
Academic Editor: Tiancheng Li

Received: 21 October 2024

Revised: 23 December 2024

Accepted: 24 December 2024

Published: 30 December 2024

Citation: Sun, S.; Wang, C.; Xiao, B.;

Liu, X.; Shi, C.; Sun, R.; Han, R.

Heterogeneous Multi-Agent

Risk-Aware Graph Encoder with

Continuous Parameterized Decoder

for Autonomous Driving Trajectory

Prediction. Electronics 2025, 14, 105.

https://doi.org/10.3390/

electronics14010105

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Heterogeneous Multi-Agent Risk-Aware Graph Encoder with
Continuous Parameterized Decoder for Autonomous Driving
Trajectory Prediction
Shaoyu Sun 1 , Chunyang Wang 1,* , Bo Xiao 2, Xuelian Liu 2 , Chunhao Shi 3, Rongliang Sun 4

and Ruijie Han 2

1 School of Electronic and Information Engineering, Changchun University of Science and Technology,
Changchun 130022, China; shaoyusun@mails.cust.edu.cn

2 Xi’an Key Laboratory of Active Photoelectric Imaging Detection Technology, Xi’an Technological University,
Xi’an 710021, China; xiaobo@xatu.edu.cn (B.X.); tearlxl@126.com (X.L.); hanrui@st.xatu.edu.cn (R.H.)

3 Hong Kong Applied Science and Technology Research Institute, Hong Kong 999077, China;
chunhaoshi@astri.org

4 School of Automation and Information Engineering, Xi’an University of Technology, Jinhua Campus,
Xi’an 710048, China; sunrongliang@stu.xaut.edu.cn

* Correspondence: wangchunyang19@163.com

Abstract: Trajectory prediction is a critical component of autonomous driving, intelligent
transportation systems, and human–robot interactions, particularly in complex environ-
ments like intersections, where diverse road constraints and multi-agent interactions signif-
icantly increase the risk of collisions. To address these challenges, a Heterogeneous Risk-
Aware Graph Encoder with Continuous Parameterized Decoder for Trajectory Prediction
(HRGC) is proposed. The architecture integrates a heterogeneous risk-aware local graph
attention encoder, a low-rank temporal transformer, a fusion lane and global interaction
encoder layer, and a continuous parameterized decoder. First, a heterogeneous risk-aware
edge-enhanced local attention encoder is proposed, which enhances edge features using
risk metrics, constructs graph structures through graph optimization and spectral clus-
tering, maps these enhanced edge features to corresponding graph structure indices, and
enriches node features with local agent-to-agent attention. Risk-aware edge attention is
aggregated to update node features, capturing spatial and collision-aware representations,
embedding crucial risk information into agents’ features. Next, the low-rank temporal
transformer is employed to reduce computational complexity while preserving accuracy.
By modeling agent-to-lane relationships, it captures critical map context, enhancing the un-
derstanding of agent behavior. Global interaction further refines node-to-node interactions
via attention mechanisms, integrating risk and spatial information for improved trajectory
encoding. Finally, a trajectory decoder utilizes the aforementioned encoder to generate
control points for continuous parameterized curves. These control points are multiplied by
dynamically adjusted basis functions, which are determined by an adaptive knot vector
that adjusts based on velocity and curvature. This mechanism ensures precise local control
and the superior handling of sharp turns and speed variations, resulting in more accurate
real-time predictions in complex scenarios. The HRGC network achieves superior perfor-
mance on the Argoverse 1 benchmark, outperforming state-of-the-art methods in complex
urban intersections.

Keywords: heterogeneous multi-agent risk-aware graph encoder; low-rank temporal
transformer; continuous parameterized decoder; autonomous driving trajectory prediction

Electronics 2025, 14, 105 https://doi.org/10.3390/electronics14010105

https://doi.org/10.3390/electronics14010105
https://doi.org/10.3390/electronics14010105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0003-0263-5499
https://orcid.org/0000-0001-9454-0670
https://orcid.org/0000-0001-8044-3204
https://doi.org/10.3390/electronics14010105
https://www.mdpi.com/article/10.3390/electronics14010105?type=check_update&version=2

Electronics 2025, 14, 105 2 of 24

1. Introduction
Autonomous driving has increasingly garnered widespread attention. An autonomous

driving system consists of perception/localization, prediction, planning, and control mod-
ules [1–3]. The perception/localization module captures raw sensor data and constructs
HD maps. The output of this process includes historical trajectories, representing the
positions and states of agents, as well as lane scene information, which serve as unstruc-
tured data inputs for trajectory prediction. Accurate and reliable trajectory prediction of
road agents, such as cars and pedestrians, is crucial for decision making and safety in
autonomous driving systems. However, in complex environments like intersections, con-
ventional pipelines often overlook the collision risks arising from multi-agent interactions.
How can we effectively model heterogeneous multi-agent interactions while integrating
risk reasoning?

The nature of trajectory prediction data is inherently heterogeneous, encompassing
various elements such as agents’ motion states, traffic lights with positions, lane poly-
lines representing feasible movement paths, and road line polygons of different types.
Recent advancements have highlighted the potential of exploiting the heterogeneity within
driving scenes. Trajectron++ [4] and HEAT [5] encode different types of agents with dif-
ferent parameters, but they encode map elements using rasterized representation, which
leads to inferior performance compared to vector-based methods [6]. VectorNet-based ap-
proaches [6–8] put all agents and lanes in one single fully connected graph and use shared
parameters for information aggregation, which ignores different node types and semantic
relations. LaneGCN-based [9] solutions [10–12] introduce a series of four graphs (lane
to agent, lane to lane, lane to actor and lane to actor) according to the distance heuristics
and connective information of the lane. Recent advancements in heterogeneous graph-
based trajectory prediction, such as HDGT [13] and HIVT [14], have effectively modeled
interactions between diverse traffic agents and road elements. However, these methods
typically do not incorporate risk reasoning into the prediction process. While works like
HTF [15] and DRM-DL [16] have introduced risk metrics, focusing on collision probabilities
and maneuvering intentions, they lack the ability to embed the heterogeneous features of
multi-agent relationships. As shown in Figure 1, our method integrates risk assessment
into a heterogeneous graph framework, encoding complex risk-based collision metrics
among agents to capture dynamic traffic interactions. This enables our approach to achieve
more accurate and robust trajectory predictions by effectively modeling the inter-agent
risk dynamics.

(b) with Intra- but Without Cross-Category Risk(a) with Intra- and Cross-Category Risk

Figure 1. Autonomous driving trajectory prediction.

Modeling uncertainty is a critical aspect of trajectory prediction for ensuring accu-
racy and robustness. Methods like Gaussian Mixture Models (e.g., Multipath++ [17] and
MTR [18]) and Laplacian distribution-based models (e.g., HIVT [14]) explicitly model trajec-
tory probability distributions, enabling uncertainty-aware predictions. Other approaches,
such as HEAT [5], utilize sequential models like LSTMs to capture temporal dependencies,

Electronics 2025, 14, 105 3 of 24

while methods like LaneRCNN [10] and SIMPL [19] employ continuous parameterized
curves (e.g., Bezier curves) for smooth trajectory generation. However, these methods
often face challenges in handling dynamic scenarios with significant speed changes like
a complete stop. To address this challenges, we propose a novel trajectory decoder using
B-splines, which dynamically adapts to speed and curvature variations, offering robust
predictions in complex environments.

To address the challenges of risk-aware trajectory prediction in complex driving
scenarios, we propose a novel architecture that integrates a heterogeneous risk-aware
graph encoder, a low-rank temporal transformer, and a continuous parameterized decoder.
These components work together to model complex multi-agent interactions, capture
temporal dependencies, and generate smooth, adaptable trajectories. The risk-aware graph
encoder captures agent-to-agent interactions and collision risks in dense scenarios. The low-
rank temporal transformer reduces computational complexity while maintaining accuracy
in dynamic environments. Finally, the continuous parameterized decoder, with its adaptive
knot vector mechanism, dynamically adjusts trajectories based on velocity and curvature,
ensuring precision in scenarios like sharp turns and stop-and-go motions.

Toward a practical multi-agent trajectory prediction engine for autonomous driving,
the main contributions are as follows:

• Heterogeneous Multi-agent Risk-aware Graph Attention Encoder: By computing
agent risk assessment attributes and map these features to a graph structure, the graph
built by graph optimization and clustering method. These edge and node features
are then processed through a node attention mechanism to model complex agent
interactions, enhancing trajectory prediction accuracy and robustness.

• Low-Rank Temporal Transformer:We introduced a low-rank temporal transformer
layer to reduce computational complexity and maintain accuracy, improving robust-
ness in dynamic environments.

• Continuous Parameterized Trajectory Prediction Decoder:We proposed a continuous
parameterized trajectory decoder, generating control points influenced by an adaptive
knot vector, enabling precise trajectory predictions and handling sudden motion
changes effectively.

2. Related Works
2.1. Homogeneous Graph Interaction in Trajectory Prediction

Graphs, as a widely used structure, consist of nodes and edges. Nodes typically
represent entities or elements, while edges denote relationships between connected nodes.
To represent the structure and information within a graph, Graph Neural Networks [20]
were introduced, which generally comprise two main functions: an aggregation function
and an update function. The aggregation function focuses on gathering features from
neighboring nodes, summarizing the context for the current node. The update function
generates new representations for each node based on the aggregated neighbor information
and the node’s original features, enabling the node to better reflect its role and state
within the overall graph. Two of the most widely used GNN models are the GCN [20],
which utilizes the graph’s Laplacian matrix, and the GAT [21], which applies attention
mechanisms for aggregation and updating.

Heterogeneous graphs contain multiple types of entities (nodes) and relationships
(edges). HGN [22] utilizes node-level and semantic-level attention, based on the GAT [21],
to learn relationships between nodes and their meta-path neighbors, thereby generating
more interpretable and superior-performing node embeddings in heterogeneous graphs.
On the other hand, HetSANN [23], a novel heterogeneous graph structural attention
neural network, leverages the GCN [20] to directly encode the structural information of

Electronics 2025, 14, 105 4 of 24

heterogeneous information networks without relying on meta-paths, thus automatically
processing heterogeneous information. In the context of trajectory prediction within a
driving scene, a heterogeneous graph can represent different entities as nodes, such as
agents (vehicles, pedestrians, cyclists, etc.) or map elements (lanes, traffic lights, stop signs,
etc.). Each node typically holds specific information, known as node features, which may
include the agent’s state (position or velocity), lane type, or the polyline that represents
its geometry.

One edge usually contains information (called an edge feature), e.g., the relative posi-
tion between two entities or relations (Lane, Left Lane, Agent Lane, etc.). Trajectron++ [4]
encodes different types of agents with different parameters of GNNs. HEAT [5] proposes
a Heterogeneous Edge-Enhanced Graph Attention Network to extract the historical dy-
namics of different types of agents and interactions between agents through a directed
heterogeneous graph, enabling multi-agent trajectory prediction in complex traffic sce-
narios. However, as pioneering works, they encode the map elements using rasterized
images and use a CNN to extract the representation vectors of maps. According to the
recent progress in the trajectory prediction community, this approach is inefficient and
leads to much inferior performance compared to vector-based methods [6]. VectorNet [6]
introduces a hierarchical graph neural network that uses vector representations of road
components and agent trajectories to model interactions, reducing computational complex-
ity compared to rendering-based approaches. TPCN [24] combines point cloud learning
with dynamic temporal learning to jointly capture spatial and temporal information for
trajectory prediction.

In recent heterogeneous graph-based trajectory prediction models, Graphad [25] intro-
duces an Interaction Scene Graph to efficiently model heterogeneous interactions among
the ego vehicle, road agents, and map elements, improving performance in perception,
prediction, and planning for autonomous driving. Diffusion models have emerged as
a promising approach, particularly in temporal prediction tasks. This enables them to
better handle the uncertainty inherent in long-term trajectory forecasting. The core idea of
Linformer [26] is to approximate the self-attention matrix as a low-rank matrix, utilizing
linear projections to reduce its dimensionality. This approach decreases the complexity
from O(n²) to O(n), significantly enhancing memory and time efficiency while maintaining
model performance. Inspired by the Linformer architecture, we design a low-rank temporal
transformer that reduces computational complexity while maintaining accuracy.

2.2. Risk Assessment in Trajectory Forecasting

In complex driving situations, collision avoidance is a crucial component of system
safety, which requires a comprehensive analysis of collision risk. Driving risk can mainly
be assessed through five methods [27]: time-based metrics, statistics-based metrics, field-
based metrics, kinematics-based metrics, and unexpected driving behavior-based metrics.
The simplest and most efficient approach is time-based metrics, such as Time-to-Collision
(TTC) techniques [28,29], which measure the time remaining until a collision would occur
if two vehicles maintain their current speeds. TTC has been widely adopted for evalu-
ating driving risks, particularly in collision warning and avoidance systems. Recently,
Wang et al. [30] proposed a two-stage multi-modal trajectory prediction model to assess
driving risk on highways by combining lane-change predictions and potential collision
risks. Fang et al. [15] using a Heterogeneous Risk Graph and a Hierarchical Scene Graph
to model interactions between agents and their environment, leveraging collision risk
metrics and road scene semantics for accurate predictions. Both approaches align with
risk-based trajectory forecasting methods that utilize the TTC-based approach. In our
method, we also use TTC within edge to be a novel risk-aware edge for graph message

Electronics 2025, 14, 105 5 of 24

passing. The concept of “Collaborative Uncertainty” (CU) is employed to capture the un-
certainty arising from multi-agent interactions for trajectory prediction, such as interaction
collaborative uncertainty [31]. Additionally, methods that combine trajectory distribu-
tion uncertainty and driving intention uncertainty are applied. DRM-DL [16] proposes a
method that integrates driving risk uncertainty and trajectory distribution uncertainty into
a deep learning framework to improve the accuracy of interactive multi-vehicle trajectory
prediction. Similarly, we construct one heterogeneous graph, including both agents, map
elements, and an risk-aware edge aggregate, into the node update attention structure of the
heterogeneous graph.

2.3. Trajectory Representation for Trajectory Forecasting

For the trajectory prediction decoder, trajectory representation is a key problem. In
terms of modeling uncertainty, some methods model the trajectory’s probability distribu-
tion to define uncertainty. Gaussian Mixture Model (GMM): Multipath++ [17] utilizes
the GMM to model trajectories, selecting optimal trajectory centroids through a clustering
algorithm and refining them using the Expectation–Maximization (EM) algorithm. Simi-
larly, MTR [18] employs the GMM but places greater emphasis on probability distribution
modeling and centroid extraction, focusing on generating trajectories through these dis-
tributions. Laplacian Distribution: HIVT [14] leverages a Laplace distribution, where
the position parameter represents the location, and the scale parameter encodes uncer-
tainty. HIVT predicts trajectory distribution parameters, including position and uncertainty,
using an MLP, which is further combined with softmax to generate mixing coefficients.
However, MTR directly predicts the trajectory distribution parameters, such as the mean
and covariance matrix, without requiring an explicit decoder for additional uncertainty
prediction. Direct Trajectory Coordinate Prediction: Unlike probability distribution-based
methods that explicitly model uncertainty and output trajectory distribution parameters
(e.g., mean and variance/scale), HDGT [13] adopts an MLP to directly predict trajectory
coordinates along with confidence scores for each mode. This approach does not assume
an explicit probability distribution but instead selects the optimal mode by minimizing the
coordinate error. Sequential Temporal Modeling: HEAT [5] employs Long Short-Term
Memory (LSTM), which is a sequential model adept at capturing both short-term and long-
term dependencies in time-series data, making it highly suitable for trajectory prediction.
LSTM takes as input individual dynamic features, interaction features, and map features
concatenated together. It predicts the position for the next H time steps, with each time
step’s state updated based on the previous state and the current input features. A fully
connected layer maps the hidden state at each time step to the specific physical attributes
of the trajectory, such as position. While effective, LSTM outputs often require an MLP
to convert them into specific trajectory prediction results. Parameterized Curve-Based
Decoders: After aggregating encoder feature tokens, sequential temporal changes can be
modeled using transformer architectures [14] or LSTMs. Typically, an MLP with a regres-
sion head is employed for trajectory prediction alongside a classification head with softmax
to compute probability scores. Rather than directly predicting future trajectory positions,
methods like LaneRCNN [10], SIMPL [19], and HTF [15] adopt a continuous parameterized
representation for trajectory regression. These methods often rely on Bezier curves, which
offer a continuous representation with smooth motion and precise higher-order derivatives.

However, Bezier curves have inherent limitations due to their fixed control points and
degree, which restrict their flexibility in handling dynamic scenarios with significant speed
variations. While the “hodograph property” of Bezier curves allows for direct derivative
computation, numerical imbalances in coefficients can lead to reduced trajectory prediction
accuracy, making them less suitable for complex and highly dynamic environments. In

Electronics 2025, 14, 105 6 of 24

autonomous driving scenarios, agents often experience dynamic changes in speed, such as
coming to a complete stop or sudden acceleration. To address this, our method employs
B-splines, which allow for non-uniform parameterization using a dynamically adjusted
knot vector. It enables the model to adapt to changes in speed and curvature, providing
more robust trajectory predictions in complex environments.

3. Methods
3.1. Problem Formulation and Approach Overview

We address the task of predicting future trajectories of dynamic agents based on their
historical states and the context of the map. The input consists of the agents’ past states,
including their position, velocity, heading, and type (e.g., pedestrian, cyclist, vehicle), along
with surrounding map elements such as lanes, traffic lights, and other key road features.
Our goal is to forecast future trajectories over the next T time steps, providing multiple
predictions to account for inherent uncertainty.

Our HRGC trajectory predictor leverages heterogeneous graph representations to
effectively capture complex interactions between agents and map elements. We propose
a risk-aware edge mechanism that models agent interactions with greater precision, in-
corporating factors like time to collision for more accurate predictions. Furthermore, we
design a continuous parameterized trajectory decoder that derives control points from
encoder-extracted features, combining them with basis functions influenced by an adaptive
knot vector. By dynamically adjusting the knot vector based on velocity and curvature, our
method delivers precise trajectory generation, allowing it to seamlessly handle sharp turns
and sudden speed variations.

The pipeline of our method HRGC trajectory predictor is shown in Figure 2, which involves
the following:

• Section 3.2: Central and neighboring node representation.
• Section 3.3: Heterogeneous risk-aware local graph attention encoder with low-rank

temporal transformer.
• Section 3.4: Fusion lane and global interaction encoder.
• Section 3.5: Continuous parameterized trajectory prediction decoder.

 Continuous Parameterized
Trajectory Decoder

Fusion Lane and Global
Interaction Encoder(FGI)

Central and
Neighboring Node

Representation
with Rotation

Matrix

Polyline Encoder
Local1

Local2

Local3

Lane-agents
Fusion

Heterogeneous Risk-aware Local Graph Attention Encoder

Heterogeneous Risk -aware Edge
Graph Attention(HRG)

Risk Aware
Edge Layer

Temporal Dependency

（TD)

T-2 T-1 T

HRG HRG HRG

Temporal Transfomer

...

Agent to agent

Agent to lane Heterogeneous
 Multi-agent Graph

Agent token Map token

Local Spatial
Updated Agent

token

Local Temporal
Updated Agent

token
Historical Trajectory Predicted Possible

Trajectory

X M

Figure 2. The overall architecture of HRGC trajectory predictor. It comprises four main blocks,
processing heterogeneous multi-agent local feature embedding through a risk-aware edge enhanced
node graph attention. Initially, we process node representation with rotation matrix, then construct
heterogeneous graph by designing and aggregating risk aware edge and update node with attention.
Subsequently, we apply low-rank temporal transformer layer to extract temporal features. These
features are then fed into agent to lane layer, which fuses agent and lane feature for better local
scene feature embedding, and last global interaction layer to extract agent and lane local features.
Finally, we utilize a continuous parameterized trajectory decoder to decode rich and accurate features,
generating continuous parameterized trajectories.

Electronics 2025, 14, 105 7 of 24

3.2. Central and Neighboring Node Representation

To exploit the symmetries of the problem, we use the rotation transformation for each
agent. Specifically, we uniformly take the central agent i′s embedding Ct

i ∈ Rdh and any
neighboring agent j′s embedding Ct

ij ∈ Rdh at any time step t:

zt
i = MLPcenter(

[
R⊤

i

(
pt

i − pt−1
i

)
, Vmt

i , Vat
i

]
), (1)

zt
ij = MLPnbr

([
R⊤

i

(
pt

j − pt−1
j

)
, R⊤

i

(
pt

j − pt
i

)
, Vmt

j, Vat
j

])
, (2)

where MLPcenter and MLPnbr are two different MLP blocks, Ri ∈ R2×2 is the rotation matrix
parameterized by θi, Vmt

i , Vat
i and Vmt

j, Vat
j are the velocity magnitude and velocity angle

of agent i and j, respectively. Since all geometric attributes are normarlized with respect
to the central agent before they are fed into MLPs, these embeddings are unaffected by
the rotation of the global coordinate frame. Apart from the trajectory segments, the inputs
of MLPnbr also contain neighboring agents’ position vectors relative to the central agent,
making the neighboring embedding spatially aware.

3.3. Heterogeneous Risk-Aware Local Graph Attention Encoder

In multi-agent interaction scenarios, understanding the dynamic relationships among
various agents is vital for safe driving and accurate prediction in complex environments.
The heterogeneous risk-aware local graph utilizes an edge-based attention mechanism.

After transforming the center and neighboring nodes, edge features are built, and
the TTC and moving direction with velocity risk between nodes are computed. Then,
a Gaussian kernel is used to calculate the similarity between nodes, followed by the
computation of the Laplacian matrix and degree matrix. The Laplacian matrix is normalized,
and clustering methods, along with a minimum graph optimization, are applied to obtain
the cluster edge index. Finally, the computed risk-aware features are mapped to the
corresponding index.

Our attention can capture the interaction relationship between different agents while
taking into account the potential collision risk. In contrast, recent studies only considered
the physical or geometrical relationship. This collision risk metric, such as time to collision,
takes into account the road type (intersection, walking, vehicle, etc.) and moving direction
with velocity. This enables us to effectively capture these complex relationships and more
accurately compute the collision risk.

3.3.1. Risk-Aware Edge Layer

In Figure 3, we propose risk-aware edge layer, which is similar to the transformation
from a dense graph to a sparse graph. In this process, we first compute the node similarities
using a Gaussian kernel, and then construct the normalized Laplacian matrix and degree
matrix. Clustering and graph optimization methods are applied to obtain the edge indices.
The edge features, computed from the TTC and moving direction with velocity risk, are then
mapped back to the corresponding indices. It not only captures spatial relationships but also
takes into account their movement trends, improving the ability to model collision risks.

The risk-aware edge calculation between agents i and j can be formulated as follows:

eij
t = Oij

t · 1

|Tij
t |

· mij
t , s.t., si

t, sj
t ∈ St (3)

where eij
t represents the edge feature between node i and node j at time t. It quantifies the

interaction risk between the two nodes by incorporating factors such as their movement
direction, velocity, and time to collision. Oij

t denotes the velocity risk between node i

Electronics 2025, 14, 105 8 of 24

and node j based on direction similarity and velocity differences. Tij
t represents time to

collision between node i and j. mij
t represents graph optimization and cluster edge index

set. si
t, sj

t ∈ St is a constraint that ensures that at time t, the states of node i and node j are
valid members of the current scene. A detailed explanation of each component will be
provided in the following sections.

Risk-Aware Edge Layer
Moving Direction
with Velocity Risk

Time To Collision

Clustering and Graph
Optimization Build the

Edge Index
Mapping

Node RepresentationNode Representation
Risk-Aware Local Graph

Multi-Agent Edge
Representation

Figure 3. Risk-aware edge layer.

In Figure 4, the formulation incorporates two critical factors to quantify the interaction
between agents i and j at time t.

x

y
Ego Vehicle

Surrounding Vehicle

Timeline

t

iP

t

jP





t

iV

t

jV

Directional Similarity Velocity DifferenceMoving direction with Velocity Risk

| |

21

| |
(1)

t t
i jt

ij

V V
eO

 





− −
= −

−
+ 

Figure 4. Moving direction with velocity risk.

Moving Direction with Velocity Risk

To accurately capture the dynamic interaction between agents, the velocity risk Ot
ij is

formulated as follows:

Ot
ij = λ1

(
1 − |α − β|

π

)
+ λ2 · e−λ|Vt

i −Vt
j |. (4)

Directional Similarity: The term 1− |α−β|
π represents the angular relationship between

the movement directions of agents i and j. Here, α and β denote the angles of the velocities
of agents i and j, respectively. It provides a smoother measure of directional influence,
where a value of 1 indicates that the agents are moving in the same direction, and a value
of 0 indicates they are moving in exactly opposite directions. Unlike the cosine function,
this term ensures that even when the agents move in opposite directions, there is still some
influence on the trajectory prediction.

Velocity Difference: The second component e−λ|Vt
i −Vt

j | accounts for the difference
in velocities between the two agents, where Vt

i and Vt
j represent the velocities of agents i

and j at time t. It uses exponential decay to smoothly handle velocity differences. As the
difference increases, the value decreases gradually, avoiding abrupt changes and ensuring
a natural weight adjustment.

Electronics 2025, 14, 105 9 of 24

By combining these two components, Oi jt effectively captures both the directional influ-
ence and the velocity similarity of the agents. This formulation enhances the understanding
of dynamic interactions in multi-agent systems, allowing for more accurate modeling of their
behaviors and relationships, even when agents move in opposite directions.

Time to Collision

In Figure 5, the time that remains until a collision between two vehicles would occur
if they keep their current speeds has been widely utilized to measure the driving risk for
vehicle collision warning or avoidance.

|Tt
ij| =

||pt
i − pt

j ||2
vt

i · cos α − vt
j · cos β

(5)

where pt
i and pt

j denote the locations of agent i and agent j at time t, respectively. α and β

are the handing angles of agent i and j.

x

y

Ego Vehicle

Surrounding Vehicle

Timeline

t

iP

t

jP





t

iV

t

jV

Figure 5. Time to collision.

Edge Index via Graph Optimization and Clustering

In Figure 6, we used the Gaussian kernel to compute edge distance (e−
||pi

t−p
j
t ||

2

2σ), where
pi

t and pj
t are agent i and j position. The kernel distance between all trajectory samples

is used to build the affinity matrix W. Spectral clustering is employed to divide the
nodes into different groups. Based on the clustering results, the graph is segmented into
different subgraphs using minimum cut. We used the minimum cut algorithm on the
graph represented by the adjacency matrix W, which is derived from the Laplacian matrix
shown below:

L = D − W, (6)

where D is the degree matrix of W. The normalized Laplacian matrix D− 1
2 LD− 1

2 can also
be used to facilitate graph partitioning. By the clustering process, we can obtain Ct

i and
Ct

j to represent the cluster index of agent i and agent j, respectively, corresponding to the
moving patterns clustered by the trajectories.

In conclusion, spectral clustering not only provides a powerful tool for dividing
nodes into different groups but also employs minimum cut optimization to enhance the
clustering results. Our method, by leveraging the Gaussian kernel for computing points
distances, building affinity matrices, and optimizing with the minimum cut of the Laplacian
matrix, enables a more accurate representation of the relationships between agents. This
comprehensive method holds great promise for applications in trajectory prediction and
analysis of complex systems involving multiple agents.

Electronics 2025, 14, 105 10 of 24

Compute Adjacency MatrixGaussian Kernel Compute Two Nodes Similarity

1

0
2

t

jP

Minimum Cut
Graph Optimization

0.8

0.6

Cluster2

Step 1

Step 4

Step2

1

t

jP

Step 3

t

iP

Step 5

Compute
Laplacian Matrix

Using MLP to Encode Node
Representation and Clustered Node

Index to Represent Original Edge

Clustered
Node Index

Cluster1

Center Node of Agent 𝑖 at Time 𝑡 Neighboring Nodes 𝑗 of Agent 𝑖 at Time 𝑡t

iP t

jP

Figure 6. Edge index via graph optimization and clustering. First, we use Gaussian kernel to
compute every two-node similarity and obtain the adjacency matrix. We compute Laplacian matrix
by Equation (6); susbsequently, we use the minimum cut graph optimization operate on Laplacian
matrix to obtain the cluster index of node Ct

i and Ct
j .

3.3.2. Risk-Aware Edge Graph Attention

The neighborhood nodes are enriched with risk-aware features through message
passing and an attention mechanism, enabling the central agent to capture risk-aware
attributes. The central agent’s embedding is then transformed into the query vector, while
the embeddings of neighboring agents, enhanced with risk-aware attributes, are used to
compute the key and value vectors:

qt
i = WQspace

zt
i , kt

ij = WKspace
mt

ij, vt
ij = WVspace

mt
ij (7)

where WQspace
, WKspace

, WVspace ∈ Rdk×dh are learnable matrices for linear projection, and dk

is the dimension of the transformed vectors.
The enhanced risk-aware edge (3) operates on the resulting query, key, and value

vectors, which are taken as inputs to the scaled dot-product attention block:

αt
i = softmax

(
qt⊤

i√
dk

·
[{

kt
ij

}
j∈Ni

])
(8)

ot
i = ∑

j∈Ni

αt
ijv

t
ij, (9)

gt
i = sigmoid

(
Wgate[zt

i , ot
i
])

, (10)

ẑt
i = gt

i ⊙ Wselfzt
i +
(
1 − gt

i
)
⊙ ot

i , (11)

where Ni is the set of agent i′s neighbors, Wgate and Wsel f are learnable matrices, and ⊙
denotes elementwise product.

Compared to the standard scaled dot-product attention, our variant uses a gating
function to fuse the environmental features mt

i with the central agent’s features, enabling
the block to have more control over the feature update. The outputs of the multi-head
attention block are passed through an MLP block to obtain the spatial embedding of agent
i at time step t. In addition, we applied layer normalization before each block and residual
connections after each block. In practice, this module can be implemented using efficient

Electronics 2025, 14, 105 11 of 24

scatter and gather operations to parallelize the learning across all local regions and all
time steps.

3.3.3. Low-Rank Temporal Transformer

By introducing a temporal encoder layer, we can effectively capture temporal feature
representations following the spatial multi-agent encoding, thereby enhancing the model’s
performance in time series prediction tasks. Inspired by Linformer [26], we designed a
low-rank temporal transformer layer to further optimize efficiency and scalability.

We first add learnable positional embeddings to all tokens and stack the tokens into a
matrix Ci ∈ R(T+1)×N×D, which is then fed into the temporal attention block: The temporal
attention block includes a mask and a linear layer to extend address the input. The mask M
is used for certain positions to contribute to the attention score:

C̃i = Ci + M (12)

Mij =

−∞ if position i is masked for position j

0 otherwise
(13)

In the context of low-rank approximation, the singular value decomposition (SVD)
allows us to decompose a matrix into its fundamental components. The singular values
represent the importance of each mode in the original matrix. According to the Eckart–
Young theorem [32], the best rank-k approximation of a matrix, in terms of minimizing the
reconstruction error, is obtained by retaining only the top-k largest singular values and
their corresponding singular vectors. This means that by preserving the top-k singular
values, we can capture the most significant information in the data while reducing the
dimensionality, thereby achieving an optimal trade-off between computational efficiency
and information retention.

To reduce the computational complexity of the attention mechanism, we applied a low-
rank approximation to the query (Q), key (K), and value (V) matrices. This method enables
efficient processing by approximating these matrices with lower-rank representations.

Singular Value Decomposition

We perform SVD on the query matrix Q to obtain its low-rank approximation. Let the
SVD of Q be defined as follows:

Q = UΣV⊤, (14)

where U ∈ Rd×d and V⊤ ∈ Rd×d are orthogonal matrices, and Σ ∈ Rd×d is a diagonal
matrix of singular values. We select the top k singular values to obtain the low-rank
approximation:

Qlow rank = U[:,1:k]Σ[1:k,1:k]V
⊤
[1:k,:], (15)

where k is the chosen rank of the approximation. This reduces the dimensions of Q while
retaining the most important information.

Low-Rank Approximation for K and V

Similarly, we apply the low-rank approximation to the key matrix K and value ma-
trix V:

Klow rank = U[:,1:k]Σ[1:k,1:k]V
⊤
[1:k,:], (16)

Vlow rank = U[:,1:k]Σ[1:k,1:k]V
⊤
[1:k,:]. (17)

This ensures that both K and V are approximated in the same way as Q, reducing their
dimensions to rank k.

Electronics 2025, 14, 105 12 of 24

Attention Computation with Low-Rank Q, K, V

The low-rank matrices are then used to compute the scaled dot-product attention:

Attention(Q, K, V) = softmax

(
Qlow rankK⊤

low rank√
dk

)
Vlow rank, (18)

where dk is the dimension of the key vectors. The result is a low-rank attention matrix that
significantly reduces the computational complexity while preserving the core structure of
the attention mechanism.

By utilizing low-rank approximations in this way, the overall computational complex-
ity of the attention mechanism is reduced from O(N2D) to O(N2k + NDk). In our case, k
is moderately smaller than D, reducing from 128 to 96 dimensions, which provides some
computational savings while still retaining a substantial amount of the original information.

3.4. Fusion Lane and Global Interaction Encoder

After embedding the risk-aware agent local spatial and temporal information, the
spatial layout of the local map is key to forecasting an agent’s future trajectory. To integrate
map data effectively, we first align the relative positions of lane segments with the agent’s
reference frame at time step T by rotating the lane vectors.

These transformed lane vectors, along with their semantic attributes, are passed
through an MLP to generate lane-embedded features of Lane–agents fusion:

Liφ = ϕlane

([
R⊤

i

(
p1

φ − p0
φ

)
, R⊤

i

(
p0

φ − pT
i

)
, aφ

])
, (19)

where ϕlane(·) refers to the MLP that encodes the lane segments, Ri is the rotation matrix
for agent i to align and p0

φ, and p1
φ represents the lane segment start and end points of lane

segment φ. Lane attribute is aφ. The attention between the central agent and the lane is
then computed using Equations (7)–(11), with the agent’s state serving as the query and
the lane information as keys and values.

For modeling broader interactions among agents and fusion map agents, we introduce
global attention based on relative positions and orientations. The interaction between
agents i and j is captured by encoding their positional and angular differences through
an MLP:

eglobal
ij = ϕglo

([
RT

i

(
pT

j − pT
i

)
, cos(∆αij), sin(∆αij)

])
. (20)

where ∆αij denotes the angular difference, while the spatial vectors encode positional
relationships. These global interaction embeddings are further processed using attention
mechanisms, where each agent’s embedding serves as the query and the pairwise global
edge information which, combined with neighboring agent features, are used as keys
and values like local encoder. This fusion map and global interaction layer integrates
local agent–lane relations with global agent-to-agent relations enhanced with risk-aware
interactions, allowing for robust trajectory prediction.

3.5. Continuous Parameterized Trajectory Decoder

After symmetric global feature fusion, the updated actor tokens are collected and
passed through a multi-modal motion decoder to generate predictions for all agents. This
allows the decoder to forecast K possible future trajectories for each agent. For each
trajectory mode, we use an MLP with two heads: a regression head for predicting the
trajectory locations and a classification head followed by a softmax function to provide
the corresponding probability scores. The advantage of this approach lies in its ability
to predict multiple potential future trajectories, capturing the inherent uncertainty and

Electronics 2025, 14, 105 13 of 24

variability in agent behavior, which is crucial for accurate and robust forecasting in complex
autonomous driving environments.

For trajectory regression, instead of directly predicting the location, we generate
control points for a continuous parameterized trajectory curve using the extracted features
from the encoder. These control points are combined with basis functions, which are
influenced by a dynamically adjusted knot vector based on velocity and curvature. The
benefit of using control points with a dynamic knot vector is that it allows the model to
flexibly adapt to changing speeds and curvatures, making it highly suitable for autonomous
driving applications.

As shown in Figure 7, a B-spline (Basis Spline) is a piecewise-defined polynomial
function used to represent curves for trajectory prediction because of their ability to provide
smooth and continuous curves while maintaining control over local segments.

0 2 4 6 8

0

1

2

3

4

5

B-spline Curve with Control Points
B-spline Curve
Control Points

Figure 7. B-spline with control points.

3.5.1. B-Spline Curve
B-Spline Representation

Given control points Pi = (xi, yi) and the corresponding basis functions Ni,p(t), the
B-spline curve is computed as follows:

C(t) =
n

∑
i=0

Ni,d(t)Pi, t ∈ [tk,i, tk,i + Ti] (21)

where Pi defines the i-th control points, and Ni,d(t) is the B-spline basis function of degree
d = 5, defined over a knot vector t. For a historical time range Ti, agent i at time k means tk,i.

B-Spline Basis Function

B-spline basis function defines how each control point influences the shape of the
curve. It is recursively defined as follows:

Initial basis function (0th degree)

Ni,0(t) =

1 if ti ≤ t < ti+1

0 otherwise
(22)

Electronics 2025, 14, 105 14 of 24

Recursive basis function (degree p)

Ni,d(t) =
t − vi

vi+d − vi
Ni,d−1(t) +

vi+d+1 − t
vi+d+1 − vi+1

Ni+1,d−1(t), (23)

where t is the parameter, vi is the i-th knot value in the knot vector, and d is the degree of
the B-spline.

3.5.2. Knot Vector Adaptation
Knot Vector Adaption

In our approach, we initialize the knot vector as a uniform sequence, ensuring an even
distribution of control points at the beginning of the trajectory generation. Specifically, the
knot vector for a B-spline curve with n control points is defined as follows:

v0 = 0, v1 =
1
n

, v2 =
2
n

, . . . , vn = 1. (24)

This uniform initialization is used for the first 5 frames to ensure a balanced and
smooth trajectory prediction.

Starting from the 6th frame, we introduce an adaptive adjustment of the knot vector
based on the vehicle’s velocity and curvature at each step. The new knot vector vj is
updated based on the following formula:

vj = αe−(|C′(v)|(1+β|κ(v)|)) (25)

Therein, we have the following:

• vj is the new knot vector value at the j-th position;
• α is a scaling factor that controls the adjustment magnitude;
• C′(v) is the velocity of the trajectory at point v;
• κ(v) is the curvature of the trajectory at point v;
• β is a weight parameter that controls the influence of curvature on the adjustment.

This exponential adjustment ensures that larger velocities or curvatures result in
smaller changes to the knot vector, promoting smoother transitions in dynamically changing
regions of the trajectory. Conversely, when both velocity and curvature are small, the knot
vector is adjusted more significantly, allowing for finer control over the trajectory’s shape.
This dynamic adaptation of the knot vector enables the trajectory to better reflect real-world
motion characteristics, especially in scenarios involving sharp turns or rapid speed changes.

By updating the knot vector in this manner, we enhance the flexibility of the trajectory
representation, ensuring that it adapts to both gradual and sudden changes in vehicle
dynamics. The process is repeated for all subsequent frames from the 6th frame onward,
continuously refining the trajectory prediction as more frames are generated.

Velocity Calculation The velocity of the B-spline curve can be calculated by differenti-
ating the curve once. Given the B-spline curve C(t), its velocity is computed as follows:

C′(t) =
n

∑
i=0

N′
i,d(t)Pi (26)

The Calculation of Curvature The calculation of curvature κ(t) is used to describe the
degree of bending of a curve, and it depends on both the first and second derivatives of the
curve. The formula for curvature is as follows:

κ(t) =
C′(t)× C′′(t)

|C′(t)|3 (27)

Electronics 2025, 14, 105 15 of 24

where C′(t) represents the first derivative of the curve corresponding to the velocity.
C′′(t) represents the second derivative of the curve corresponding to the acceleration.
×denotes the cross product, and |C′(t)| represents the magnitude of the first derivative
(velocity magnitude).

This formula is typically used in trajectory prediction tasks to calculate the curvature of B-
spline curves, helping to assess the smoothness and degree of bending of predicted trajectories.

3.5.3. Predicted Trajectory Matrix

The trajectory matrix Ypos, which contains the 2D positions for T timestamps, can be
computed by performing matrix multiplication between the B-spline basis matrix Bu and
the predicted 2D control points matrix P:

Ypos = BuP (28)

where Ypos ∈ RT×2 can be calculated by multiplying the adaptive basis matrix. Bu ∈
RT×(n+1) is the precomputed B-spline basis matrix, where B is the updated knot vector that
adjusts according to velocity and curvature changes. This matrix represents the contribution
of each control point to the final trajectory across T time steps.

The control points matrix P ∈ R(n+1)×2 contains the predicted 2D control points for
the trajectory, where each row represents the x and y coordinates of a control point.

The positional coordinates at each time step can be computed as follows:

Ypos =


N0,k(ut1) N1,k(ut1) . . . Nn,k(ut1)

N0,k(ut2) N1,k(ut2) . . . Nn,k(ut2)
...

...
. . .

...
N0,k(uT) N1,k(uT) . . . Nn,k(uT)




px
0 py

0
px

1 py
1

...
...

px
n py

n

 (29)

where Ni,k(utj) is the B-spline basis function of degree k evaluated at the adaptive knot
vector value utj . The adaptive knot vector utj is calculated based on the vehicle’s velocity
and curvature at each step, ensuring that the knot values are dynamically adjusted to better
fit the trajectory.

By multiplying the adaptive B-spline basis matrix Bu with the control points matrix
P, we obtain the full set of predicted positions for the trajectory that account for dynamic
changes in curvature and velocity. Our proposed method ensures that trajectory generation
remains adaptive and responsive to real-time conditions, leading to smoother transitions
and more accurate trajectory predictions, which are essential for autonomous vehicles.

4. Expertiments
4.1. Experiments Setup
4.1.1. Datasets

Our evaluation was conducted on the large-scale Argoverse motion forecasting
dataset [33], which provides detailed agent trajectories along with high-definition map data
to support autonomous vehicle perception tasks. It consists of over 323,000 real-world driv-
ing scenarios split into 205,942 training samples, 39,472 validation samples, and 78,143 test
samples. Each scenario consists of 5-second sequences sampled at 10 Hz, with only the first
2 s available in the test set, where participants are tasked with predicting the subsequent
3-second future trajectories for agents.

Electronics 2025, 14, 105 16 of 24

4.1.2. Evaluation Metrics

Let the multi-mode prediction of the model be represented as below:

O =
{(

pk
1, pk

2, . . . , pk
T

)}
k∈[1,K]

, (30)

where pk
t = (xk

t , yk
t) is the predicted position of the agent at time step t for the k-th mode.

The ground truth trajectory of the agent is denoted as O∗ = (p∗1 , p∗2 , . . . , p∗T). Our model was
assessed using widely accepted metrics for motion prediction tasks, including minimum
Average Displacement Error (minADE), minimum Final Displacement Error (minFDE), and
Miss Rate (MR). These metrics enable the model to predict up to six potential trajectories
for each agent. Specifically, minADE represents the average ℓ2 distance in meters between
the predicted trajectory with the lowest error and the actual ground-truth trajectory across
all time steps. In contrast, minFDE measures the prediction error at the final time step. The
trajectory with the smallest endpoint error is considered the best prediction. Meanwhile,
MR refers to the proportion of cases where the distance between the predicted and ground-
truth endpoints exceeds 2.0 m.

Minimum Average Displacement Error (minADE)

This is the minimum value of the Euclidean distance between the predicted and
ground truth trajectories, which is averaged over the prediction length T for K predicted
modes. It measures how well the predictions match the ground truth on average under the
Euclidean space. The detailed calculation is as follows:

minADE = min
k=1,...,K

1
T

T

∑
t=1

∥pk
t − p∗t ∥2, (31)

where pk
t is the predicted coordinate of the k-th mode at time step t, and p∗t is the ground

truth coordinate at time t, with T being the total length of the trajectory.

Minimum Final Displacement Error (minFDE)

This metric is similar to minADE, but it only considers the error at the final time step
T. It focuses on the accuracy of predicting the final goal point, which emphasizes the
importance of capturing agents’ intentions. The detailed calculation is as follows:

minFDE = min
k=1,...,K

∥pk
T − p∗T∥2, (32)

Miss Rate (MR)

The MR represents the ratio of cases where the Euclidean distance between the pre-
dicted and ground truth final positions exceeds 2 m for all k predicted modes. Unlike
Euclidean-based metrics like minADE and minFDE, it only requires one of the predicted
modes to fall near the ground truth final point for it to be considered a “hit”. If none of the
predicted modes are within 2 m, it counts as a “miss”. The detailed calculation is as follows:

MR =

0, ∃k ∈ {1, . . . , K}, ∥pk
T − p∗T∥2 ≤ 2

1, Otherwise
, (33)

Note that all three metrics are averaged over all target agents.

4.1.3. Implementation Details

We trained our model for 64 epochs on an RTX 3090 GPU using an Adam opti-
mizer [34], with the batch size, initial learning rate, weight decay, and dropout rate set to

Electronics 2025, 14, 105 17 of 24

32, 3× 10−4, 1× 10−4, and 0.1, respectively. The learning rate was decayed using the cosine
annealing scheduler. We used a 1-layer heterogeneous risk-aware local graph attention
encoder, which focuses on modeling the spatial relationships between agents. Additionally,
our model incorporated a 4-layer temporal transformer to efficiently capture temporal
dynamics. Both modules utilized multi-head attention with eight heads, allowing the
model to focus on different interaction aspects. Furthermore, we included a 3-layer global
interaction layer with a 1-layer fusion map lane with a multi-agent interaction module,
which were introduced to specifically capture interactions between agents and lane in-
formation finally to model broader context interactions between agents. In addition, the
hyperparameter settings presented in this work are shown in Table 1.

Table 1. All hyperparameters set in this study.

Hyperparameter Source Value

λ Equation (4) 0.1
λ1 Equation (4) 0.65
λ2 Equation (4) 0.35
dk Equation (19) 96

degree (d) Section 3.5 5
α Equation (24) 0.5
β Equation (24) 0.3

4.2. Ablation Studies
4.2.1. Ablation Studies on Each Encoder Component

We assessed the impact of each module by removing them alternately and observing
the effects on prediction performance. As shown in Table 2, each module contributed to
the overall improvement in different ways. First, without the risk-aware agent-to-agent
interaction module, the model struggled to capture critical local interactions, leading to
performance degradation. Second, the low-rank temporal learning module had the most
notable influence on performance, as predicting the future movements of agents in dynamic
traffic situations heavily depends on efficiently leveraging historical information. Third, we
separated the lane-specific interaction (FGIl) and global interaction (FGIg) to evaluate their
respective impacts. Lane information remains essential for trajectory prediction, as traffic
agents typically follow lanes constrained by traffic rules, while global interactions are also
crucial for capturing the cross-agent and map-level dependencies over time. Lastly, the con-
tinuous parameterized trajectory decoding module significantly boosted the performance,
showcasing its effectiveness in generating continuous and smooth future trajectories. This
confirms its advantage over conventional methods in producing high-quality predictions.

Table 2. Ablation studies on the components of our framework.

HRG TD FGIl FGIg minADE minFDE MR

✓ ✓ ✓ 0.71 1.07 0.11
✓ ✓ ✓ 1.10 1.48 0.22
✓ ✓ ✓ 0.69 1.01 0.13
✓ ✓ ✓ 0.68 1.00 0.10
✓ ✓ ✓ ✓ 0.650 0.900 0.085

4.2.2. Ablation Study of Decoder Variants with Continuous Trajectory Decoder

As shown in Figure 8, in our experimental comparison of the three decoder variants MLP,
GRU, and the proposed continuous parameterized decoder, the continuous parameterized
model showed clear advantages across all evaluated metrics. The continuous parameterized

Electronics 2025, 14, 105 18 of 24

decoder demonstrated superior performance in terms of prediction accuracy, particularly in
the minADE, minFDE and MR, highlighting the benefits of using a continuous curve-based
decoding approach for trajectory prediction. The continuous parameterized decoder achieved
the lowest minADE at 0.65, demonstrating that the continuous parameterized decoder can
better interpolate and extrapolate future positions. A lower MR indicates that the continuous
parameterized decoder is better at generating realistic and feasible trajectories, which is crucial
for safety-critical applications like autonomous driving.

Although the continuous parameterized decoder arrived at its results with a marginal
increase in computational cost—both in terms of inference time (75 ms) and parameters
(2839 K)—the improvements in prediction accuracy (minADE and minFDE) and the signifi-
cant reduction in miss rate (MR) justify the slightly higher complexity.

MLP GRU B-Spline
0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

0.690 0.680
0.650

1.010 1.020

0.900

0.093 0.092 0.085

Performance Comparison of MLP, GRU, and B-Spline
minADE
minFDE
MR

Figure 8. Ablation study of decoder variants with continuous trajectory decoder.

4.3. Results
4.3.1. Comparison with State-of-the-Art

We briefly introduce the methods we compared on the Argoverse dataset.
TNT [7] uses discretized sparse anchors on roads for goal prediction, assigning proba-

bility values to these anchors. However, this approach has limitations, as it can only predict
one goal per anchor and lacks the ability to capture fine-grained details, such as varying
local information within the same lane segment.

DenseTNT [8] uses VectorNet as its encoder to model the scene as a homogeneous
fully connected graph and employs an optimization-based technique to select the best goal
from a dense set of candidates, which allows it to generate more diverse trajectory modes
and achieve better MR performance than direct trajectory decoding.

LaneGCN [9] is a pioneering model in motion forecasting that constructs a lane graph
from raw map data, extending graph convolutions with multiple adjacency matrices to
preserve the complex map structure and capture long-range dependencies, enabling accurate
and realistic multi-modal trajectory predictions by modeling intricate actor–map interactions.

LaneRCNN [10] Building upon LaneGCN, it advances the lane graph encoding ap-
proach by introducing a graph-centric model that learns localized lane graph represen-
tations (LaneRoI) for each actor, allowing for efficient actor-to-actor and actor-to-map
interactions through message passing within a global lane graph, further enhancing trajec-
tory prediction accuracy.

Electronics 2025, 14, 105 19 of 24

TPCN [24] leverages both spatial and temporal dimensions by applying point cloud
learning techniques to represent agents as unordered point sets in space and introducing
dynamic temporal learning to model agents’ motion over time.

R-Pred [35] is a two-stage trajectory prediction method that utilizes scene and interac-
tion context through a tube-query scene attention mechanism and proposal-level interaction
attention to refine trajectory proposals.

HVTD [36] proposes a hierarchical vector transformer diffusion model for vehicle
trajectory prediction, combining local and global interactions with a diffusion convolutional
encoder to effectively capture uncertainty.

HIVT [14] leverages hierarchical modeling of local and global interactions using
Transformers for multi-agent motion prediction, incorporating translation- and rotation-
invariant representations to efficiently predict trajectories with fewer parameters and faster.

We compared our method with the state-of-the-art models on the Argoverse validation
set. Based on the results in Table 3, our approach achieved the lowest average displacement
error (ADE), outperforming HiVT-128 (0.66) by 0.01 and R-Pred (0.657) by a smaller margin
of 0.007. Compared to DenseTNT (0.75) and TPCN (0.73), we recorded reductions of 0.10
and 0.08, respectively, demonstrating the robustness of our risk-aware interaction modeling.
Our final displacement error (FDE) also performed exceptionally well, surpassing R-Pred
(0.945) by 0.045 and showing a substantial reduction compared to DenseTNT (1.05), with
a difference of 0.15. This significant improvement in the FDE can be attributed to our
continuous parameterized trajectory decoding, which smooths and adapts trajectories
effectively. In terms of the miss rate (MR), our approach achieved the best performance,
outperforming LaneRCNN (0.082) by a slight margin of 0.003 and significantly beating
DenseTNT (0.10) and TPCN (0.11), by 0.015 and 0.025, respectively. The superior MR
performance demonstrates the strength of our risk-aware agent-to-agent interaction mod-
ule in preventing missed predictions. In summary, our model’s minADE and minFDE
improvements are largely driven by the effective combination of our risk-aware interaction
modeling and continuous parameterized trajectory decoder. The significantly lower MR
highlights the added value of our approach, especially in challenging prediction tasks,
validating its superior performance over competing methods.

Table 3. Comparison with the state-of-the-art trajectory prediction on validation set of Argoverse.

Model minADE minFDE MR

DESIRE [37] 0.92 1.77 0.18
DATF [38] 0.92 1.52
MultiPath [39] 0.80 1.68 0.14
LaneRCNN [10] 0.77 1.19 0.082
DenseTNT [8] 0.75 1.05 0.10
TNT [7] 0.73 1.29 0.093
TPCN [24] 0.73 1.15 0.11
LaneGCN [9] 0.71 1.08 0.10
R-Pred [35] 0.657 0.945 0.0869
HVTD [36] 0.68 1.02 0.10
HiVT-128 [14] 0.66 0.96 0.09
Ours 0.65 0.90 0.085

4.3.2. Inference Speed

We compared the inference speed of models on the Argoverse validation set as shown
in Figure 9, where we can see that our model achieved an inference speed of 75 ms, position-
ing it in the mid-range when compared to other models. It outperformed computationally
heavy models such as DenseTNT (2644 ms) and TNT [7] (2302 ms), which have signif-

Electronics 2025, 14, 105 20 of 24

icantly slower inference times. In contrast, models like HOME+GOHOME [12] (32 ms)
and HIVT [14] (69 ms) exhibited faster inference times but with higher or comparable
minADE values, indicating that our model strikes a good balance between speed and
prediction accuracy. In terms of parameters, our model has 2839 K parameters, which is
moderate compared to models like LaneGCN [9] (3701 K) and HOME+GOHOME [12]
(5100 K). While our model is not the lightest, it achieved superior prediction accuracy with
a minADE of 0.65. The parameter size is well within a practical range, offering an efficient
balance between model complexity and performance. Our model stands out for its excellent
prediction performance with a minADE of 0.65, which was the best among all compared
models. Other models, such as TNT and DenseTNT [8], achieved minADEs of 0.73 and
0.75, respectively, but at the cost of significantly higher inference times. This showcases the
strength of our model in making highly accurate predictions while maintaining reasonable
speed and parameter sizes. The graph demonstrates our model as an optimal choice for
scenarios requiring accurate and efficient trajectory prediction, making it highly suitable
for real-time applications in autonomous systems.

0 500 1000 1500 2000 2500
Speed (ms)

1000

2000

3000

4000

5000

Pa
ra

m
et

er
s (

K)

DenseTNT
0.73

TNT
0.73

LaneGCN
0.87

HVTD
0.68

HIVT
0.69

HOME+GOHOME
0.94

Lane Transformer
0.86

LAFormer
0.93

Our
0.65

Inference Speed vs Parameters for Various Models with minADE

Figure 9. Inference speed and paramters with minADE comparison with state-of-the-art methods.

4.3.3. Visualization
Intersection Successful Case

In Figure 10a, intersection successful case (a) (1) demonstrates a successful trajectory
prediction using the heterogeneous multi-agent risk-aware graph approach. The predicted
trajectory (in red) accurately follows the intended path, showcasing the method’s effec-
tiveness in handling complex intersections with multiple agents. In Figure 10a(2), the
prediction of six possible trajectories is shown, with the predicted trajectories (in red) corre-
sponding well to the ground truth (in blue). It demonstrates the model’s ability to capture
multiple future possibilities in highly dynamic intersection environments. In Figure 10a(3),
the target agent accurately predicts that the neighboring agent in front will turn left in the
future. This shows the model’s awareness of interactions between agents and its capacity
to predict accurate trajectories based on future maneuvers. The success of this intersection
case is due to the effectiveness of our heterogeneous risk-aware graph encoder in predicting
accurate trajectories in complex intersection scenarios.

Continuous Parameterized Trajectory Prediction Performance Analysis

In Figure 10b, continuous parameterized trajectory prediction performance analysis (1)
illustrates how the continuous parameterized trajectory decoder performed in a complex
intersection scenario. The predicted trajectory (in red) is both smooth and accurately follows
the intended path, highlighting the decoder’s ability to handle intricate road layouts. In

Electronics 2025, 14, 105 21 of 24

Figure 10b(2), the continuous parameterized trajectory decoder effectively managed a
situation where the predicted trajectory involved self-intersection within the intersection.
In Figure 10b(3), under more straightforward cases, such as a direct path through an
intersection, the continuous parameterized trajectory decoder handled the scenario with
ease, producing a smooth and accurate trajectory without unnecessary complexity. The
smoothness and continuity properties of the continuous parameterized trajectory decoder
allow it to handle both complex intersections and simpler scenarios with great accuracy, as
seen in this analysis.

(1)Intersection with Heterogeneous Multi-Agent
Risk-Aware Graph Trajectory Prediction: A

Successful Case

(2) Intersection Trajectory Prediction: Six Possible Trajectories
and Corresponding Ground Truth

(3) Target Agent Anticipating Neighbor’s Turn:
Accurate Trajectory Prediction

(1)Continuous Parameterized Trajectory Decoder in
Intersection: Smooth and Accurate Trajectory

Generation

(2) Continuous Parameterized Trajectory Decoder
Handling Self-Intersection Case

(3) Continuous Parameterized Trajectory
Decoder in Straightforward Scenario

(a)Intersection Successful Case
(b)Continuous Parameterized Trajectory

Prediction Performance Analysis

Figure 10. The red column represents the intersection successful case, while the green column
represents the continuous parameterized trajectory prediction performance analysis.

Electronics 2025, 14, 105 22 of 24

Failure Case

In Figure 11, failure case (1) occurred due to an occlusion in the predicted trajectory
area, leading to an incorrect prediction. The occluded object interfered with the accuracy
of future trajectory predictions, causing deviations from the expected path. In failure
case (2), the predicted trajectory continued to follow its historical motion pattern due
to the absence of neighboring agents, leading to an inaccurate future prediction, as no
interactions occurre to influence the trajectory. These failure cases highlight the current
limitations of the model, especially in handling occlusions and scenarios without significant
agent interactions. Future work should focus on improving the model’s ability to adapt to
dynamic environments and handle unseen obstacles.

(1)Failure Case: Occlusion of Object in Future
Trajectory Prediction

(2) Failure Case: Lack of Neighbor Agents
Leads to Continuation of Historical Motion

Figure 11. Failure case.

5. Conclusions
This work addresses the challenges of trajectory prediction for heterogeneous multi-

agent interactions in autonomous driving scenarios. Traditional methods often struggle
to capture fine-grained interactions between diverse agents, particularly overlooking oc-
clusion risks at intersections and sudden motion stops. To bridge this gap, we propose
HRGC, a novel framework that incorporates a heterogeneous multi-agent risk-aware graph
encoder, a low-rank temporal transformer, a lane fusion and global interaction encoder,
and a continuous parameterized trajectory decoder. The model explicitly integrates risk
assessment into multi-agent heterogeneous graph interactions, enhancing both robustness
and prediction accuracy. Key innovations include a risk-aware graph encoder that effec-
tively captures potential collision information and a continuous parameterized trajectory
decoder that dynamically adjusts for speed and curvature changes. Experimental results
demonstrate that HRGC achieves superior performance in complex intersection scenarios,
significantly improving trajectory prediction accuracy compared to existing approaches.

6. Limitations and Future Work
Despite its promising results, HRGC still faces challenges in certain scenarios. One

key limitation is the handling of occluded objects, where the absence of visible neighbor-
ing agents can lead to suboptimal predictions. Another limitation lies in low-interaction
environments, where fewer agents reduce the model’s ability to make robust predictions.
Future work will address these limitations by exploring more effective occlusion-handling
strategies and improving the model’s ability to make accurate predictions even in sparse en-
vironments. We plan to incorporate collaborative perception, thereby enhancing prediction
performance under challenging conditions.

Electronics 2025, 14, 105 23 of 24

Author Contributions: Conceptualization, R.S.; methodology, writing, visualization, experiments,
S.S.; formal analysis and coding, S.S. and C.S.; investigation, B.X.; resources, R.H.; writing—review
and editing, C.W. and X.L.; visualization, R.S.; supervision, C.S.; project administration, B.X.; funding
acquisition, C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under grant number
2022YFC3803702.

Data Availability Statement: The Argoverse open dataset utilized in this work is openly available at
https://www.argoverse.org/av1.html (accessed on 27 December 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sun, S.; Shi, C.; Wang, C.; Zhou, Q.; Sun, R.; Xiao, B.; Ding, Y.; Xi, G. Intra-Frame Graph Structure and Inter-Frame Bipartite Graph

Matching with ReID-Based Occlusion Resilience for Point Cloud Multi-Object Tracking. Electronics 2024, 13, 2968. [CrossRef]
2. Sun, S.; Shi, C.; Wang, C.; Liu, X. A Novel Adaptive Graph Transformer For Point Cloud Object Detection. In Proceedings of the

2023 7th International Conference on Communication and Information Systems (ICCIS), Chongqing, China, 20–22 October 2023;
pp. 151–155.

3. Sun, S.; Wang, C.; Liu, X.; Shi, C.; Ding, Y.; Xi, G. Spatio-Temporal Bi-directional Cross-frame Memory for Distractor Filtering
Point Cloud Single Object Tracking. arXiv 2024, arXiv:2403.15831

4. Salzmann, T.; Ivanovic, B.; Chakravarty, P.; Pavone, M. Trajectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020;
Proceedings, Part XVIII 16; Springer: Cham, Switzerland, 2020; pp. 683–700.

5. Mo, X.; Huang, Z.; Xing, Y.; Lv, C. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 9554–9567. [CrossRef]

6. Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. Vectornet: Encoding hd maps and agent dynamics from
vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 13–19 June 2020; pp. 11525–11533.

7. Zhao, H.; Gao, J.; Lan, T.; Sun, C.; Sapp, B.; Varadarajan, B.; Shen, Y.; Shen, Y.; Chai, Y.; Schmid, C.; et al. Tnt: Target-driven
trajectory prediction. In Proceedings of the Conference on Robot Learning, Cambridge, MA, USA, 8–11 November 2021;
pp. 895–904.

8. Gu, J.; Sun, C.; Zhao, H. Densetnt: End-to-end trajectory prediction from dense goal sets. In Proceedings of the the IEEE/CVF
International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 15303–15312.

9. Liang, M.; Yang, B.; Hu, R.; Chen, Y.; Liao, R.; Feng, S.; Urtasun, R. Learning lane graph representations for motion forecasting. In
Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings,
Part II 16; Springer: Cham, Switzerland, 2020, pp. 541–556.

10. Zeng, W.; Liang, M.; Liao, R.; Urtasun, R. Lanercnn: Distributed representations for graph-centric motion forecasting. In
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; pp. 532–539.

11. Gilles, T.; Sabatini, S.; Tsishkou, D.; Stanciulescu, B.; Moutarde, F. Home: Heatmap output for future motion estimation. In
Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22
September 2021; pp. 500–507.

12. Gilles, T.; Sabatini, S.; Tsishkou, D.; Stanciulescu, B.; Moutarde, F. Gohome: Graph-oriented heatmap output for future motion
estimation. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA,
23–27 May 2022; pp. 9107–9114.

13. Jia, X.; Wu, P.; Chen, L.; Liu, Y.; Li, H.; Yan, J. Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction
via scene encoding. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13860–13875. [CrossRef] [PubMed]

14. Zhou, Z.; Ye, L.; Wang, J.; Wu, K.; Lu, K. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8823–8833.

15. Fang, J.; Zhu, C.; Zhang, P.; Yu, H.; Xue, J. Heterogeneous trajectory forecasting via risk and scene graph learning. IEEE Trans.
Intell. Transp. Syst. 2023, 24, 12078–12091. [CrossRef]

16. Liu, X.; Wang, Y.; Jiang, K.; Zhou, Z.; Nam, K.; Yin, C. Interactive trajectory prediction using a driving risk map-integrated deep
learning method for surrounding vehicles on highways. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19076–19087. [CrossRef]

https://www.argoverse.org/av1.html
http://doi.org/10.3390/electronics13152968
http://dx.doi.org/10.1109/TITS.2022.3146300
http://dx.doi.org/10.1109/TPAMI.2023.3298301
http://www.ncbi.nlm.nih.gov/pubmed/37486847
http://dx.doi.org/10.1109/TITS.2023.3287186
http://dx.doi.org/10.1109/TITS.2022.3160630

Electronics 2025, 14, 105 24 of 24

17. Varadarajan, B.; Hefny, A.; Srivastava, A.; Refaat, K.S.; Nayakanti, N.; Cornman, A.; Chen, K.; Douillard, B.; Lam, C.P.;
Anguelov, D.; et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction. In Proceedings
of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022, pp. 7814–7821.

18. Shi, S.; Jiang, L.; Dai, D.; Schiele, B. Motion transformer with global intention localization and local movement refinement.
Adv. Neural Inf. Process. Syst. 2022, 35, 6531–6543.

19. Zhang, L.; Li, P.; Liu, S.; Shen, S. SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for Autonomous Driving.
IEEE Robot. Autom. Lett. 2024, 9, 3767–3774. [CrossRef]

20. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
21. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
22. Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous graph attention network. In Proceedings of the World

Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2022–2032.
23. Hong, H.; Guo, H.; Lin, Y.; Yang, X.; Li, Z.; Ye, J. An attention-based graph neural network for heterogeneous structural learning.

AAAI Conf. Artif. Intell. 2020, 34, 4132–4139. [CrossRef]
24. Ye, M.; Cao, T.; Chen, Q. Tpcn: Temporal point cloud networks for motion forecasting. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11318–11327.
25. Zhang, Y.; Qian, D.; Li, D.; Pan, Y.; Chen, Y.; Liang, Z.; Zhang, Z.; Zhang, S.; Li, H.; Fu, M.; et al. Graphad: Interaction scene graph

for end-to-end autonomous driving. arXiv 2024, arXiv:2403.19098.
26. Wang, S.; Li, B.Z.; Khabsa, M.; Fang, H.; Ma, H. Linformer: Self-attention with linear complexity. arXiv 2020, arXiv:2006.04768.
27. Li, Y.; Li, K.; Zheng, Y.; Morys, B.; Pan, S.; Wang, J. Threat assessment techniques in intelligent vehicles: A comparative survey.

IEEE Intell. Transp. Syst. Mag. 2020, 13, 71–91. [CrossRef]
28. Lee, D.N. A theory of visual control of braking based on information about time-to-collision. Perception 1976, 5, 437–459.

[CrossRef] [PubMed]
29. Minderhoud, M.M.; Bovy, P.H. Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 2001,

33, 89–97. [CrossRef] [PubMed]
30. Wang, X.; Alonso-Mora, J.; Wang, M. Probabilistic risk metric for highway driving leveraging multi-modal trajectory predictions.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 19399–19412. [CrossRef]
31. Tang, B.; Zhong, Y.; Neumann, U.; Wang, G.; Chen, S.; Zhang, Y. Collaborative uncertainty in multi-agent trajectory forecasting.

Adv. Neural Inf. Process. Syst. 2021, 34, 6328–6340.
32. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [CrossRef]
33. Chang, M.F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:

3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8748–8757.

34. Loshchilov, I. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
35. Choi, S.; Kim, J.; Yun, J.; Choi, J.W. R-pred: Two-stage motion prediction via tube-query attention-based trajectory refinement. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 8525–8535.
36. Tang, Y.; He, H.; Wang, Y. Hierarchical vector transformer vehicle trajectories prediction with diffusion convolutional neural

networks. Neurocomputing 2024, 580, 127526. [CrossRef]
37. Lee, N.; Choi, W.; Vernaza, P.; Choy, C.B.; Torr, P.H.; Chandraker, M. Desire: Distant future prediction in dynamic scenes with

interacting agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 336–345.

38. Park, S.H.; Lee, G.; Seo, J.; Bhat, M.; Kang, M.; Francis, J.; Jadhav, A.; Liang, P.P.; Morency, L.P. Diverse and admissible trajectory
forecasting through multimodal context understanding. In Proceedings of the Computer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XI 16; Springer: Cham, Switzerland, 2020; pp. 282–298.

39. Chai, Y.; Sapp, B.; Bansal, M.; Anguelov, D. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction.
arXiv 2019, arXiv:1910.05449.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2024.3370039
http://dx.doi.org/10.1609/aaai.v34i04.5833
http://dx.doi.org/10.1109/MITS.2019.2907633
http://dx.doi.org/10.1068/p050437
http://www.ncbi.nlm.nih.gov/pubmed/1005020
http://dx.doi.org/10.1016/S0001-4575(00)00019-1
http://www.ncbi.nlm.nih.gov/pubmed/11189125
http://dx.doi.org/10.1109/TITS.2022.3164469
http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/10.1016/j.neucom.2024.127526

	Introduction
	Related Works
	Homogeneous Graph Interaction in Trajectory Prediction
	Risk Assessment in Trajectory Forecasting
	Trajectory Representation for Trajectory Forecasting

	Methods
	Problem Formulation and Approach Overview
	Central and Neighboring Node Representation
	Heterogeneous Risk-Aware Local Graph Attention Encoder
	Risk-Aware Edge Layer
	Risk-Aware Edge Graph Attention
	Low-Rank Temporal Transformer

	Fusion Lane and Global Interaction Encoder
	Continuous Parameterized Trajectory Decoder
	B-Spline Curve
	Knot Vector Adaptation
	Predicted Trajectory Matrix

	Expertiments
	Experiments Setup
	Datasets
	Evaluation Metrics
	Implementation Details

	Ablation Studies
	Ablation Studies on Each Encoder Component
	Ablation Study of Decoder Variants with Continuous Trajectory Decoder

	Results
	Comparison with State-of-the-Art
	Inference Speed
	Visualization

	Conclusions
	Limitations and Future Work
	References

