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Abstract: In this study, we introduce a stagger-stacked DDR module that comprises one IPD chip
(top die) along with four memory chips initially. The steady-state thermal characteristics of this
configuration were empirically assessed using a dedicated thermal test vehicle. The purpose of this
research is to investigate the module’s junction temperature by adjusting four factors: the thermal
conductivity of the molding plastic, chip thickness, chip misalignment length, and the thermal
conductivity of the adhesive film. We observed that the junction temperature decreases with an
increase in the chip staggered length. An improved orthogonal experimental method was utilized to
achieve the optimal design of the module. The optimal junction temperature has decreased by 4.74%
compared to the initial value. Additionally, three alternative packaging technologies—cantilever,
pyramid, and a combination of cantilever and pyramid—were evaluated for the benchmarking of
the thermal performance. Ultimately, the stagger-stacked package demonstrated a reduction in the
junction temperature by 3.62%, 7.95%, and 5.63%, respectively, when compared to the three traditional
stacked packages.

Keywords: stagger-stacked DDR module; thermal resistance; junction temperature optimization;
improved orthogonal experiment

1. Introduction

The substantial increase in packaging density necessitates the advancement of both
technological innovations and architectural designs within the packaging domain. In
order to achieve the development goals of light, thin, small, high-performance, and high-
reliability chips, engineers have explored the satisfactory method—SiP (System-in-Package).
Stacked chips are commonly used for packaging memory chips. However, as the power
consumption of the chip continues to increase, the heat generation increases accordingly
and brings about heat dissipation challenges. Thermal crosstalk among internal dies
in the vertical dimension intensifies the thermal management challenge, necessitating
a reduced power budget to ensure that memory chips function below the temperature
threshold of 85 ◦C [1,2]. In addition, an innovative integrated fanout packaging technology
was proposed in [3] for developing state-of-the-art mobile applications. The thermal
performance of the advanced packaging technologies was analyzed and compared with
two typical technologies. The results showed that the proposed packaging technology
had a 12% and 17% lower junction to ambient thermal resistance than FC PoP and 3D
IC. In [4], a novel 3D flip chip fanout packaging approach (FC-FOWLP) incorporating Si
bridges was introduced. When compared to the 3D FOWLP and 3D stacked IC package, the
FC-FOWLP demonstrates the lowest thermal resistance across all the components. In [5], an
orthogonal experiment was conducted to investigate the reliability of a four-tier die-stacked
SiP structure. Through optimal design, it was possible to reduce maximum thermal stress
by more than 21.2%. Paper [6–8] optimizes the structure and materials of the heat sink
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to improve the heat dissipation capacity of the packaging system. With the development
of chemical technology and material technology, new thermal switches [9] and thermal
transistors [10] become the next generation of future thermal management technologies.

In this paper, we initially present the stagger-stacked DDR module, which contains five
layer chips: the top die is one IPD chip and the other dies are memory chips. Subsequently,
a finite element model is developed to simulate the steady-state thermal performance of
the structure. The thermal conductivity of the molding compound, chip thickness, chip
staggered length, and thermal conductivity of the adhesive film are selected, respectively, to
analyze and to enhance the stagger-stacked DDR module. The results demonstrate that an
increase in the chip staggered length effectively mitigates the junction temperature. These
four factors are also employed as variable factors for enhanced orthogonal experiments.
Specifically, two consecutive rounds of orthogonal experimentation are conducted to
optimize the overall module’s heat dissipation performance, resulting in an optimal design.
After combining the optimal values of various factors and performing simulation again,
the optimal junction temperature can be determined. Compared with the initial junction
temperature, the optimal junction temperature has experienced a reduction of 4.74%.
Subsequently, the thermal performance of the proposed package is benchmarked with three
kinds of traditional stacked packaging configurations, and the result reveals that the stagger-
stacked DDR module has the best thermal performance. When compared to the three
traditional stacked packages (cantilever, pyramid, and cantilever–pyramid combination),
our proposed stagger-stacked package demonstrates reductions in junction temperature
by 3.62%, 7.95%, and 5.63%, respectively. The findings indicate that the staggered-stacked
DDR module proposed in this paper possesses superior thermal performance.

2. Finite Element Model of the Stagger-Stacked DDR Module

The simulation model of the stagger-stacked DDR module is created by using ANSYS
2023 R2. Figure 1 illustrates the complete structure of the module, encompassing one
IPD chip (die 5), four memory chips (die1~die4), adhesive film, a molding compound, a
substrate, and a pin. The structure has been simplified (excluding bonding wires, etc.) to fa-
cilitate more efficient simulation calculations. Important thermal parameters are presented
in Table 1. The dimensions of the molding compound and substrate are 14 mm × 15.5 mm
in length and width, respectively. The substrate has a thickness of 0.25 mm, while the mold-
ing compound is 0.9 mm thick, which exceeds the top chip by 0.3 mm. Two sets of adhesive
films with dimensions of 5 mm × 10 mm × 0.02 mm and 4.5 × 10 × 0.02 mm are utilized.
Based on the data tabulated in Table 1, a chip staggered length of 0.5 mm is determined.
We will evaluate the thermal characteristics of the stagger-stacked DDR module mounted
on a PCB, where the model is built following the JEDEC 51-2 standard [11]. The IPD chip
is set to 0.1 W, and the other memory chips are set to 0.5 W, respectively. An ambient
temperature of 25 ◦C is considered. The initial junction temperature is 74.87 ◦C, which is
shown in Figure 2. The picture also demonstrates that the junction temperature rises by
about 50 ◦C. Therefore, it is necessary to optimize the thermal performance of the module.
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Figure 1. The whole structure of the stagger-stacked DDR module. 
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Table 1. Dimensional and thermal parameters of the stagger-stacked DDR module.

Components Dimension (mm) Thermal Conductivity (W/mK)

die 5 × 10 × 0.1 124
DA1 5 × 10 × 0.02 3

2 D51 2.3 × 2.3
3 D52 2.3 × 2.3

DA2~DA5 4.5 × 10 × 0.02 3

Substrate 14 × 15.5 × 0.25 x, y: 20
z: 0.8

Molding compound 14 × 15.5 × 0.9 0.8
pin 0.25 × 0.25 × 0.25 50

PCB 114.3 × 76.2 × 1.6 x, y: 25.76
z: 0.38

Electronics 2024, 13, x FOR PEER REVIEW 3 of 15 
 

 

Substrate
die1

Solder ball

die2
die3

die4
die5chip staggered 

zone

chip staggered zonecontact zonechip staggered length 

DA1
DA2

DA3
DA4

DA5

 
Figure 1. The whole structure of the stagger-stacked DDR module. 

Table 1. Dimensional and thermal parameters of the stagger-stacked DDR module. 

Components Dimension (mm) Thermal Conductivity (W/mK) 
die 5 × 10 × 0.1 124 

DA1 5 × 10 × 0.02 3 
2 D51 2.3 × 2.3 
3 D52 2.3 × 2.3 

DA2~DA5 4.5 × 10 × 0.02 3 

Substrate 14 × 15.5 × 0.25 x, y: 20 
z: 0.8 

Molding com-
pound 

14 × 15.5 × 0.9 0.8 

pin 0.25 × 0.25 × 0.25 50 

PCB 114.3 × 76.2 × 1.6 
x, y: 25.76 

z: 0.38 

 
Figure 2. The initial temperature distribution of the stagger-stacked DDR module. 

3. Optimize Thermal Performance Based on Single Factor 
For multi-chips, the heat generated by the chips in each layer will be coupled to each 

other, which will easily cause the chip to overheat and fail. As a result, research on the 
optimization of the junction temperature of the stacked package is significant. In this pa-
per, four different factors, including the thermal conductivity of the molding compound, 
the chip thickness, the chip staggered length, and the thermal conductivity of the adhesive 
film, are selected to analyze and improve the thermal performance of the stagger-stacked 

Figure 2. The initial temperature distribution of the stagger-stacked DDR module.

3. Optimize Thermal Performance Based on Single Factor

For multi-chips, the heat generated by the chips in each layer will be coupled to
each other, which will easily cause the chip to overheat and fail. As a result, research
on the optimization of the junction temperature of the stacked package is significant.
In this paper, four different factors, including the thermal conductivity of the molding
compound, the chip thickness, the chip staggered length, and the thermal conductivity
of the adhesive film, are selected to analyze and improve the thermal performance of the
stagger-stacked DDR module. The following section will discuss the effect of the factors on
the junction temperature.

3.1. Effect of Thermal Conductivity of Molding Compound

In order to study the influence of the thermal conductivity of the molding compound
on the junction temperature, the thermal conductivity of the molding compound is set to
range from 0.5 W/m K to 25 W/m K. It can be inferred from Figure 3 that with an increase
in the thermal conductivity of the molding compound, there is a continuous decrease in
the junction temperature of the module. Moreover, for high values of thermal conductivity,
the curve tends to flatten out. When the thermal conductivity of the molding compound is
0.5 W/m K, the junction temperature of the DDR module is 75.77 ◦C, which is the highest
value. When the thermal conductivity of the molding compound exceeds 20 W/m K, the
junction temperature of the module is 65.57 ◦C, which is the lowest value of the junction
temperature, and no longer changes with the increase in thermal conductivity. This is
because the ratio of the thermal resistance of the molding compound to the total thermal
resistance tends to be stable, and the effect of the thermal conductivity of the molding
compound on the junction temperature is no longer obvious.
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3.2. Effect of Chip Thickness

As seen in Figure 4., the junction temperature of the module decreases continuously
with an increase in die thickness. The maximum value of the module junction temperature
appears at a die thickness of 0.06 mm, measuring 75.84 ◦C. The minimum value appears at
a die thickness of 0.2 mm, and the temperature is 73.2 ◦C. This is because as the thickness
of the die increases, the volume of the die increases, and its heat generation rate decreases.
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3.3. Effect of Chip Staggered Length

The change in the chip staggered length between the chips will not only change the
thermal resistance of the molding compound in the chip staggered zone but also the thermal
resistance of the contact zone. Therefore, we only change the value of the chip staggered
length to ensure that other factors remain unchanged and to then observe the change in
the junction temperature. For this analysis, a parameterized simulation model has been
regenerated for chip staggered length values in a range from 0.5 mm to 2.5 mm. The result
is given in Figure 5. It can be observed from Figure 5 that when the chip staggered length
increases from 0.5 mm to 2.5 mm, the junction temperature of the module continues to
decrease, and the lowest temperature is 72.17 ◦C. As a result, increasing the chip staggered
length is beneficial to dissipate heat. This is because when adding the chip staggered length,
more power is allocated to the chip staggered zone, and the heat flow concentration in
the contact zone is alleviated. Therefore, the effect of thermal coupling between the chips
is reduced. On the other hand, this phenomenon can be explained from the perspective
of thermal resistance. We divided the components above the module substrate into four
regions, which is shown in Figure 6. As shown in the picture, the top molding compound
is set to region 1 (yellow slash area), the central part is set to region 2 (green slash area), and
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the left and right sides are set to region 3 (brown slash area) and region 4 (red slant area),
respectively. Assuming that the chip staggered length is x (mm), the length in region 2 is
5 − x (mm). According to the thermal resistance calculation formula, the overall thermal
resistance of the component can be calculated. Regions 1 to 4 have been marked in Figure 6
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Taking the calculation process of the conduct thermal resistance of region 1 and
region 2 as an example:

Rregion1 =
0.3 × 10−3

(5 + x)× 10 × 10−6 × 0.8
=

37.5
5 + x

Rregion 2 = 5 · 0.1 × 10−3

(5 − x)× 10 × 10−6 × 124
+ 5 · 0.02 × 10−3

(5 − x)× 10 × 10−6 × 3
=

3.733
5 − x

The computing method of region 3 and 4 is similar to region 1 and 2, so the calculation
results are given directly:

Rregion 3 =
35.912

x

Rregion 4 =
50.161

x
When heat is transferred from region 1 to the substrate, regions 2~4 will transfer

heat at the same time. Therefore, the expression of total thermal resistance can be written
as follows:

Rtotal = Rregion 1 + Rregion 2//Rregion 3//Rregion 4
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Therefore, the function expression of the total thermal resistance is as follows:

Rtotal =
78.128

104.645 − 17.196 · x
+

37.5
5 + x

In order to observe the changing process of thermal resistance clearly, when converting
function expressions into graph form, which is shown in Figure 7, it can be concluded that
when the chip staggered length increases from 0.5 mm to 2.5 mm, the total thermal resis-
tance continues to decrease. Therefore, the junction temperature of the module continues
to decrease.
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3.4. Effect of Thermal Conductivity of Adhesive Film

Figure 8 illustrates the trend of junction temperature changes with the thermal con-
ductivity of adhesive film. As the thermal conductivity of the adhesive film changes from
0.5 W/m K to 3 W/m K, there is a significant decrease in the module’s junction tempera-
ture. And when the thermal conductivity of the adhesive film increases from 3 W/m K
to 18 W/m K, the change in the junction temperature is not obvious. This is because the
ratio of the thermal resistance of the adhesive film to the total thermal resistance tends to
be constant, and continuing to increase the thermal conductivity of the adhesive film has
little effect on the junction temperature.
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4. Orthogonal Experimental Design

A multi-factor test usually contains many factors and levels, which will cause a large
number of tests and waste time. The orthogonal experimental method is an efficient
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method for designing processes that operate consistently under a variety of conditions. The
method determines the most important factor and the best design when experiments are
completed [12–14]. Four selected control factors and their levels are applied in this work,
and these are tabulated in Table 2. The L16 (45) orthogonal array is chosen as the main
experiment to minimize the junction temperature. The junction temperature of the module
is used as the quality factor [15]. The orthogonal test combination and simulation results
are listed in Table 3.

Table 2. Control factors and levels.

Control Factors
Levels

1 2 3 4

Thermal conductivity of molding
compound (W/m K) (A) 0.3 0.5 0.8 1.2

Chip thickness (mm) (B) 0.06 0.08 0.1 0.12
Chip staggered length (mm) (C) 0.5 1 1.5 2

Thermal conductivity of adhesive
film (W/m K) (D) 0.5 1 3 5

Table 3. Test combination and simulation results.

Test Number A (W/m K) B (mm) C (mm) D (W/m K) E (Errors) Junction Temperature (◦C)

1 0.3 0.06 0.5 0.5 1 79.9858
2 0.3 0.08 1 1 2 77.6081
3 0.3 0.1 1.5 3 3 76.0275
4 0.3 0.12 2 5 4 75.3698
5 0.5 0.06 1 3 4 76.0407
6 0.5 0.08 0.5 5 3 75.9295
7 0.5 0.1 2 0.5 2 75.8257
8 0.5 0.12 1.5 1 1 75.2676
9 0.8 0.06 1.5 5 2 74.3284
10 0.8 0.08 2 3 1 73.2505
11 0.8 0.1 0.5 1 4 75.7211
12 0.8 0.12 1 0.5 3 75.6339
13 1.2 0.06 2 1 3 73.4334
14 1.2 0.08 1.5 0.5 4 74.2441
15 1.2 0.1 1 5 1 73.0833
16 1.2 0.12 0.5 3 2 73.4868

After obtaining the experimental results of the first orthogonal table, it is necessary
to perform a range analysis on the orthogonal table to obtain the key factors affecting the
junction temperature and the optimal value of each factor. The range analysis results of the
first orthogonal experiment are listed in Table 4; the error is an absolute value.

Table 4. Test combination and simulation results.

A (W/m K) B (mm) C (mm) D (W/m K) E (Errors)

K1 308.9911 303.7883 305.1232 305.6895 301.5872
K2 303.0635 301.0321 302.3659 302.0301 301.2489
K3 298.9339 300.6576 299.8676 298.8055 301.0243
K4 294.2476 299.7581 297.8794 298.711 301.3757
k1 77.24778 75.94708 76.2808 76.42238 75.3968
k2 75.76588 75.25803 75.59148 75.50753 75.3122
k3 74.73348 75.1644 74.9669 74.70138 75.2561
k4 73.5619 74.93953 74.46985 74.67775 75.3439
R 3.68588 1.00755 1.81095 1.74463 0.1407

Range analysis’s order 1 4 2 3 5

Range analysis determines the order of the discussed factor and the optimized level
combination. Consequently, the thermal conductivity of the molding compound has the
greatest impact on the junction temperature of the module, followed by chip staggered
length and the thermal conductivity of the adhesive film, and chip thickness has the smallest
effect on junction temperature. After that, the range values of the various factors are sorted
from large to small, and the level values of the various factors are sorted from small to large,
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forming the optimized control factors and levels of the improved orthogonal experiment, as
shown in Tables 5 and 6. The range analysis results of the improved orthogonal experiment
are shown in Table 7.

Table 5. Control factors and levels of the improved orthogonal experiment.

A (W/m K) B (mm) C (mm) D (W/m K) E (Errors)

Level 1 0.3 0.5 0.5 0.06 1
Level 2 0.5 1 1 0.08 2
Level 3 0.8 1.5 3 0.1 3
Level 4 1.2 2 5 0.12 4

Table 6. Test combination and simulation results of the improved orthogonal experiment.

Test Number A (W/m K) B (mm) C (mm) D (W/m K) E (Errors) Junction Temperature (◦C)

1 0.3 0.5 0.5 0.06 1 79.9858
2 0.3 1 1 0.08 2 77.6081
3 0.3 1.5 3 0.1 3 76.0275
4 0.3 2 5 0.12 4 75.3698
5 0.5 0.5 1 0.1 4 76.7808
6 0.5 1 0.5 0.12 3 77.1581
7 0.5 1.5 5 0.06 2 75.2461
8 0.5 2 3 0.08 1 74.3507
9 0.8 0.5 3 0.12 2 74.4886
10 0.8 1 5 0.1 1 74.0475
11 0.8 1.5 0.5 0.08 4 75.4599
12 0.8 2 1 0.06 3 74.3482
13 1.2 0.5 5 0.08 3 74.2745
14 1.2 1 3 0.06 4 74.3382
15 1.2 1.5 1 0.12 1 72.6562
16 1.2 2 0.5 0.1 2 72.9218

Table 7. Range analysis results of the improved orthogonal experiment.

A (W/m K) B (mm) C (mm) D (W/m K) E (Errors)

K1 308.9911 305.5297 305.5256 303.9183 301.0402
K2 303.5357 303.1518 301.3932 301.6931 300.2645
K3 298.3442 299.3897 299.205 299.7776 301.8083
K4 294.1907 296.9905 298.9379 299.6727 301.9487
k1 77.2478 76.3824 76.3814 75.9796 75.2601
k2 75.8839 75.7880 75.3483 75.4233 75.0661
k3 74.5861 74.8474 74.8013 74.9444 75.4521
k4 73.5477 74.2476 74.7345 74.9182 75.4872
R 3.7001 2.1348 1.6469 1.0614 0.4211

Range analysis’s order 1 2 3 4 5

According to Table 7, the order in which the various factors affecting the junction
temperature is the thermal conductivity of the molding compound (A) > chip staggered
length (B) > the thermal conductivity of the adhesive film (C) > chip thickness (D). After
the second range analysis, the range of the chip staggered length is significantly greater
than the range of the thermal conductivity of the adhesive film. Thus, compared with
conducting only one orthogonal experiment, although conducting orthogonal experiments
twice continuously cannot improve the final effect of the optimization, it can more accu-
rately obtain the ranking results of the degree of influence on the junction temperature.
It is necessary to minimize the junction temperature of the module to obtain the optimal
design of the parameters and thereby enhance the thermal reliability of the module. The
results listed in Table 7 indicate that the optimal design is the A4B4C4D4 combination,
and the optimal temperature distribution is shown in Figure 9. It can be observed that the
optimal junction temperature of the module is 71.32 ◦C. Compared with the initial junction
temperature of 74.87 ◦C, the optimal junction temperature has decreased by 4.74%, and the
heat dissipation performance of the module has been improved.
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5. Thermal Performance Benchmarking

In this section, the thermal characteristics of the six-layer stagger-stacked DDR module
will be first compared with the performance of a cantilever package for the same six chips
with the same power dissipation. The internal chips are set to 0.5 W, respectively. Next, the
thermal performance of the three-layer stagger-stacked DDR module will be compared to
the three-layer pyramid, cantilever, and pyramid combination package.

5.1. Benchmarking with Six-Layer Cantilever Package

Figures 10 and 11 compare the schematic diagram of a six-layer cantilever stacked
package and a six-layer stagger-stacked DDR module. Except for the different stacking
methods, the other conditions remain the same. Each chip is set to 0.5 W, and the ambient
temperature is 25 ◦C. Both of the two types of packages are built in a natural convection
environment of opening boundaries. The results of the steady-state thermal simulation are
shown as temperature contours in Figures 12 and 13.
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It is observed that the six-layer cantilever package reaches a maximum temperature
of 96.65 ◦C, and the value is 90.51 ◦C for the six-layer stagger-stacked DDR module. The
junction temperature of the two types of packages exceeds the operation limit (85 ◦C).
Therefore, it is necessary to optimize the heat dissipation of the two types of packages.
By using the conclusions of the orthogonal experiment design, the thermal conductivity
of the molding compound and adhesive film is increasing, and the thickness of the chip
and chip staggered length is increasing to 2 mm. Figures 14 and 15 show the optimal
temperature distribution of the two types of packages. As a result, an optimized six-layer
stagger-stacked DDR module is approximately 3.62% lower in junction temperature than
an optimized six-layer cantilever package.
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5.2. Benchmarking with Three-Layer Cantilever Package

In this section, we compare the thermal performance of the three-layer pyramid
package and the three-layer cantilever and pyramid combination package with the thermal
performance of the three-layer stagger-stacked DDR module. The schematic diagrams of the
three types of packages are shown in Figures 16–18. Each chip is set to 0.4 W. The ambient
temperature is set to 25 ◦C, and the three structures are optimized by the orthogonal
experiment method. The junction temperature comparison of the three structures is shown
in Table 8.

Table 8. Comparison of heat dissipation characteristics of three different structures.

Initial Junction
Temperature (◦C)

Optimal Junction
Temperature (◦C)

Three-layer pyramid package 75.59 70.54
Three-layer cantilever and pyramid

combination package 74.18 68.81

Three-layer stagger-stacked DDR module 70.72 64.93
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It can be observed from Table 8 that the heat dissipation performance of the stagger-
stacked DDR module is the best. After optimization by the orthogonal experiment method, the
junction temperature of the stagger-stacked DDR module is 7.95% lower than that of the pyra-
mid package and 5.63% lower than that of the cantilever and pyramid combination package.

6. Conclusions and Prospects

In this paper, we firstly present the stagger-stacked DDR module, which contains
five layer chips: the top die is one IPD chip and the other dies are memory chips. The
thermal simulation structure of the module is built, and the initial temperature distribution
is obtained. The result demonstrates that the junction temperature rises by about 50 ◦C;
hence, this paper studies the thermal performance of the module from four aspects: the
thermal conductivity of the molding compound, chip thickness, chip staggered length, and
the thermal conductivity of the adhesive film. It is found that increasing the chip staggered
length is beneficial to dissipating heat. Subsequently, the orthogonal experiment is used
twice continuously to optimize the overall heat dissipation performance of the module, and
an optimal design is gained. Compared with the initial junction temperature, the optimal
junction temperature has decreased by 4.74%. Benchmarking of the package thermal
characteristics reveals the proposed module to show good thermal performance compared
to the other three types of packages. The research presented in this paper offers valuable
reference significance for the thermal design studies of staggered-stacked DDR module
packaging. However, there are still aspects that warrant further exploration. In this paper,
we are only looking at the thermal design of staggered stacked DDR module packages in
the case of wire bonding. In the future, we can study the heat dissipation of a stacked DDR
module with TSV (Through Silicon Via). In addition, this paper is studying the thermal
performance of staggered-stacked DDR modules, but it lacks actual measurement results.
Further research will concentrate on related content, striving to make improvements in the
next phase.
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