (MAML) [25], enable quick adaptation to new
tasks through cross-task training. Despite its successes, MAML requires computationally
expensive second-order derivatives for updates. In this paper, we tackle the small sample
problem in grid scenarios from the perspective of model design.

3. Methods
3.1. Few-Shot Adaptive Network

With the wide application of deep learning techniques in the field of computer vision,
significant progress has been made in action recognition techniques. However, when
these action recognition models are applied in real grid scenarios, they often encounter
challenges such as lighting changes, adverse weather conditions, and vegetation occlu-
sion; consequently, adapting these deep models to new scenarios frequently results in a
significant decrease in action recognition accuracy. Additionally, even if some samples
are collected for the new environment post-change, issues related to model iteration and
updating, such as insufficient sample size and excessive training costs, may arise. In light
of these challenges present in real grid scenarios, this chapter proposes few-shot adaptive
networks. By reducing sample size, model design costs, and training costs, this approach
enhances the performance of the behavior recognition model and further improves the
efficiency of iterative model updates.

Firstly, the feature extraction component of the network is outlined, including the
original classification network structure, the newly designed parameter mapping layer,
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and the task adaptive module. Subsequently, the classifier component of the network
is described, primarily consisting of task-specific linear classifiers. Finally, the training
strategy of the model will be described, detailing which parameters will be trained.

3.1.1. Feature Extraction Backbone

As shown in Figure 1, the feature extraction backbone network of the model comprises
a modified ResNet backbone and four parallel task-adaptive modules.

Figure 1. The framework of the feature extraction backbone.

The ResNet backbone selected is ResNet-50 [26], with the addition of a parameter
mapping layer. The parameter mapping layer adaptively maps features extracted from
the convolutional block, ensuring they are more suited to the current task scenario. To
minimize model complexity, the parameter mapping layer is included only after the final
BN layer in the first block of each layer. Each parameter mapping layer, as shown in
Figure 2, has two parameters: γ1i and β1i. The calculation formula is as follows:

Fi( fi; γ1i, β1i) = γ1i fi + β1i, (1)

where fi represents the unmapped features output from Block 1 in the ith layer, Fi represents
the mapped features output from Block 1 in the ith layer, and γ1i and β1i denote the
parameters of the parameter mapping layer in Block 1 of the ith layer. The feature extraction
backbone of ResNet-50 consists of 4 layers, necessitating the addition of 4 parameter
mapping layers. The parameter mapping layer adaptively refines the features extracted
by the module. When encountering images from altered scenes, although the features
extracted by the original module may no longer be suitable for accurate classification, the
parameter mapping layer adjusts these features to align with the new scene.

Figure 2. The structure of improved ResNet block.

The two parameters of each parameter mapping layer are generated by the parallel
task adaptive module. The structure of the task adaptive module is shown in Figure 3.
The task adaptive module consists of a stack of 3 × 3 convolutional layers, a max-pooling
layer, an average pooling layer, a channel concatenation layer, a linear layer, and a ReLU
activation function. Here, convolution refers to the combined operation of convolution,
batch normalization, and the ReLU activation function. The task adaptive module takes
two inputs: the input feature f 1i

θ (x) from Block 1 in the ith layer of ResNet, and the image
x from the slightly changed scene. The image x from the slightly changed scene first passes
through the convolutional layer and max-pooling layer for initial feature extraction. It is
then concatenated with the feature f 1i

θ (x) from ResNet, and finally, the parameters γ1i and
β1i required for the parameter mapping layer are output through the fully connected layer
and the ReLU layer. Under this structural design, the parameters of the parameter mapping
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layer are derived from a combination of features from the actual image and those from
the original scene. In contrast to directly defining learnable parameters in the parameter
mapping layer, the parameters generated in the task adaptation module are more effective
and interpretable.

Figure 3. The architecture of the task adaptive module.

3.1.2. Task-Specific Linear Classifier

In traditional classification networks, the classifiers are often composed of simple,
fully connected layers. In this subsection, the task-specific linear classifier is designed to
generate the weight matrices of the classifiers using a specific weight generation method.
The structure is shown in Figure 4.

Figure 4. The architecture of the task-specific linear classifier.

Specifically, the task-specific linear classifier consists of a weight matrix Specifically,
the task-specific linear classifier consists of a weight matrix and a Softmax function. The
weight matrix consists of 2C parameters φi

w and φi
b. During the training process, few-shot

images are fed into the feature extraction backbone, and task-specific features fθ(x; ψτ
f )

are extracted, where θ represents the original parameters of ResNet-50, x represents the
few-shot images, and ψτ

f represents the parameters of the new structure added for the
specific task τ. The extracted features are classified according to the image labels i. The
features fθ(xi; ψτ

f ) of the ith class of few-shot images are used to generate φi
w and φi

b in the
ith column of the weight matrix of the linear classifier after passing through three fully
connected and pooling layers. There are eight columns in the weight matrix corresponding
to eight types of violations. When the images in the training batch belong to category i,
only the parameters in column i of the weight matrix are iteratively updated, while the
parameters in other columns remain frozen. The task-specific classifier uses this strategy of
updating corresponding class weights to maintain high iterative update efficiency when
dealing with a small sample size.

Finally, in the testing phase, a new sample x∗ is input, and task-specific features
fθ(x; ψτ

f ) are extracted through the feature extraction backbone. The features are then



Electronics 2025, 14, 112 6 of 12

multiplied by the classifier’s weight matrix to yield a vector of size 8 × 1, which is passed
through Softmax to obtain the probability of the sample belonging to each category.

3.2. Network Training Optimization Strategies

In this subsection, the main focus will be on the model’s training strategy and pa-
rameter update strategy. The training objective function defines the model’s learning
goal, typically achieved by minimizing the loss function. Network model optimization
involves using an algorithm to adjust the model’s parameters to minimize the loss function.
Through iterative optimization, the model progressively learns data features, enhancing
its performance.

The ResNet-50 classification network is initially trained with sufficient sample data,
serving two purposes: first, to establish a baseline model for evaluating and comparing; sec-
ond, to provide initial weighting parameters for the proposed few-shot adaptive network.

Subsequently, the classifier portion of the ResNet-50 classification network is removed,
retaining the feature extraction backbone, and the designed parameter mapping layer,
task adaptive module, and task-specific linear classifier are incorporated. The model is
then trained using few-shot images after slight scene changes, with the parameters of the
original ResNet-50 feature extraction backbone frozen, while only the parameters in the
newly added parameter mapping layer, task adaptive module, and task-specific linear
classifier are iteratively updated.

4. Experiment
In order to validate the effectiveness and feasibility of the proposed method in this

paper, the proposed method is trained and tested on a dataset with 2000 labeled samples,
and comparative experiments with the baseline algorithm are carried out. These validation
results demonstrate that the proposed method provides a solid foundation for further
research and practical applications.

4.1. Violation Action Dataset Construction

In a typical grid operation scenario, representative sample data on behaviors such as
working at heights, checking electrical equipment, and hanging earth wires under varying
conditions (e.g., changes in lighting, time of day, and weather) were collected and labeled
by professionals to create a dataset of 2000 samples. The labeled violation action categories
K were defined as eight types: smoking, not wearing a safety helmet, not wearing work
clothes, not wearing a safety harness, not wearing insulated gloves, not wearing insulated
shoes, sitting or crossing a railing at the edge of a high platform or hole, and throwing tools
or materials during high-altitude operations. Each sample includes at least one violation
action. The dataset comprises 2000 images capturing workers performing tasks at various
times of the day (day, dusk, night) and in different work areas, including distribution rooms
and substations. These images comprehensively represent the common areas and work
sites in actual power grid scenarios. In addition, the scale of individuals in the images
varies significantly, reflecting the varying distances and angles of surveillance cameras
in real-world scenarios. In this dataset, 200 images with poor lighting conditions were
selected to represent a grid scenario with slight changes. Before iterative training, datasets
with varying lighting conditions were randomly divided into training and validation sets
at an 8:2 ratio. Specifically, 1440 images were used for training and 360 for validation before
scene changes, while 160 images were designated for training and 40 for testing after the
scene change. Several images of the dataset are shown in Figure 5.
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Figure 5. Several images of random selection in the dataset.

4.2. Implementation Details and Evaluation Metrics

The software configuration of the experimental system included Python 3.8, PyTorch
1.9.0, CUDA 11.2, and PyCharm 2023.2, while the hardware configuration comprised an
RTX 3090 graphics card (24 GB VRAM). During the training phase, all training samples
were scaled to a resolution of 224 × 224 before being input into the network. These
samples underwent various data augmentation techniques, including random cropping
and horizontal flipping. Random cropping involved selecting random rectangular regions
from the images, retaining 80% to 100% of the original area, followed by resizing to the
original dimensions to simulate diverse visual contexts. Horizontal flipping mirrored
the images to enhance invariance to orientation. The SGD optimizer was employed for
training the ResNet-50 classification network, with an initial learning rate set to 1 × 10−3

and a cosine learning rate decay strategy. The batch size (N) was set to 32, and training
was conducted over 50 epochs. When training on small sample images after slight scene
changes, the parameters of the feature extraction backbone of the original ResNet-50 were
frozen, and only the parameters in the newly added parameter mapping layer, task adaptive
module, and task-specific linear classifiers were updated. The SGD optimizer was still used
for this phase, with an initial learning rate of 5 × 10−4 and a batch size (N) of 16. After
the 10th and 20th epochs, the learning rate was reduced to 0.1 times its original value, and
training continued for a total of 30 epochs. This parameter selection is driven by the limited
number of samples in the new scenario, where the model requires fine-tuning rather than
full retraining; hence, both the learning rate and the number of iterations are set to relatively
low values.

In the experiments, Accuracy is used to evaluate the action recognition results, and it
is defined as the proportion of correctly classified samples, which is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

where TP represents the number of true positive samples, TN represents the number of true
negative samples, FP represents the number of false positive samples, and FN represents
the number of false negative samples.

4.3. Results and Analysis
4.3.1. Ablation Study

In this chapter, ablation experiments were conducted, as shown in Table 1, where
the designed components were gradually added under the baseline of ResNet-50 in order
to analyze the role of the components in the methodology of this chapter. Since the Task
Adaptive Module needs to be used in conjunction with the Parameter Mapping Layer, the
Task Adaptive Module is used as a proxy for the combination of the two components in
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the ablation experiments. It can be seen that when using only the task adaptive module
and the task-specific linear classifier, the average accuracy of action recognition is reduced
compared to the full model. The best performance is exhibited when all components are
used. Therefore, it can be seen that both the task-adaptive module and the task-specific
linear classifier provide performance gains.

Table 1. Accuracy comparison of the model on the test set with different components.

Components
Before the Scene Change (%) After the Scene Change (%)

ResNet PML TAM TSLC

✓ 83.70 77.19
✓ ✓ 83.90 78.13
✓ ✓ ✓ 84.11 79.84
✓ ✓ 84.05 78.22
✓ ✓ ✓ ✓ 84.49 81.77

4.3.2. Qualitative and Quantitative Assessment Comparison

The proposed method was evaluated separately using test sets from before and after
minor scenario changes. Table 2 presents the recognition accuracies of the proposed
methods for each category and includes the baseline ResNet-50 for comparison. To ensure
a fair comparison, we initialized the ResNet-50 model with weights obtained from training
on the original scene and fine-tuned it using images with slight scene variations with a
learning rate consistent with the proposed FSA-Net until convergence.

Table 2. Accuracy comparison of the model on the test set for different categories of violation action.

Violation Action
Before the Scene Change (%) After the Scene Change (%)

ResNet FSA-Net ResNet FSA-Net

Smoking 91.13 91.73 85.43 90.21
No safety helmet 91.96 92.68 86.78 91.02
No work clothes 78.56 79.24 72.44 76.38

No safety harness 73.43 73.78 68.57 71.20
No insulated gloves 85.52 85.93 78.32 84.37
No insulated shoes 71.13 72.27 65.24 69.65
Leaning on or over

railings 86.36 87.52 80.25 86.02

Throwing implements
or materials 91.48 92.78 80.48 85.27

As can be seen from Table 2, the network proposed in this paper has been evaluated
on a typical grid operation dataset. The accuracy for the original scene images, which
represent the images under adequate lighting conditions, is as follows: smoking 91.73%,
not wearing a safety helmet 92.68%, not wearing work clothes 79.24%, not wearing a
safety harness 73.78%, not wearing insulated gloves 85.93%, not wearing insulated shoes
72.27%, sitting or crossing a railing at the edge of high platforms or holes 87.52%, and
throwing tools or materials during high-altitude operations 92.78%. These results show an
improvement of 0.60%, 0.72%, 0.68%, 0.35%, 0.41%, 1.14%, 1.16%, and 1.3%, respectively,
compared to the baseline method. For images after slight scene modifications, i.e., images
with reduced light, the accuracy rates are as follows: smoking 90.21%, not wearing a safety
helmet 91.02%, not wearing work clothes 76.38%, not wearing a safety harness 71.20%, not
wearing insulated gloves 84.37%, not wearing insulated shoes 69.65%, sitting or crossing
a railing at the edge of high platforms or holes 86.02%, and throwing tools or materials
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during high-altitude operations 85.27%, representing improvements of 4.78%, 4.24%, 3.94%,
2.63%, 6.05%, 4.41%, 5.77%, and 4.79%, respectively, over the baseline method. The baseline
method used the ResNet-50 classification network, which was first trained on the original
scene images, fine-tuned with the images after slight scene changes, and then tested. The
results demonstrate that the proposed model not only slightly improves the accuracy of
behavior recognition in the original scene but also significantly enhances the accuracy for
scenes with slight changes.

To better illustrate the effectiveness of the few-shot adaptive network proposed in
this paper for recognizing violation actions during grid operations, this chapter presents
qualitative results for some images from the test set, as shown in Figure 6. The three
sub-figures in the first row of the figure depict the recognition outcomes for violation
actions in the original grid scene, while the three sub-figures in the second row display the
recognition outcomes after slight scene modifications (e.g., dark lighting). These results
demonstrate that the proposed network effectively recognizes violation actions in grid
operations under both original and changed scene conditions.

Figure 6. Visualization results of violation action recognition for worker in power grid operation. The
three sub-figures in the first row of the figure depict the recognition outcomes for violation actions
in the original grid scene, while the three sub-figures in the second row display the recognition
outcomes after slight scene modifications (e.g., dark lighting).

4.3.3. Computational Complexity and Efficiency Analyses

This chapter evaluates the complexity of both the baseline and the complete ResNet-50
networks, with the results presented in Table 3. The findings indicate that, compared to the
baseline ResNet-50 model, the model proposed in this paper only increases the number
of parameters by 1.9 M and the number of operations by 6.06 GFlops. An analysis of
these results indicates that the proposed few-shot adaptive network enhances violation
recognition accuracy with minimal additional design and training costs.

Table 3. Comparison of parameter number and computation amount of the model.

Model Params (M) Flops (G)

ResNet-50 5.34 23.45
FSA-Net 7.24 29.51

To further assess the model’s efficiency, we illustrate the number of epochs required
for the proposed FSA-Net and the baseline ResNet-50 to train to convergence after scenario
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changes. As shown in Figure 7, the results indicate that the proposed FSA-Net converges at
30 epochs, while ResNet-50 requires 50 epochs to reach convergence. This demonstrates
that the proposed model is more efficient in fine-tuning during training.

Figure 7. Comparison of the results on different training epochs.

5. Conclusions
This paper proposes a few-shot adaptive network to address the challenges posed by

slight variations in operational scenes during grid operations, which result in performance
degradation of the original violation action recognition model and limited image data
post-scene change, complicating iterative model updates. In response to slight variations
in grid scenes, the task adaptive module and parameter mapping layer are developed
to make minor adjustments to network parameters specific to the scene and to predict
task-specific linear classifier weights. This approach enhances the performance of the
behavior recognition model with a smaller sample size, lower model design costs, and
reduced training expenses while also improving the efficiency of iterative model updates.
On the constructed grid operation dataset, the average recognition accuracy for violation
actions is 81.77% for images after scene changes, which represents a 4.58% improvement
when compared to the ResNet-50 classification network. Furthermore, the model’s training
efficiency is enhanced by 40%. Consequently, the model achieves greater accuracy and
efficiency in recognizing potential violation behaviors in typical grid operation scenarios.
A limitation of this model is that it was tested only under slight variations in lighting
conditions. Minor changes in operational scenarios resulting from other conditions will
also follow the proposed training strategy. Future work will explore the model’s feasibility
when scenarios change due to different conditions.
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