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Abstract: A novel 3D auto-drum machine system for the generation and recording of percussion
sounds is developed and presented. The capabilities of the machine, along with a calibration, sound
production, and collection protocol are demonstrated. The sounds are generated by a drumstick at
pre-defined positions and by known impact forces from the programmable 3D auto-drum machine.
The generated percussion sounds are accompanied by the spatial excitation coordinates and the
correspondent impact forces, allowing for large databases to be built, which are required by machine
learning models. The recordings of the radiated sound by a microphone are analyzed using a pre-
trained deep learning model, evaluating the consistency of the physical sample generation method.
The results demonstrate the ability to perform regression and classification tasks when fine tuning
the deep learning model with the gathered data. The produced databases can properly train machine
learning models, aiding in the investigation of alternative and cost-effective materials and geometries
with relevant sound characteristics and in the development of accurate vibroacoustic numerical
models for studying percussion instruments sound synthesis.

Keywords: cymbal sounds; sound database; audio recognition; machine learning

1. Introduction

Percussion instruments are musical instruments that produce sound when struck by a
percussion mallet, beater, or hand, or when scraped, rubbed, or struck against another simi-
lar instrument [1]. The percussion section of an orchestra usually consists of instruments
such as the timpani, snare drum, bass drum, tambourine (membranophones), cymbals, and
triangle (idiophones). Beyond the orchestral setting, percussion instruments play a crucial
role in various musical genres, from the pulsating beats of jazz and rock to the complex
rhythms of world music, and the percussive family also includes a vast array of exotic and
culturally specific instruments like djembes, congas, tabla, and marimbas. Although they
are the most widely played instruments, they have not been as extensively studied as wind
or string instruments [2,3].

For the study of percussion musical instruments, vibroacoustic analysis is of major
importance [4–6]. The literature contains research studies on the vibroacoustic behavior
of percussion instruments. For example, Skrodzka et al. [7] performed a modal analysis
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of a batter head of a snare drum and measurements of the instrument sound spectrum.
Modal analysis and the acoustic radiation measurements of the kettledrum were performed
by Tronchin [8]. Sunohara et al. [9] experimentally measured the sound spectrum, the
vibration of the body, drumstick driving force, directivity, and the sound intensity vector
of Japanese wooden drums (mokugyo). More recently, detailed numerical simulations
were performed to study the vibroacoustic behavior of crash and splash cymbals [10,11],
while nonlinear sound syntheses of cymbals were studied in the work presented in [12,13].
Moreover, ongoing research focuses on robotic-based experimental measurements [14–18].

The existing research on the automated generation of databases (DBs) of percussion
sounds and their classification and recognition via machine learning (ML) is limited. Re-
cently, Boratto et al. [19–21] recorded 276 audio samples corresponding to four drum
cymbals made of three different bronze alloys. There were environmental and microphone
variations during the recording procedure. Chhabra et al. [22] implemented drum instru-
ment classification using machine learning. Recently, Li et al. [23] performed an audio
recognition of Chinese traditional instruments, including percussion instruments, based on
machine learning.

In this research work, we introduce an integrated method for the development of
large percussion sound DBs, generated by known impact force spatiotemporal conditions,
which are mapped and classified by audio recognition via machine learning. A novel 3D
Auto-Drum Machine (3D-ADM) system capable of generating and collecting cymbal impact
drum sounds is developed and presented. The capabilities of the 3D-ADM, along with
initialization and calibration, sound production, and recording protocol for a reliable and
repeatable measurement system, are demonstrated. The 3D-ADM excites the percussion
instruments with a wooden drumstick at various points, sequentially, along a radial path
at programmable spatial intervals, with known impact forces. The audio signal data
produced at each excitation point of the vibrating object under study, including the meta-
data details of spatial coordinates of the excitation point and the impact force value, are
recorded. The data collected during the calibration and initialization of the 3D-ADM are
fed into a transformer-based audio neural network (ML model) that has been pretrained
on speech signal. The internal representations of the ML model are visualized in 2D by a
dimensionality reduction technique, which verifies the assumption that the collected data
are separable (almost linearly) based on material and geometry. Additionally, based on the
visualization process, it is expected that when enough data become available through the
process described, models that perform geometry and material classification, as well as
excitation-point estimation through regression, will be trained. On one hand, the ML-based
analysis offers confirmation that the collection process is robust and consistent; on the other
hand, it acts as a proof of principle, indicating that further development of large databases
of 3D-ADM data will allow for the implementation of innovative research pathways relating
to vibroacoustic characteristics, playing (excitation) positions, and generated sounds.

The generated and recorded percussion sounds are accompanied by the spatial exci-
tation coordinates and the correspondent impact forces, allowing for the development of
large and detailed DBs required for machine learning models. Thus, a high repetition rate
for data production may be achieved and gathered in the future within sound DBs capable
of training ML models. These DBs may serve as a reference for investigating the alternative
and cost-effective materials and geometries with relevant sound characteristics [24]. Using
an ML classification algorithm, it becomes possible to determine how much an alternative
or cheaper material and/or manufacturing processes may alter the resulting sound. For
future studies, this could be complemented by hearing tests. Moreover, apart from percus-
sion instruments, this study could be applied to other musical instruments, also involving
impulse testing [2,3,25]. Furthermore, the generation of sound DBs will constitute a foun-
dation to properly train ML models, aiding in the development of accurate vibroacoustic
numerical models and the exploration of percussion instrument sound synthesis [10–13].

The contributions of this paper can be summarized as follows: (i) a system that can
automate the process of collecting percussive audio data, including the excitation force and



Electronics 2024, 13, 1787 3 of 12

spatial position is presented; (ii) a qualitative analysis based on a pretrained ML model
is developed that further evaluates the consistency of the data collection process; and
(iii) the presented results demonstrate the feasibility of large sound database develop-
ment. Such databases can properly train ML models for the possible use of alternative
and cost-effective materials and geometries with similar sound characteristics and the
development of accurate vibroacoustic numerical models used in percussion instruments
sound synthesis.

Two 8-inch splash cymbals a classic medium thin, and a bell-shaped, made of a B8
Bronze and MS63 alloy, respectively, along with an 8-inch circular aluminum sheet used as
a reference, are chosen for this research study. In Section 2, the methodology is presented.
The experimental setup, the 3D-ADM system initialization and calibration, and the ML
model are described in detail. In Section 3, the results of the data capturing, as well as the
results of the exploratory analysis using ML are presented and discussed. The conclusions
are described in Section 4.

2. Methodology
2.1. Experimental Setup

The 3D-ADM system developed for the generation and recording of the impact sounds
is presented in Figure 1a. The 3D-ADM system is developed to excite the object under
study by a known impact force. The circular aluminum sheet under study in Figure 1 is
used as a reference and has an 8-inch diameter and 3 mm thickness. As shown in Figure 1c,
the excitation mechanism can excite (strike) the sheet at any point along the radial path over
the X-axis. The generated vibration can be detected and recorded by the 3D-ADM system,
which is fully automated and Computer Numerical Controlled (CNC). This process is
repeatable and accurate since the excitation conditions remain constant until the predefined
and programmed number of points are excited. The corresponding CAD model presents
the 3D-ADM in detail, shown in Figure 1b. A permanent metal stud is welded at the
center of the front edge of the stage on the X-axis, to host and hold the object under study.
The reference metal sheet, with a radius R1, is held at height H1 by bolts, whose torque
is measured by a gauge while fastened, and is maintained the same for all the samples
studied. The stepper motor SM1-X translates the stage along the X-axis, and the stepper
motor SM2-Z translates the excitation mechanism along the Z-axis.
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Figure 1. The 3D-ADM system generating and collecting the impact sounds: (a) Experimental set-up
of the system, (b) CNC spatial adjustment, and (c) Excitation mechanism.

The excitation mechanism is rigidly and permanently attached to the center of the
horizontal beam of 3D-ADM, as shown in Figure 1c. For the excitation, any type of
drumstick can be used. Herein, a modified drumstick (STK) incorporating an impact
hammer (IH, Model 086E80, PCB, Depew, NY, USA) on one side of its tip is used. The
STK is held by a double ring holder (HLD), which allows for movement along a circular
path due to a central shaft and two pillow block bearings. The movement of the STK is
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induced by an electromagnetic piston (EP), driven by a circuit control system, denoted as
the current controller (CCR) in Figure 1a, and results in the impact force applied. The STK
is restored to its equilibrium position by a spring (SP), which is attached to the STK by a
ring holder. The G-code synchronizes the spatial motion of the CNC 3D-ADM on the XZ
plane with the motion of the STK.

The emitted sound is recorded by a measurement microphone (MIC, Model MiniSPL,
NTI, Schaan, Liechtenstein), which is connected to an audio interface (AI, Model QUAD
Capture, Roland, Los Angeles, CA, USA). Additionally, a miniature accelerometer (ACC,
Model TLD352A56, PCB, Depew, NY, USA) can be used for the detection of the vibration.
Thus, the system allows for the simultaneous recording of two signals, one by ACC (con-
verted to wav format), and one by MIC, providing additional capabilities for vibroacoustic
measurements to the 3D-ADM system.

The measurements are performed in the recording studio of the Department of Mu-
sic Technology and Acoustics of the Hellenic Mediterranean University to eliminate the
influence of background noise and reverberation on the recorded signals. The emitted
sounds are recorded within sequential time windows, from excitation point to point, thus
any noise produced by the machine and the motors is avoided. The development of
a large training sound data base will further follow by implementing recording studio
directional microphones.

2.2. System Initialization & Calibration

The initialization and calibration of the 3D-ADM system is performed using the
circular 8-inch Al sheet set at a height H1, as presented in Figure 1b. The modified
drumstick with the hammer tip is used for the spatial zero-set of the X and Z axis, with
reference to the excitation point ExP-1, the first ExP to be measured. Therefore, angle θ is
set to 0◦ by adjusting the spring accordingly, and thus securing the perpendicular hit of
the hammer tip on the flat metal sheet. Figure 2a shows the coordinate system to be used
for the G-code with an origin on ExP-1, and the next equidistant points along the radial
path of the metal sheet, to be excited from X = 0 to R1, while the Z coordinates are set to
zero since the object under study is flat. The coordinates of the 16 ExPs are imported in the
G-code, setting a sequence of 16 equidistant points along the radial path of the metal sheet
to be struck. The total number of the excitation points is defined by the user, requiring
the corresponding changes to the G-code without any limitation. The spring is adjusted
to its initial position to set the angle θ between the axis of drumstick and the plane of the
Al sheet to θ = 3◦. The microphone is fixed with a direction to the center of the circular Al
sheet under study at a distance of 20 cm, and the accelerometer is attached 30 mm far from
the center on the circular sheet, without affecting its vibroacoustic behavior.

The calibration of the 3D-ADM system is based on the CCR, which is equipped by a
potentiometer that enables the control of the impact force via the variation of the current
intensity that drives the EP. Given the initialization parameters, the angle θ is set to 3◦ by
the help of spring and the CCR is set to deliver an impact force of 40 N, which is validated
by the IH sensor. To automate the measuring and recording procedure, the time delay
(td) for vibration relaxation before the excitation of the next ExP is determined. A trial
excitation is performed with a nominal force of 40 N and the accelerometer records the
duration of the vibrational signal to be ~2 s. Therefore, a td of 10 s is introduced in the
G-code to allow the synchronization of the EP movement with the CCR between each ExP
excitation, and to provide sufficient relaxation time for the vibrating Al sheet.

After initialization and calibration, the efficiency of the 3D-ADM system in terms
of repeatability and accuracy is determined. The G-code developed for the sequential
excitation and the recording of the 16 ExPs is executed seven more times. All the signals
of the accelerometer, the force measured by the hammer, and the sound captured by the
microphone are recorded and stored. Figure 2b shows the mean force value for each
excitation point, which reveals a maximum deviation of 1.3 N at ExP-16 from the impact
force of 40 N. The deviation of the mean value is expressed as a percentage in Figure 3. The
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mean value of the absolute deviation percentage for all 16 ExPs is 1.53%. The demonstrated
results reveal that the smaller deviation corresponds to points from ExP-5 to ExP-12. Such
force value deviations result only in small changes in the sound energy, which is recorded
by the microphone, and thus may be neglected. The same process was also repeated for the
impact forces of 20 N, 30 N, and 50 N, resulting in similar deviation values, securing the
independency of the measurements accuracy from the excitation parameters. It should be
noted that the contact duration between the drumstick and the metal sheet was measured
to be ~15 ms for all cases.
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The described protocol secures the measurement process and their accuracy with the
help of the modified drumstick. The drumstick is rotated by 180◦ along its axis within
the HLD without any other system alterations, ensuring the predefined value of the same
impact force on the same ExPs. The proposed measuring methodology can be directly
applied to any type of sample utilizing impact excitations under different force values.
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2.3. Machine Learning Model

The data collected by the 3D-ADM system can produce a sufficiently large dataset to
study many aspects regarding the relations between the sound and physical attributes of
objects (e.g., geometry, material, force, and the position of impact among others). To verify
the efficiency and usability of such a database, the consistency of this early developed
data collection process must be investigated (i.e., the pairs of same intended ExPs and
forces produce similar waveforms). Additionally, a proof-of-concept overview regarding
the prediction capabilities on the newly developed and currently small dataset collected
from two splash cymbals and the Al sheet of different materials and geometries must
be explored.

A pretrained ML model on speech data through self-supervised learning is employed
for the exploratory analysis. Such models are pretrained on large datasets of speech audio
data and they can be readily employed with, or even without, fine-tuning on music-related
tasks [26]. The specific model used in this study is DistilHuBERT [27], which is a light-
weight version of the HuBERT model [28], which is a “discretized” version of the wave2vec
2.0 model [29]. This model takes an audio waveform as the input with a 16 kHz sample rate
and converts it into a contextualized representation of 20 ms frames. This representation
encompasses information for each 20 ms-long frame of audio into 768-dimensional vectors
that capture the context of the entirety of frames in the sequence through the transformer
attention mechanism [30]; vectors that belong to the same context are more similar. Since we
are not fine-tuning the system, we use the “frozen” version as given in the work presented
in [27], where the details for the system hyper-parameters can be found.

The motivation behind using DistilHuBERT and not any other network trained with
self-supervision (e.g., MERT [31]) is two-fold. First, to use a reliable system, which has
been tested in several tasks that are not limited to music. Second, to test our results on
a system that was built to identify speech (not music), since speech models are sensitive
to noise-related spectra because they can identify fine details in the spectra of fricatives.
Although other models should be tested in the future, in the context of this work it suffices
determining the prospects of such pretrained models, which are robust and “noise-sensitive”
enough, capable of processing the collected acoustic data.

To account for different waveform lengths, average pooling is applied, i.e., the average
of all 768-dimensional vectors in the sequence are averaged out for each dimension, leading
to a single average 768-dimensional representation for each audio file. The process for
extracting the 768-dimensional representation for a recorded waveform is depicted in
Figure 3. This model is not fine-tuned to any downstream task, but it is rather used in its
readily available pretrained state.
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3. Results and Discussion
3.1. Data Capturing

The drumstick is rotated by 180◦ along its axis to allow for the excitation of the
same 16 ExPs of the Al sheet by the wooden tip. Typical sound spectra recorded by the
microphone (excitation at the points 6, 12, and 14) are shown in Figure 4, along with the
spectra recorded during calibration using the hammer tip. The main aspect revealed for
3D-ADM by observing the results in Figure 4 is that both excitations by the hammer and
the wooden tip produce sounds with similar frequency characteristics, verifying again that
the modified drumstick allows for excitation with the same initial conditions. As expected,
the sound spectra resulting from the wooden drumstick tip and the hammer tip are not
identical, even if the impact force is the same, because the hammer excitation induces a
point force due to its metal conical tip, while the wooden tip of the drumstick induces
dynamic pressure. These measurements correspond to real percussion sounds generated
by drummers during performance with common wooden drumsticks but preserve two
advantages: (i) the known impact conditions, and (ii) the elimination of human interaction
influence. Thus, a high repetition rate for data production may be achieved and gathered
within sound DBs, capable of both training ML models in the future and being used as a
reference for the development of accurate vibroacoustic numerical models and studying
percussion instruments sound synthesis.
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Figure 4. Spectra of the emitted sound excited by the modified drumstick with impact force F = 40 N
at the representative points ExP-6, -12, and -14 by the hammer vs. the wooden tip (level in a.u.).

The recorded sound time series and spectra, including the meta-data details of spatial
coordinates of the excitation point and the impact force value, are collected and seeded to
the sound DB. Additionally, the frequency response function using a kinematic quantity
can also be determined and further used in FEM models for vibroacoustic analysis [10–13].
Extra development and the enrichment of the DB can be achieved by varying the applied
force via the alterations of the current intensity that drives the EP of CCR. In this context,
two measurement sets are additionally performed with a mean force value of 20 N and
50 N. The differences in the sound spectrum after exciting the Al sheet at the same point
with the hammer by applying different forces are shown in Figure 5. The increase in the
input energy to the sheet is evident in the spectrum by the level increase. It must be noted
that the frequency spectra characteristics for both forces, even if their values differ by 30 N,
preserve the same behavior, as expected.

The 8-inch Al reference sheet is replaced by the 8-inch bell-shaped MS63 alloy splash
cymbal, supported at height H1 by bolts fastened again with the same torque measured
by the gauge. The G-code is modified and adjusted at the new Z-coordinates for each of
the sixteen ExPs, according to the CAD axisymmetric cymbal profile. The accelerometer
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and the microphone are kept at the same positions during the initialization measurements.
The sound delay is measured again to determine the time interval between consecutive
measurements. The same methodology is also applied to the measurements of a splash
medium-thin 8-inch B8 cymbal. The acoustic measurement sequence for sixteen ExPs
and for the impact forces of 20, 30, 40, and 50 N are performed. The sound data and the
measurements results are recorded and stored, including the corresponding meta-data and
are added to the DB under development. Figure 6a shows the microphone recorded sound
spectra of the MS63 and the B8 cymbals, after excitation at the ExP-7 within the bow area
by an impact force of 30 N by the wooden tip of drumstick, with reference to the 8-inch
Al sheet. It must be noted that the ExPs of interest regarding cymbals are in the bow area
ranging from ExP-5 to ExP-14, and these ExPs belong to the range where the minimum
force deviation values was measured and presented in Figure 2. The representative spectral
information in Figure 6a on a given frame, disregarding spectral evolution over time,
demonstrates that the detailed spectral characteristics may provide the indications about
the geometry and the material of the cymbals required for regression and recognition.
Figure 6b presents the distribution of the ExPs for each 8-inch percussion instrument under
study. The CAD axisymmetric profile used for the G-codes developed is highlighted and
the characteristic changes in the curvature are also obvious and will be used in the future
as classes for the ML models.
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3.2. Exploratory Analysis

For examining the goals at hand, recordings produced by the microphone are employed.
Specifically, two repetitions of the same force and same position were collected for 16 po-
sitions (32 audio waveforms in total), for three different percussion instruments as already
described (different geometry and material), leading to a total of 96 audio waveforms. The
t-SNE [32] dimensionality reduction method was applied to transform the 768-dimensional
representations of all 96 recordings to 2D representations. This dimensionality reduction
method disentangles several assumed low-dimensional manifolds (in this case, 2D manifolds
are assumed) that are embedded in high-dimensional manifolds (i.e., 768D), based on linear
approximations of neighboring data points within low-dimensional manifolds.

Figure 7 shows the resulting mapping for all 96 recordings, where the colors of each
point represent the material/geometry of each cymbal. The results are clearly separable,
almost linearly, a fact that indicates that speech-pretrained model performs well on the
basic categorization of the examined data. Figure 8 includes a zoomed-in region of Figure 7;
this region includes numbers for each point that indicate the corresponding ExP. Namely,
numbers 1–16 indicate the 16 ExPs with increasing radius and numbers 17–32 indicate
the repetitions, where the repetition of excitation “i” is depicted as “i + 16”. In Figure 8
the repetitions appear close to each other (9–25, 10–26, etc.). This fact indicates that the
collected data is consistent, verifying that repeated attempts lead to neighboring results.
Furthermore, the placement of consecutive ExPs on consecutive positions on the graph
shows that it is possible to do ML-based regression for estimating the ExP of a given sound
on a given geometry/material. Similar results can be obtained for other parts of the graph
presented in Figure 7.

Furthermore, there is an almost monotonic trajectory for consecutive hits in both
graphs. For instance, in the zoomed-in region presented in Figure 8, where the effect is
clearer, the excitations of the ExPs 9, 10, 11, 12, etc., are on a path that moves from left
to right. This indicates that it is possible to fine tune an ML system to predict the ExP
coordinates, given the waveform and the geometry/material.
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4. Conclusions

A novel automated process for the generation, collection, classification, and recognition
of audio files corresponding to percussion sounds is presented. The sounds are produced by
known impact force excitation from the developed 3D-ADM, free from human interference.
The proposed excitation and measurement ADM system includes a microphone and a
miniature accelerometer, used to record the sound and vibration, resulting after excitation.
The machine is CNC programmable, allowing for variations of the excitation points and
the impact force. The repeatability and the efficiency of the measurement procedure is
explored and validated.

After initialization and calibration, the 3D-ADM system is used to excite two cymbals
and a flat circular plate, which differ in material and geometry. The recorded sounds
are processed by a ML model pretrained on speech signals. The visualizations of the
internal representations of the ML model validate the consistency of the process followed
for data measurements and collection. The results presented demonstrate the capability
of generation of large sound databases and provides pointers for future work regarding
ML-based modeling to relate materials, geometries, playing positions, and generated
sounds. This work might include fine-tuning ML models to classify the material, geometry,
force, and position of impact either separately (i.e., give a probability for each attribute
independently), conditionally (e.g., given a material and force/position of impact, estimate
the geometry), or jointly (i.e., give a single probability for a combination of attributes).
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