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Abstract: In this paper, a fault estimation technique is proposed for discrete-time nonlinear intercon-
nected systems with uncertain interconnections. To achieve the fault estimation, the decentralized
fuzzy observer is adopted based on the Takagi–Sugeno fuzzy model. Based on the estimation error
model with the subsystems of the interconnected system and its decentralized fuzzy observer, the
fault estimation condition with H∞ performance is presented. The main idea of this paper is that a
novel inequality condition for H∞ performance is used, and the sufficient condition is presented to
guarantee the good fault estimation performance. Also, the decentralized fuzzy observer design con-
dition for the fault estimation is converted into linear matrix inequality formats. Finally, a simulation
example is provided, and the effectiveness of the proposed fault estimation technique is verified by
comparison of the fault estimation performance.

Keywords: fault estimation; discrete-time nonlinear interconnected system; uncertain
interconnections; decentralized fuzzy observer; Takagi–Sugeno fuzzy model; linear matrix inequality

1. Introduction

As society and technology advance and become more complex, the structure of sys-
tems is also becoming increasingly complexity compared to traditional system models.
Among the complex systems, there are interconnected systems that have characteristics
of interconnections between multiple systems. The interconnection problems of systems
have attracted considerable attention in various fields such as physics [1], communication
networks [2], biological systems modeling [3], climate forecasting [4], and financial markets
analysis [5] and so on. As characteristics of nonlinear large-scale systems are emerging in
various control issues such as automotive control, energy management, and robotics, the
significance of nonlinear interconnected systems in engineering and control system fields
has been steadily increasing in recent years [6]. In particular, by the widespread adoption
of computer and network-based management and control for systems, more attention is
being paid to discrete-time nonlinear interconnected systems [7–9]. The complex structures
and interdependencies that characterize interconnected systems make the application of
traditional control techniques difficult and pose challenges for the novel technique as a
decentralized approach [10,11]. Accordingly, many decentralized techniques for intercon-
nected systems have been studied to date [12–15]. However, compared to many remarkable
research studies on decentralized control, not much research on decentralized estimation
has been presented yet [16–19]. Especially, there is little research on fault estimation, which
has been in the spotlight recently.

Apart from the interconnected system issue, enhancing the safety and reliability of
systems has become a key challenge in modern control systems. Specifically, accurately
estimating faults plays a crucial role in improving the safety and reliability of the sys-
tem. As a result, there is a growing interest in the research field of Fault Detection and
Diagnosis (FDD) [20,21], and interest is focused on fault estimation techniques. Accord-
ingly, numerous studies have been conducted on fault estimation techniques up to the
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present [22–24]. Among them, fuzzy fault estimation using Takagi–Sugeno (T–S) fuzzy
model [25] has the advantage of being able to easily achieve fault estimation for nonlinear
systems [26]. Thus, many remarkable studies on fuzzy fault estimation are being presented
as follows [27–36]: In [28,29], the continuous- and discrete-time fault estimation techniques
have been presented for T–S fuzzy systems, respectively. In [27,33–35], the various prob-
lems have been solved for the fuzzy fault estimation for IT2 fuzzy systems. In [31], the
fault estimation problems have been addressed for nonlinear fractional-order systems with
unknown inputs. While previous studies have only focused on cases of measurable premise
variables, ref. [30] specifically addressed problems considering non-measurable premise
variables. Furthermore, a novel fault estimation technique has been proposed to solve the
sampled-data output problem in [36].

Despite the many fuzzy fault estimation studies, fault estimation research for inter-
connected systems has not been sufficiently conducted, because the interconnections of
interconnected systems is a great obstacle to designing the observer of the filter of the
system. In fact, research on fault estimation for interconnected systems to date has been
conducted under the assumption that all information about the subsystems including
interconnections is known [37–41]. However, accurately knowing all interconnection infor-
mation is very difficult in real engineering systems. In addition, the nonlinearity problem
has not been considered in [37–40]. In [41], the fuzzy fault estimation has been addressed
for nonlinear interconnected systems, but it still assumes that the all interconnections are
known. To solve the unknown or uncertain interconnection problem, some techniques
such as fuzzy observer [42] and fuzzy filter [43–45] have been presented for nonlinear
interconnected systems with uncertain interconnection, but fault estimation issues have
not been considered. To the best of the author’s knowledge, the fault estimation technique
has not been studied for discrete-time nonlinear interconnected systems with uncertain
interconnections so far.

Motivated by the above analysis for the previous studies, the fault estimation technique
is proposed for the decentralized fuzzy observer of discrete-time nonlinear interconnected
systems with uncertain interconnections in this paper. To develop the technique of the fault
estimation, the following research difficulties need to be addressed.

1. The general fault estimation techniques have been analyzed based on the Lyapunov
stability by estimation errors alone. However, in this paper, due to interconnections
of state variables, the previous approach is insufficient to address the decentralized
fault estimation problem.

2. To design a fault estimation observer, the following two conditions have to be satisfied:
(i) the error system should be asymptotically stable when there are no actuator fault
inputs and disturbances; (ii) the estimation errors of the state variables and faults
relative to faults and disturbances should be minimized.

3. It is very difficult to accurately apprehend information of all interconnections in real
interconnected systems due to a complex structure. Consequently, when designing a
decentralized fault estimation observer, it is imperative to solve some problems by
uncertain interconnections.

To address the above research problems, we firstly consider that the subsystems of
the interconnected system can be represented by a T–S fuzzy model, and the uncertain
interconnection is assumed to satisfy the quadratic inequality with the given maximum
interconnection bound. Also, based on the decentralized fuzzy observer and its estimation
error models, the fault estimation is addressed by satisfying the H∞ performance. H∞
performance theory is a control theory that aims to construct controllers or observers that
minimize the impact of disturbances by minimizing the norm of measured output or error
signals relative to disturbances. H∞ performance is a widely used research approach in
control for tracking and filter design studies to guarantee the performance. In particular,
two different inequalities for H∞ performance are considered for the fault estimation in
this paper. Then, by using the Lyapunov functional, we have developed decentralized
fuzzy observers capable of addressing the fault estimation problem with H∞ performance,
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and we formulated the performance inequality into linear matrix inequalities (LMIs) for-
mats. Finally, a simulation example and analysis and comparison results are provided to
demonstrate the validity of the proposed ideas, techniques and procedures.

This paper is organized as follows: Section 2 describes the fault estimation problem
based on the discrete-time nonlinear interconnected systems and the decentralized fuzzy
observer. The LMI conditions to design the decentralized fuzzy observer for fault estimation
are proposed by using Lyapunov functional and H∞ performance inequality in Section 3.
The simulation example is given for illustration and comparison in Section 4. Finally,
Sections 5 and 6 provide the concluding remarks.

Notation: The symbols (·)T , He{·}, and ∗, respectively, represent the transpose of the
given element, the summation of the element with its transpose, and the symmetrically
positioned transposed element. The subscripts k and l denote the subsystem indices, and
subscripts i and j denote fuzzy rule indices. Additionally, IN denotes a set of integers
ranging from 1, 2, · · · , n.

2. Preliminaries

In this section, we first consider our main research object, which is nonlinear inter-
connected systems. Nonlinear interconnected systems represent mathematical models
of various systems [1–9], as mentioned in the Introduction. Especially, in this paper, we
address the issue of discrete-time nonlinear interconnected systems with the actuator fault
input. The dynamic equation is represented for a discrete-time nonlinear interconnected
system composed of n subsystems, which is described as follows:

xk(t + 1) =Fk(xk(t)) + Gk(xk(t))ωk(t) +Hk(xk(t)) fk(t) + hk(x(t))

yk(t) =Ck(xk(t)) (1)

where Fk(·), Gk(·), Hk(·) and Ck(·) are the nonlinear vector functions of the kth subsystem,
xk(t) ∈ Rpk is the state variable, ωk(t) ∈ Rqk is the disturbance and yk(t) ∈ Rrk is the
measurement output of the kth subsystem, respectively, and fk(t) ∈ Rsk is the actuator fault
input, where it is assumed that the derivative of fk(t) is norm bounded, and hk(x(t)) is a
nonlinear vector function representing the interconnection of interconnected systems and
is assumed to satisfy the following Assumption:

Assumption 1. The vector function hk(x(t)) is unknown but satisfies the following quadratic
inequality: (

hk(x(t))
)Thk(x(t)) ≤ α2

k x(t)T HT
k Hkx(t) (2)

where αk > 0 is a bound scalar of the interconnection term, and Hk is a given constant matrix with
appropriate dimensions.

Then, considering the premise variable zkp(t) ∈ Ruk , k ∈ Ikq, the discrete-time nonlin-
ear interconnected system (1) can be equivalently described by a T–S fuzzy model defined
by the following IF–THEN fuzzy rules:

Fuzzy rule i of the kth subsystem:

IF zk1(t) is Γki1, · · · , and zkq(t) is Γkiq,

THEN

{
xk(t + 1) = Akixk(t) + Bkiωk(t) + Eki fk(t) + hk(x(t))

yk(t) = Ckixk(t)
(3)

where Γkip, (k, i, p) ∈ In × Im × Iq, is a fuzzy set for zkp(t) and Aki, Bki, Eki and Cki
denote nominal system matrices with appropriate dimensions for the ith fuzzy rule of the
kth subsystem.
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Remark 1. Since nonlinear functions are considered based on the state variables in the intercon-
nected system (1), the premise variables zkp(t) in the fuzzy rule (3) are often selected as part of the
state variables.

By employing center-average defuzzification, product inference, and a singleton
fuzzifier, an IF–THEN rule (3) can be interpreted in the subsequent fuzzy subsystem
as follows:

xk(t + 1) =
m

∑
i=1

ξki(zk(t))
(

Akixk(t) + Bkiωk(t) + Eki fk(t)
)
+ hk(x(t))

yk(t) =
m

∑
i=1

ξki(zk(t))Ckix(t) (4)

where

ξki(zk(t)) =ηki(zk(t))
/ m

∑
i=1

ηki(zk(t)),

ηki(zk(t)) =
q

∏
p=1

Γkip(zkp(t))

in which Γkip = Uzkp(t) ⊂ R → R[0,1] is the membership function of zkp(t) on compact
set Uzkp(t).

Remark 2. The fuzzy rule (3) and the fuzzy system (4) inferred from the fuzzy IF–THEN rule
by using center-average defuzzification, product inference and a singleton fuzzifier are based on
the T–S fuzzy model [46]. In the T–S fuzzy model, the nonlinear models are represented by a set
of fuzzy rules that denote nonlinear characteristics of the system through linear submodels. Thus,
the T–S fuzzy model can present the complex nonlinear problems into the intuitive forms by using
formal linguistic variables and fuzzy sets of the T–S fuzzy model. Also, the nonlinear systems also
can be mathematically decomposed into linear subsystems and nonlinear weighting functions by
the T–S fuzzy model. For these reasons, the T–S fuzzy system approach is one of the most widely
used techniques in the field of nonlinear control, because various linear control techniques are easily
applied to nonlinear systems.

To establish the fault estimation, we consider the following decentralized fuzzy ob-
server model:

x̂k(t + 1) =
m

∑
i=1

ξki(zk(t))
(

Aki x̂k(t) + Eki f̂k(t) + Lki(yk(t)− ŷk(t))
)

ŷk(t) =
m

∑
i=1

ξki(zk(t))Cki x̂k(t)

f̂k(t + 1) =
m

∑
i=1

ξki(zk(t))
(

f̂k(t) + Fki(yk(t)− ŷk(t))
)

(5)

where x̂(t) ∈ Rpk , ŷ(t) ∈ Rrk , and f̂ (t) ∈ Rsk represent the estimation state, estimation
output, and estimation fault, respectively. Additionally, Lki and Fki denote the gain matrices
of the decentralized fuzzy observer, each with suitable dimensions.

Then, by defining the state estimation error as exk (t) = xk(t)− x̂k(t) and the fault
estimation error as e fk

(t) = fk(t)− f̂ k(t) and considering the first forward difference of the
actuator fault input as ∆ fk(t) = fk(t + 1)− fk(t), the error model between the (4) and (5) is
derived as follows:

ek(t + 1) =
(
Ak(t)−Lk(t)Ck(t)

)
ek(t) + Bk(t)vk(t) + h̃k(x(t)) (6)
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where

Ak(t) =
m

∑
i=1

ξki(zk(t))
[

Aki Eki
0 I

]
,

Lk(t) =
m

∑
i=1

ξki(zk(t))
[

Lki
Fki

]
,

Ck(t) =
m

∑
i=1

ξki(zk(t))
[
Cki 0

]
,

Bk(t) =
m

∑
i=1

ξki(zk(t))
[

Bki 0
0 I

]
,

and ek(t) = col{exk (t), e fk
(t)}, vk(t) = col{ωk(t), ∆ fk(t)}, and h̃k(x(t)) = col{hk(x(t)), 0}.

Based on the error model (6), the objective of the fault estimation problem can be
presented as follows:

Problem 1. Find the observer gain matrices Lki and Fki and minimize a scalar γ > 0 such that the
following H∞ performance is guaranteed:

1. The equilibrium point of the interconnected system based on error subsystem (6) is asymptoti-
cally stable when vk(t) = 0 and hk(x(t)) = 0.

2. To guarantee H∞ performance, the following inequality is satisfied for a scalar γ under zero
initial condition:

n

∑
k=1

∞

∑
t=0

∥ek(t)∥2dt ≤ γ2
n

∑
k=1

∞

∑
t=0

(
∥vk(t)∥2 + ∥xk(t)∥2

)
. (7)

Remark 3. In the previous fault estimation studies, the inequality for guaranteeing H∞ per-
formance has not included the terms of the state variable. However, in cases where uncertain
interconnections are considered, as in this paper, a term of xk(t) has to be contained in the inequality
for H∞ performance for obtaining a sufficient condition that efficiently guarantees fault estimation
performance. In fact, some research studies for the interconnected system with uncertain intercon-
nections, like this paper, have included the term xk(t) in the H∞ performance inequality, as in (7).
In addition, the sufficient condition of the fault estimation has been also developed for the case where
the state variable is not included in the H∞ performance inequality in this paper. Furthermore,
the performance difference between the fault estimation techniques based on two H∞ performance
inequalities is shown in the simulation.

3. Main Results

In this section, the decentralized fuzzy observer design techniques for fault estimation
have been proposed for nonlinear interconnected system (4) based on error model (6)
considering Problem 1. Before presenting the proposed theorems, we need to consider the
following lemma for the proof of the theorems.

Lemma 1 ([47]). If X and Y are any matrices with appropriate dimensions, then for any constant
α > 0, the following property holds:

XTY + YTX ≤ αXTX + α−1YTY.

Now, based on the above lemma, the following theorem addresses the sufficient
condition for the design of decentralized fuzzy observers for fault estimation of the error
model (6).
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Theorem 1. If there exist some positive definite matrices Pk = PT
k > 0, some matrices Nki and

some scalars β, σ > 0 and ϱ such that the following LMIs are satisfied:

min ϱ subject to

Pk − βI < 0, k ∈ In (8)
−Pk + I ∗ ∗ ∗

0 −ϱI ∗ ∗
PkAki − NkiCkj PkBki −Pk ∗
PkAki − NkiCkj PkBki 0 −σI

 < 0, (k, i, j) ∈ In × Im × Im (9)

− ϱI + n(β + σ)α2
l HT

lk Hlk < 0, (k, l) ∈ In × In (10)

where

Aki =

[
Aki Eki
0 I

]
, Bki =

[
Bki 0
0 I

]
,

Cki =
[
Cki 0

]
and αk is a given positive scaler for interconnection bound, and Hlk is the submatrix which has
pk columns of Hl from the νkth column vector where νk = p1 + p2 + · · ·+ pk−1 + 1, then the
decentralized fuzzy observer (5) guarantees the H∞ fault estimation performance for a discrete-time
interconnected system based on the fuzzy subsystem (4), and γ is a minimum H∞ performance
value of fault estimation. In addition, the decentralized fuzzy observer gain matrices are given by
col{Lki, Fki} = P−1

k Nki, and γ =
√

ϱ is a minimum value of the H∞ fault estimation performance.

Proof. First, for the first condition of Problem 1, we consider a Lyapunov functional with
assuming vk(t) = 0 and hk(x(t)) = 0 to demonstrate the stability condition of the error
system based on the subsystem model (6) as follows:

V(t) =
n

∑
k=1

Vk(ek(t)) =
n

∑
k=1

ek(t)T Pkek(t)

where Pk = PT
k > 0. Then, we have the first forward difference of the Lyapunov functional

candidate as

∆V(t) =V(t + 1)− V(t)

=
n

∑
k=1

(
ek(t + 1)T Pkek(t + 1)− ek(t)T Pkek(t)

)
. (11)

Then, the following equation can be obtained by substituting (4) and (6) into (11) with
considering vk(t) = 0 and hk(x(t)) = 0:

∆V(t) =
n

∑
k=1

(((
Ak(t)−Lk(t)Ck(t)

)
ek(t)

)T
Pk

((
Ak(t)−Lk(t)Ck(t)

)
ek(t)

)
− ek(t)T Pkek(t)

)
. (12)

Thus, if the following inequality(
Ak(t)−Lk(t)Ck(t)

)T Pk
(
Ak(t)−Lk(t)Ck(t)

)
< 0 (13)
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is satisfied, then ∆V(t) < 0 is also satisfied. Furthermore, by using the Schur complement,
applying the congruence transformation with diag{I, Pk} and denoting PkLk(t) = Nk(t),
inequality (13) is represented as the following inequality:[

−Pk ∗
PkAk(t)− Nk(t)Ck(t) −Pk

]
< 0

Because the above inequality is a sufficient condition of LMIs (8) and (9), we can
guarantee the stability condition for the error systems (6) with vk(t) = 0 and hk(x(t)) = 0.

Now, to guarantee the second condition of Problem 1, we establish the H∞ perfor-
mance criteria based on the error system (6) with a zero initial condition by using the
following inequality:

J =∆V(t) +
n

∑
k=1

(
ek(t)Tek(t)− γ2vk(t)Tvk(t)− γ2xk(t)Txk(t)

)
. (14)

Then, by using the equation (11) and substituting (6) into (14), we have

J =
n

∑
k=1

(((
Ak(t)−Lk(t)Ck(t)

)
ek(t) + Bk(t)vk(t) + h̃k(x(t))

)T

× Pk

((
Ak(t)−Lk(t)Ck(t)

)
ek(t) + Bk(t)vk(t) + h̃k(x(t))

)
− ek(t)T Pkek

)
+

n

∑
k=1

(
ek(t)Tek(t)− γ2vk(t)Tvk(t)− γ2xk(t)Txk(t)

)
(15)

By using Lemma 1, the inequality (15) can be represented as follows:

J ≤
n

∑
k=1

(((
Ak(t)−Lk(t)Ck(t)

)
ek(t) + Bk(t)vk(t)

)T

×
(

Pk + σ−1P2
k
)((

Ak(t)−Lk(t)Ck(t)
)
ek(t) + Bk(t)vk(t)

)
− ek(t)T Pkek(t) +

n

∑
k=1

h̃k(x(t))T(Pk + σI
)
h̃k(x(t))

+
n

∑
k=1

(
ek(t)Tek(t)− γ2vk(t)Tvk(t)− γ2xk(t)Txk(t)

)
(16)

where σ is a given positive scalar. Also, from (2) of Assumption 1, we know that the
following inequality is satisfied:

n

∑
k=1

h̃k(x(t))T h̃k(x(t)) ≤
n

∑
k=1

α2
k x(t)T HT

k Hkx(t)

=
n

∑
k=1

n

∑
l=1

α2
k xl(t)T HT

kl Hkl xl(t)

=
n

∑
k=1

n

∑
l=1

α2
l xk(t)T HT

lk Hlkxk(t) (17)

where Hk = [Hk1 Hk2 · · · Hkn] and the matrix Hkl has pl columns.
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Thus, if there exists some scalar β such that Pk − βI < 0, then the inequality (16) is
derived by applying the inequality (17) as follows:

J ≤
n

∑
k=1

(((
Ak(t)−Lk(t)Ck(t)

)
ek(t) + Bk(t)vk(t)

)T

×
(

Pk + σ−1P2
k
)((

Ak(t)−Lk(t)Ck(t)
)
ek(t) + Bk(t)vk(t)

)
− ek(t)T(Pk − I

)
ek(t)− γ2vk(t)Tvk(t)

)
+

n

∑
k=1

n

∑
l=1

(
− 1

n
γ2xk(t)Txk(t) + (β + σ)α2

l xk(t)T HT
lk Hlkxk(t)

)
=

n

∑
k=1

[
ek(t)
vk(t)

]T([
Ak(t)−Lk(t)Ck(t) Bk(t)

]T(Pk + σ−1P2
k
)

×
[
Ak(t)−Lk(t)Ck(t) Bk(t)

]
+

[
−Pk + I 0

0 −γ2 I

])[
ek(t)
vk(t)

]
+

1
n

n

∑
k=1

n

∑
l=1

xk(t)T(− γ2 I + n(β + σ)α2
l HT

lk Hlk
)
xk(t). (18)

From the result of (18), if the following inequalities are satisfied[
Ak(t)−Lk(t)Ck(t) Bk(t)

]T(Pk + σ−1P2
k
)

×
[
Ak(t)−Lk(t)Ck(t) Bk(t)

]
+

[
−Pk + I 0

0 −γ2 I

]
< 0, (19)

− γ2 I + n(β + σ)α2
l HT

lk Hlk < 0, (20)

then J < 0 is satisfied. Furthermore, by using the Schur complement, applying the
congruence transformation with diag{I, I, Pk, Pk} and denoting Pk × col{Lki, Fki} = Nki,
the inequality (19) is majorized as LMI (9). Also, by denoting γ2 = ϱ, the inequality (20) is
also represented as LMI (10).

Now, by summing (14) for t from zero to infinity, the following can be obtained:

∞

∑
t=0

J = V(∞)− V(0) +
n

∑
k=1

∞

∑
t=0

eT
k (t)ek(t)

− γ2
n

∑
k=1

∞

∑
t=0

(
vk(t)T(t)vk(t) + xk(t)Txk(t)

)
< 0. (21)

From V(0) = 0, due to the consideration of the zero initial condition and V(∞) ≥ 0, if
inequality (19) is satisfied, then H∞ performance (7) is guaranteed from the result of (21).
Finally, by summarizing the above proof, through LMIs (8) and (9), we can develop the
fault estimation technique to achieve the conditions of Problem 1 from the decentralized
fuzzy observer (5) for interconnected systems of (4).

Remark 4. From Theorem 1, for a given maximum interconnection bound αk, satisfying the linear
matrix inequality means the following: If the gain matrices Lki and Fki for the value of the maximum
interconnection bound are obtained, it is possible for the decentralized fuzzy observer constructed by
the obtained gain matrices to guarantee the fault estimation performance of Problem 1, even if the
interconnection bound is considered as any value smaller than the given value αk for the maximum
interconnection bound.

Remark 5. The inequalities (8)–(10) obtained in Theorem 1 are represented into the LMI structure.
LMI provides a remarkable mathematical framework for representing and solving various control
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and optimization problems. The main advantage of LMI is that it facilitates the use of convex
optimization techniques, which can be easily solved by many efficient numerical methods, to solve
various control problems. Therefore, if the control design problem can be formulated as an LMI
problem, anyone can easily design a controller through simple numerical algorithms, such as the
FEASP algorithm of MATLAB.

To conquer the limitation of including the term of xk(t) in the inequality (7) for the
H∞ performance of Problem 1, a novel decentralized fuzzy observer design technique for
fault estimation is introduced in the following corollary:

Corollary 1. If there exist some matrices Pk = PT
k > 0, Qk = QT

k > 0 and Nki and some scalar ϱ
such that the following LMIs are satisfied:

min ϱ subject to[
Qk − βI ∗

0 Pk − βI

]
< 0, k ∈ In (22)

−Qk ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Pk + I ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −ϱI ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 −ϱI ∗ ∗ ∗ ∗ ∗

Qk Aki 0 Qk B̂ki QkEki −Qk ∗ ∗ ∗ ∗
0 PkAki − NkiCkj PkBki 0 0 −Pk ∗ ∗ ∗

Qk Aki 0 Qk B̂ki QkEki 0 0 −σI ∗ ∗
0 PkAki − NkiCkj PkBki 0 0 0 0 −σI ∗

Hlk 0 0 0 0 0 0 0 − 1
2n(β+σ)α2

l
I


< 0,

(k, l, i, j) ∈ In × In × Im × Im, (23)

where

B̂ki =
[
Bki 0

]
and β, σ and αk are given positive scalars, then the decentralized fuzzy observer (5) satisfies the
H∞ fault estimation performance for the interconnected system based on the fuzzy subsystem (4).
In addition, the decentralized fuzzy observer gain can be obtained by col{Lki, Fki} = P−1

k Nki, and
γ =

√
ϱ is a minimum value of the fault estimation performance for H∞.

Proof. From fuzzy systems based on (4) and error model (6), we consider

χ̇k(t) = Ξk(t)χk(t) + Mk(t)υk(t) + ĥk(x(t)) (24)

where

Ξk(t) =
[

Ak(t) 0
0 Ak(t)−Lk(t)Ck(t)

]
,

Mk(t) =
[

B̂k(t) Ek(t)
Bk(t) 0

]
,

Ak(t) =
r

∑
i=1

ξki(zk(t))Aki,

B̂k(t) =
r

∑
i=1

ξki(zk(t))B̂ki,

Ek(t) =
r

∑
i=1

ξki(zk(t))Eki
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and χk(t) = col{xk(t), ek(t)}, υk(t) = col{vk(t), fk(t)}, and ĥk(x(t)) = col{hk(x(t)), h̃k(x(t))}.
Then, based on the model (24), we firstly consider a Lyapunov function candidate

with υk(t) = 0 and hk(x(t)) = 0 as follows:

V(t) =
n

∑
k=1

Vk(χk(t)) =
n

∑
k=1

χk(t)TPkχk(t)

where Pk = PT
k > 0. Then, the first forward difference of the Lyapunov functional

candidate becomes

∆V(t) =
n

∑
k=1

((
Ξk(t)χk(t)

)TPk
(
Ξk(t)χk(t))

)
− χk(t)TPkχk(t)

)
(25)

Thus, if the inequality Ξk(t)TPkΞk(t)−Pk < 0 is satisfied, which is guaranteed by (23)
by defining Pk = diag{Qk, Pk} with the positive definite matrix Pk and Qk without the loss
of generality, then ∆V(t) < 0 is guaranteed.

Also, we establish the condition of H∞ fault estimation performance with a zero initial
condition by using the following inequality:

J = ∆V(t) +
n

∑
k=1

(
ek(t)Tek(t)− γ2υk(t)Tυk(t)

)
. (26)

Then, through a similar procedure of Theorem 1 with a given positive scalar β, we
obtain the following inequality:

J ≤
n

∑
k=1

((
Ξk(t)χk(t) + Mk(t)υk(t)

)T(Pk + σ−1P2
k
)

×
(
Ξk(t)χk(t) + Mk(t)υk(t)

)
− χk(t)T(Pk − Î

)
χk(t)− γ2υk(t)Tυk(t)

)
+

n

∑
k=1

n

∑
l=1

2(β + σ)α2
l χk(t)T ĤT

lk Ĥlkχk(t)

=
1
n

n

∑
k=1

n

∑
l=1

[
χk(t)
υk(t)

]T([
Ξk(t) Mk(t)

]T(Pk + σ−1P2
k
)[

Ξk(t) Mk(t)
]

+

[
−Pk + Î 0

0 −γ2 I

]
+ 2n(β + σ)α2

l ĤT
lk Ĥlk

)[
χk(t)
υk(t)

]
(27)

where Ĥlk =
[
Hlk 0

]
and Î = diag{0, I}.

Thus, if the following inequalities are satisfied[
Ξk(t) Mk(t)

]T(Pk + σ−1P2
k
)[

Ξk(t) Mk(t)
]

+

[
−Pk + Î 0

0 −γ2 I

]
+ 2n(β + σ)α2

l ĤT
lk Ĥlk

< 0 (28)

then J < 0 is satisfied. In addition, by defining Pk = diag{Qk, Pk}, using the Schur comple-
ment to inequality (28), applying the congruence transformation with diag{I, I,Pk,Pk, I}
and denoting Pk × col{Lki, Fki} = Nki and γ2 = ϱ, the condition of J < 0 is majorized as
inequalities (8) and (9).
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Finally, by summing (26) for t from 0 to ∞, we obtain the following condition from
zero initial condition

n

∑
k=1

∞

∑
t=0

eT
k (t)ek(t)dt ≤ γ2

n

∑
k=1

∞

∑
t=0

υk(t)T(t)υk(t). (29)

Thus, through the proposed LMIs, we can ensure both the stability of the intercon-
nected system without fault, disturbance and interconnection and H∞ performance for
fault estimation.

Remark 6. In Corollary 1, the fault estimation is guaranteed for H performance with inequality
∑n

k=1 ∑∞
0 eT

k (t)ek(t) ≤ γ2 ∑n
k=1 ∑∞

0 υk(t)T(t)υk(t), which does not contain the terms of xk(t).
It means that the fault estimation performance is not affected by state variables xk(t). However,
Corollary 1 has the following constraints compared to Theorem 1.

• To satisfy the LMI conditions of Corollary 1, all subsystems of the interconnected system have
to satisfy the asymptotic stability because of the term of AT

kiQk Aki − Qk < 0 of LMI (23).
• Unlike Theorem 1, the scalar β, σ has to be given in Corollary 1. Thus, the LMI condition of

Corollary 1 is inevitably more conservative than the LMI condition of Theorem 1.

The performance difference between Theorem 1 and Corollary 1 is clearly shown in Section 4.

Remark 7. The algorithm’s procedure is summarized to design the decentralized fuzzy observer (5)
for the fault estimation of the discrete-time nonlinear interconnected system (1):

1. Present T–S fuzzy subsystems (4) for the discrete-time nonlinear interconnected system while
considering Assumption 1.

2. Construct the observer model (5) by using the presented T–S fuzzy subsystems.
3. Solve LMIs (8)–(10) of Theorem 1 or (22) and (23) of Corollary 1 with minimizing ϱ by using

any numerical calculation tools, such as the FEASP algorithm on MATLAB, to solve the
convex optimization problem.

4. Calculate the decentralized fuzzy observer gain matrices Lki and Fki using the results of LMIs
and col{Lki, Fki} = P−1

k Nki.
5. Synthesize the decentralized fuzzy fault estimation observer by using the obtained observer

gain matrices.

Remark 8. The primary contribution of this paper is outlined in the following:

• The fault estimation technique is designed for discrete-time nonlinear interconnected systems
based on the decentralized fuzzy observer. This technique has not been studied so far to the best
of the author’s knowledge.

• The uncertain interconnection problem is solved in the fault estimation technique development.
• Two fault estimation techniques are presented based on differently defined H∞ performance in-

equalities. Also, the performance of two fault estimation techniques is compared in the simulation.

Remark 9. The following are noted:

• The decentralized fuzzy fault estimation observer proposed in this paper can be practically
applied in various fields such as industrial automation, smart grids, transportation systems,
monitoring systems, communication networks and so on.

• The methodologies employed in this paper can be adapted to develop various fault estimation
techniques applicable to continuous-time systems, sampled-data systems, and beyond. Addi-
tionally, the proposed fault estimation techniques have the potential to be extended to address
control problems, including fault accommodation control.

• Future work: In this paper, the fault estimation techniques have been presented by limiting
the discrete-time systems. However, in real engineering systems, analog plants and digital
observers/controllers are often combined. In this case, the sampled-data problem has to be solved
in the decentralized observer design to establish the fault estimation of interconnected systems.
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4. Numerical Example

To show the effectiveness of the proposed fault estimation technique by using the de-
centralized fuzzy observer, the simulation results are provided in this section. We consider
the discrete-time interconnected system based on the interconnected mass-spring-damper
mechanical system composed of two subsystems and connected by a spring [43]. The sub-
system of the interconnected mass-spring-damper mechanical system can be represented
as follows:

mk θ̈k(t) + dk(θ̇k(t))θ̇k(t) + κkθk(t) + hkl(θ(t)) = ωk(t) + fk(t)

where (k, l) ∈ I2 × I2. In addition, θk(t) is the relative position of the mass in the kth
subsystem, θ(t) = [θ1(t)T θ2(t)T ]T and yk(t) is the measured output. Also, mk is the
mass, κk is the stiffness of the springs, dk(θ̇k(t)) is the damping coefficients of the nonlinear
damper as dk(θ̇k(t)) = dk1 + dk2 θ̇k(t)2, hkl(θ(t)) = κ(θk(t)− θl(t)) is the interconnection
function for two subsystems connecting by uncertain spring constant κ, and ωk(t) and fk(t)
represent the disturbance and actuator fault input of the kth subsystem, respectively.

Then, by considering θ̇k(t) ∈ [−Ωk Ωk], defining θk(t) = xk1(t) and θ̇k(t) = xk2(t) and
applying the approximate discretization approach with the sampling period T = 0.01, the
discrete-time interconnected fuzzy system composed of two subsystems can be addressed
as follows:

xk(tT + T) =
2

∑
i=1

ξki(xk2(t))
(

Akixk(t) + Bkiωk(t) + Eki fk(t)
)
+ κHkx(t)

yk(t) =
2

∑
i=1

ξki(xk2(t))
(
Ckixk(t)

)
where

Ak1 = exp
([

0 1
−κk/mk −dk1/mk

]
T
)

,

Ak2 = exp
([

0 1
−κk/mk −dk1/mk − dk2(Ωk)

2

]
T
)

,

Bki =

( ∫ T

0
exp(Akiτ)dτ

)
×

[
0

1/mk

]
,

Eki =

( ∫ T

0
exp(Akiτ)dτ

)
×

[
0

1/mk

]
,

Cki =
[
1 0

]
,

H1 =

{
2

∑
i=1

ξ1i(x12(t))
( ∫ T

0
exp(A1iτ)dτ

)}
×

[
0 0 0 0
0 −1/m1 0 1/m1

]
,

H2 =

{
2

∑
i=1

ξ2i(x22(t))
( ∫ T

0
exp(A2iτ)dτ

)}
×

[
0 0 0 0
0 1/m2 0 −1/m2

]
,

ξk1(xk2(t)) =1 −
(xk2(t))

2

(Ωk)2 ,

ξk2(xk2(t)) =1 − ξk1(xk2(t))

for (k, i) ∈ I2 ×I2 and the maximum interconnection bound is considered as αk = κ = 0.05,
which means that the decentralized fuzzy observer satisfies the H∞ performance for fault
estimation, even if the interconnection bound κ is considered any value smaller than
0.05 N/m. In addition, the parameter values of the interconnected mass-spring-damper
mechanical system are shown in Table 1. The parameter values are determined from the
previous study [43]. Additionally, the value of Ωk is set to 1 as it represents a constant
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indicating the maximum range of state variable xk2(t). Since the magnitude range of
disturbances or fault signals does not exceed 1, the magnitude range of xk2(t) also does not
exceed 1. Thus, its upper bound is set to 1.

Table 1. Parameter values.

Parameters Subsystem 1 Subsystem 2

mk (kg) 1 1
κk (N/m) 0.2 0.3
dk1

(N·s/m) 0.6 0.5
dk2 (N·s/m) 0.8 0.7
Ωk 1 1

Now, by using the MATLAB LMI Control Toolbox with the FEASP algorithm, the
decentralized fuzzy observer gains are obtained from (8)–(10) of Theorem 1 as follows:

LThm.1
11 =

[
2.6591

202.6906

]
, LThm.1

12 =

[
2.6533

201.4591

]
,

LThm.1
21 =

[
2.6600

202.8242

]
, LThm.1

22 =

[
2.6551

201.7870

]
,

FThm.1
11 =7.4480 × 103, FThm.1

12 = 7.4506 × 103,

FThm.1
21 =7.4408 × 103, FThm.1

22 = 7.4446 × 103

and the minimum H∞ performance value γ is obtained as 9. Then, from LMIs (22) and (23)
of Corollary 1, the gain matrices of the decentralized fuzzy observer (5) are also presented
with supposing β = 800 and σ = 6 × 104 as follows:

LCor.1
11 =

[
1.0273
2.7548

]
, LCor.1

12 =

[
1.0272
2.7331

]
,

LCor.1
21 =

[
1.0334
4.4832

]
, LCor.1

22 =

[
1.0332
2.4660

]
,

FCor.1
11 =3.9886, FCor.1

12 = 3.9887,

FCor.1
21 =3.2579, FCor.1

22 = 3.2577.

In addition, the disturbance signal and the actuator fault are, respectively, supposed
as follows:

ωk(t) =0.02 sin(10t),

f1(t) =
{

0, t ≤ 1 & t > 0
sin(2(t − 1)), 1 < t ≤ 10

f2(t) =
{

0, t ≤ 1 & t > 0
sin(3(t − 1)), 1 < t ≤ 10

for k ∈ I2. Then, the time responses of the state variables of each subsystem and the
estimated state variable of the proposed observers are depicted in Figures 1–4. Additionally,
the time responses of the fault signal and estimated fault of each subsystem are illustrated
in Figures 5 and 6. In Figures 1 and 3, the first state variables of each subsystem are
represented for the relative position of the mass–spring–damper system. Also, the second
state variables are represented for velocity in Figures 2 and 4. As shown in the figures,
both proposed decentralized fuzzy observers have well estimated the state variables. Even
when different fault signals are applied to each subsystem, the proposed fault estimation
observer continues to operate correctly, as evidenced by the results. However, compared
to the outstanding fault estimation results of Theorem 1, Corollary 1 does not have good
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fault estimation performance. Thus, it can be confirmed that the result of Theorem 1 is
better than the result of Corollary 1 in terms of the fault estimation performance. To show
the performance difference in more detail, the estimation errors are represented for each
subsystem in Figures 7 and 8, respectively. In addition, to emphasize the performance
differences according to the maximum interconnection bound αk, the following performance
measure function is considered:

P =

√√√√ 2

∑
k=1

20

∑
t=0

ek(t)Tek(t)
/ 2

∑
k=1

20

∑
t=0

vk(t)Tvk(t)

and comparison results of the performance measure function are presented in Table 2.
In addition, to emphasize the superiority of the proposed techniques, the results of the
performance measure function for the fault estimation techniques without considering the
interconnection problem based on [28,36] are added in Table 2.

Table 2. Results of the performance measure function for the fault estimation techniques.

Maximum
Interconnection

Bound
Theorem 1 Corollary 1 [28] [36]

0.01 0.322 3.631 divergent 3.7935
0.02 0.324 3.632 divergent 3.7941
0.05 0.333 3.633 divergent 3.7961

From Table 2, the outstanding performance of the proposed decentralized fuzzy ob-
server for fault estimation can be confirmed once again by comparing with the results of
the previous technique. In particular, not only Theorem 1, which is the main technique
of this paper, but also Corollary 1, which has relatively poor performance, show better
performance results than the previous techniques without considering the interconnec-
tion problem.

In addition, to check the performance for observing the states when the fault occurs in
the interconnected system, we compared the performance for the fuzzy observer [48], which
is one of the most used observing techniques, with respect to the observation performance
of the state variables. By comparing the results of the observing performance for the state
variables based on the performance measure functions provided above, the results of the
proposed Theorem 1 and Corollary 1 are 2.423 × 10−3 and 0.8752, respectively, whereas
the result of the fuzzy observer is 1.2954, when the maximum interconnection bound is
considered as 0.05. Thus, we can confirm that the proposed fault estimation techniques
based on the decentralized fuzzy observer are beneficial for interconnected systems with
the actuator fault input, and Theorem 1 is particularly effective for discrete-time nonlinear
interconnected systems which have uncertain interconnections.
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Figure 1. Results of the first state for the first subsystem: x11 (t) (solid), x̂11 (t) from Theorem 1
(dashed) and x̂11 (t) from Corollary 1 (dotted).
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Figure 2. Results of the second state for the first subsystem: x12 (t) (solid), x̂12 (t) from Theorem 1
(dashed) and x̂12 (t) from Corollary 1 (dotted).
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Figure 3. Results of the first state for the second subsystem: x21 (t) (solid), x̂21 (t) from Theorem 1
(dashed) and x̂21 (t) from Corollary 1 (dotted).



Electronics 2024, 13, 1763 16 of 20

0 5 10 15 20

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x
2

2

(t
)

Figure 4. Results of the second state for the second subsystem: x22 (t) (solid), x̂22 (t) from Theorem 1
(dashed) and x̂22 (t) from Corollary 1 (dotted).
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Figure 5. Results of the fault for the first subsystem: f1(t) (solid), f̂1(t) from Theorem 1 (dashed) and
f̂1(t) from Corollary 1 (dotted).
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Figure 6. Results of the fault for the second subsystem: f2(t) (solid), f̂2(t) from Theorem 1 (dashed)
and f̂2(t) from Corollary 1 (dotted).
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Figure 7. Results of the estimated error for the first subsystem: Theorem 1 (dashed) and
Corollary 1 (dotted).
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Figure 8. Results of the estimated error of the second subsystem: Theorem 1 (dashed) and
Corollary 1 (dotted).

5. Discussion

The proposed techniques for the decentralized fuzzy fault estimation observer de-
sign of discrete-time nonlinear interconnected systems presents several noteworthy points.
Firstly, the T–S fuzzy model is one of the best approaches to analyze nonlinear intercon-
nected systems, because the nonlinear systems are mathematically decomposed into linear
subsystems and nonlinear weighting functions by a T–S fuzzy model. The advantages
of the T–S fuzzy model also apply to the discrete-time nonlinear interconnected system
considered in this paper. Moreover, the decentralized observer model is suitable for the
fault estimation of interconnected systems, as it can solve the problems of interconnected
systems such as high dimensionality, structural constraints of the controller, and uncertain
or unknown information of interconnection. In addition, the fault estimation technique
effectively estimates the result for the unknown actuator fault input, which directly affects
the systems.

Motivated by the above analysis, the decentralized fuzzy fault estimation observer
design techniques are proposed for discrete-time nonlinear interconnected systems. There
are several noteworthy points when developing fault estimation techniques. Firstly, when
proposing a fault estimation technique, the scope of research has expanded by suggesting
two different observer design approaches. Also, by providing the observer design algorithm
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into LMI format, it allows many researchers to easily implement the techniques proposed
in this paper.

Lastly, to evaluate the performance of the proposed techniques, we compared various
existing research results. Firstly, to highlight the importance of considering interconnection
problems, the fault estimation performance has been compared with the previous fault
estimation techniques that do not consider interconnection issues. Additionally, to verify
the basic observing performance of the proposed fault estimation observer, a comparison
has been presented for the state variable observing the performance of the fuzzy observer,
which is one of the most used observing techniques. Through the comparison results,
it has been guaranteed that the proposed observer design techniques for fault estima-
tion are highly efficient in estimating the actuator fault input in discrete-time nonlinear
interconnected systems.

6. Conclusions

This paper established the decentralized fuzzy fault estimation observer design for
discrete-time nonlinear interconnected systems with uncertain interconnections. The main
novelty or contributions of the proposed techniques in this paper are as follows:

1. This paper presents novel decentralized fuzzy observer-based fault estimation tech-
niques for discrete-time nonlinear interconnected systems, which has not been previ-
ously studied. Especially, proposed techniques have been developed that are applica-
ble to interconnected systems, which have uncertain information about interconnec-
tions.

2. Two approaches have been proposed to solve the observer design problem of including
state variables by uncertainties. Also, the proposed approaches are algorithmized to
solve the observer design problem using LMIs.

3. To demonstrate the performance of the proposed techniques, comparison results
are presented for the previous fault estimation technique in the numerical example.
Through performance comparison results, it validates the superiority of the proposed
techniques.

To develop the decentralized fuzzy observer, it is considered that the nonlinear in-
terconnected systems can be represented by the T–S fuzzy model, and the uncertain
interconnection satisfied a quadratic inequality assumption. By defining the state and fault
errors, the estimation error model was represented and the fault estimation problem was
addressed. Based on two different H∞ performance inequalities, the decentralized fuzzy
observer design techniques were proposed to achieve the fault estimating performance,
and observer design conditions were derived into LMI formats. Finally, the simulation and
comparison results were provided to demonstrate the effectiveness of the proposed fault
estimation techniques based on the decentralized fuzzy observer.
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