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Abstract: The rapid advancement of deep learning and large-scale AI models has simplified the
creation and manipulation of deepfake technologies, which generate, edit, and replace faces in images
and videos. This gradual ease of use has turned the malicious application of forged faces into a
significant threat, complicating the task of deepfake detection. Despite the notable success of current
deepfake detection methods, which predominantly employ data-driven CNN classification models,
these methods exhibit limited generalization capabilities and insufficient robustness against novel
data unseen during training. To tackle these challenges, this paper introduces a novel detection
framework, ReLAF-Net. This framework employs a restricted self-attention mechanism that applies
self-attention to deep CNN features flexibly, facilitating the learning of local relationships and
inter-regional dependencies at both fine-grained and global levels. This attention mechanism has a
modular design that can be seamlessly integrated into CNN networks to improve overall detection
performance. Additionally, we propose an adaptive local frequency feature extraction algorithm that
decomposes RGB images into fine-grained frequency domains in a data-driven manner, effectively
isolating fake indicators in the frequency space. Moreover, an attention-based channel fusion strategy
is developed to amalgamate RGB and frequency information, achieving a comprehensive facial
representation. Tested on the high-quality version of the FaceForensics++ dataset, our method
attained a detection accuracy of 97.92%, outperforming other approaches. Cross-dataset validation on
Celeb-DF, DFDC, and DFD confirms the robust generalizability, offering a new solution for detecting
high-quality deepfake videos.

Keywords: deepfake detection; deep learning; deepfake; local relationships; self-attention; fine-grained
frequency features

1. Introduction

Face forgery technology has evolved into deepfake, which leverages Generative Ad-
versarial Networks (GANs) [1] to create highly realistic faces by learning from extensive
sample sets, a significant advancement over basic stitching and synthesis techniques. While
these technologies offer vast potential for entertainment and media creation, they are fre-
quently misused to produce counterfeit faces, including for mocking political figures and
celebrities, manipulating public opinion, and committing fraud. This misuse has intensified
public concerns regarding personal image theft, identity forgery, and the spread of misin-
formation on social platforms, leading to serious trust and security issues. Consequently,
the development of effective deepfake detection technologies is imperative.

Currently, the primary methods [2–4] treat deepfake detection as a binary classification
task, where neural networks learn specific features of forged videos and subsequently
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classify the videos as either real or fake. However, this approach is susceptible to overfitting,
leading to poor generalization performance and limited interpretability. To identify critical
factors in CNNs judgment on forgeries, Chai et al. [5] have highlighted the essential
features for detecting forgery by truncating CNN features and applying patch operations to
predict each local feature. This research has paved the way for a new method in deepfake
detection focusing on local features. Furthermore, Dong et al. [6] have demonstrated that
the generalization challenges of binary classifiers in deepfake detection stem from the
inadvertent learning of identity representations in images, a problem known as implicit
identity leakage. A straightforward and effective solution involves performing forgery
detection based on local features to minimize the reliance on global identity information,
thus enhancing the model’s generalization capabilities.

Through the analysis of the FaceForensics++ (FF++) [3] dataset, we have discovered
that manipulated facial images display two distinct characteristics. Firstly, forged faces
retain most of the original face’s regions; for instance, technologies like Deepfakes [7] and
FaceSwap [8] modify facial identification information while preserving the background,
which remains unaltered. In contrast, Face2Face [9] and NeuralTextures [10] primarily alter
facial expressions or lip movements without changing other areas. Secondly, the areas
manipulated are predominantly local rather than global. The samples in the FF++ dataset
are shown in Figure 1. These observations lead us to conclude that the extraction of local
features and the understanding of local relationships are crucial and effective strategies for
detecting facial manipulations.

Figure 1. Two sets of facial images randomly selected from the FaceForensics++ [3] dataset, where
the two faces in each set were manipulated using Deepfakes, FaceSwap, Face2Face, and NeuralTex-
tures, respectively.

Several researchers have explored local relationships to identify patterns conducive
to forgery detection. Chen et al. [11] developed a Multi-scale Patch Similarity Module to
assess the similarity between local features. Yang et al. [12] advanced masked relation-
ship learning, utilizing spatio-temporal attention to analyze features across multiple facial
regions and disseminate relationship information, thereby detecting irregularities from
a global perspective. These approaches, however, rely on manually designed similarity
patterns, which may not fully exploit local features and could render classification models
biased toward specific types of forgery traces, limiting their generalization capabilities.
Nevertheless, the advent of Transformers [13] and Vision Transformer (ViT) [14] has un-
derscored their efficacy in various applications. Utilizing the core self-attention module
of Transformers to model relationships between local features holds significant promise.
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Compared to conventional CNNs, Transformers offer enhanced flexibility in modeling
long-range dependencies in visual tasks, introduce minimal inductive bias, and are superior
in extracting relational representations from local facial features to discern authenticity.
Miao et al. [15] employed a bag-of-features approach to encode patch relationships, but
relying solely on the Transformer encoder proved inadequate for comprehensively learning
the subtle artifacts present on forged faces.

Recent studies have leveraged frequency clues to enhance the robustness of detection
models against external disturbances. Frank et al. [16] and Liu et al. [17] have noted
that most facial manipulation methods employ GANs, where the upsampling processes
may lead to abnormal frequency statistical properties in forged faces, thus enhancing the
robustness of forgery detection based on frequency domain features. However, current
methods for extracting frequency features are relatively crude, generally relying on Dis-
crete Cosine Transform (DCT) and manually designed filters. These methods convert the
processed frequency domain features back to the RGB domain before integrating them into
CNN models. Therefore, a fine-grained approach to frequency feature extraction could
facilitate the identification of subtle facial forgery discriminative features, thereby enabling
the network to better distinguish between authentic and manipulated areas.

To address the issues discussed earlier, this paper introduces a detection method that
utilizes multi-scale local relationships in both the spatial and frequency domains, making
significant contributions in several key areas:

• An adaptive local frequency feature extraction algorithm is introduced. It performs
fine-grained frequency domain decomposition of RGB images, effectively isolating
forgery traces in the frequency space and providing a robust representation of local
feature relationships. This sets a solid foundation for the subsequent restricted local
attention module.

• A novel dual-channel feature fusion module is proposed, which adaptively integrates
RGB and frequency domain information, ensuring a comprehensive representation of
facial features. This enriches the model’s input with both spatial and spectral data,
thereby enhancing detection accuracy.

• The paper innovatively improves upon self-attention mechanisms through the devel-
opment of the Restricted Local Attention Module (ReLAM). ReLAM meticulously
constrains the scope of self-attention, facilitating the learning of fine-grained local
relationships and global feature dependencies in two distinct phases.

2. Related Work

Through experimental observation and prior knowledge, several heuristic methods
have been developed to tackle the challenge of generalization in forgery detection. Due to
the heterogeneity between authentic and forged faces, some studies employ mixed bound-
ary artifacts for detection. Li et al. [18] introduced Face X-ray to determine whether an
image is composed of parts from different sources, exposing the mixed boundaries of forged
images. Zhao et al. [19] proposed a pair-wise self-consistency learning method, exploiting
inconsistencies in source features of forged images for detection. Similarly, anomalies
in the frequency domain of forged images are utilized for this purpose. Qian et al. [20]
devised two innovative methods for frequency feature extraction: Frequency-Aware De-
composition and Local Frequency Statistics. Li et al. [21] developed an adaptive frequency
feature generation module, while Gu et al. [22] proposed a progressive enhancement
learning framework that integrates RGB information with fine-grained frequency clues.
Additionally, Sun et al. [23] found that most forgery clues are located in high-information
areas, quantifiable through classical information maximization theory, and introduced
self-information measurement to improve feature representation for forgery detection.
Some works [24–27] differentiate real from forged faces by analyzing the consistency of
identity features inherent in faces, focusing on high-level identity features. While these
heuristic methods enhance the detection of forged faces by incorporating specific domain
knowledge, they lack unified theoretical support and may introduce biases into the models.
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Recent research has focused on attention mechanisms. Dang et al. [28] utilized these
mechanisms to analyze CNN feature maps, pinpointing image regions that impact CNN
decisions via learned attention maps. Zhao et al. [29] approached forgery detection as a fine-
grained classification issue, developing a multi-attention detection network. Fei et al. [30]
introduced a weakly supervised second-order local anomaly learning model that leverages
deep feature maps to identify anomalous features in local areas. Additionally, methods
that focus on local relationships [31–33] have gained significant attention, differentiat-
ing between original and forgery-related features by modeling local feature interactions
using various strategies. However, most of these studies require additional pixel-level
fake position annotations for supervision or rely solely on a single strategy for learning
local relationships, which hinders the full exploitation of local interactions and restricts
potential enhancements.

Data augmentation has been employed to enhance the generalization capabilities of
CNN models. Wang et al. [34] introduced an attention-based data augmentation strategy
called RFM, designed to refine training data during the learning process. Zhu et al. [35]
implemented a 3D decomposition technique to segregate face images into five distinct
components, amplifying the primary indicators for forgery detection. However, the use of
additional generative networks increases the computational load, and the noise introduced
must be meticulously managed, particularly in cases of extreme forgery. Additionally,
Wang et al. [36] detected artificially synthesized fake faces by analyzing neuron activity,
while Luo et al. [37] utilized high-frequency features to identify forgeries. Although these
methods significantly improve deepfake detection, the challenge of identifying unknown
forgeries persists.

The aforementioned methods are primarily employed to identify forgery traces within
video frames. However, since a forged video is composed of a series of tampered single-
frame images, it inevitably leaves traces of forgery between frames. Sun et al. [38] utilized
68 facial keypoints in each frame and calculated the temporal features between frames
based on optical flow algorithm, subsequently employing an RNN network to generate
video-level detection results. Zheng et al. [39] leveraged temporal coherence for face forgery
detection, introducing a Full Temporal Convolution Network and Temporal Transformer to
identify temporal inconsistencies in forged videos. Hu et al. [40] developed a detection
method based on video frame inference, reconceptualizing the deepfake detection into
a face frame sequence inference task, thus providing a new perspective for deepfake
detection. Further, several studies have detected temporal feature anomalies by monitoring
physiological signals. Jung et al. [41] determine video authenticity by examining eye
blink frequency and duration, and Qi et al. [42] assess forgery through observed heartbeat
rhythms. Haliassos et al. [43] introduced the LipForensics method, which focuses on
capturing detailed representations of mouth movements during speech. Although inter-
frame detection methods are theoretically more effective, their practical performance is
often similar similar to frame-level methods. Consequently, video sequence-based detection
methods warrant additional research.

3. Methods

The overall model architecture, depicted in Figure 2, comprises three primary modules:
the Adaptive Local Frequency Extraction Module (ALFEM), the Dual-Channel Feature
Fusion Module (DCFFM), and the Restricted Local Attention Module (ReLAM). Specifically,
ALFEM captures fine-grained frequency domain features from input facial RGB images.
DCFFM integrates deep CNN features from both spatial and frequency domains to ensure
a comprehensive representation of facial information. ReLAM analyzes multi-scale local
relationships within the fused deep features, specifically targeting notably discordant local
features. Detailed descriptions of each module follow.
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3.1. Adaptive Local Frequency Extraction Module

Most existing deepfake detection methods that utilize frequency domain features
do so in a coarse-grained manner. Inspired by the local frequency statistics method in
F3-Net [20], we have developed the Adaptive Local Frequency Extraction Module (ALFEM).
This module performs fine-grained decomposition of RGB images, effectively isolating
forged traces in the frequency space. As illustrated in Figure 2, ALFEM initially processes
the input facial image by segmenting it into patches. For each patch, the Discrete Cosine
Transform (DCT) extracts spectral coefficients, which are subsequently reconstituted into
the original space after being filtered. Depthwise separable convolutions are then employed
to directly extract fine-grained local frequency features within the frequency domain. This
innovative design adaptively investigates fine-grained frequency domain representations
within identical frequency bands and elucidates the importance of various frequency band
features in detecting forgery clues.

Figure 2. The overall architecture of ReLAF-Net.

Without loss of generality, let XRGB ∈ R3×H×W represent the input RGB image, where
H and W denote the height and width, respectively. First, XRGB is processed with a
sliding window slice to obtain a set of local patchs of size S × S, where S is the size of the
sliding window, and Prgb

(i,j) ∈ R3×S×S represents the patch at position (i, j). Then, each Prgb
(i,j)

undergoes a Discrete Cosine Transform to obtain a spectral representation P f re
(i,j) ∈ R1×S×S.

Subsequently, it passes through n filters of different frequency bands, and the filtered
spectral maps containing only specified frequency components are stacked together. The
specific implementation can be described as follows:

PFRE
(i,j) = Concat( f k ∗ P f re

(i,j)) = Concat( f k ∗ DCT (Prgb
(i,j))), k = 1, . . . , n, (1)

where, PFRE
(i,j) ∈ Rn×S×S is the local spectral representation at position (i, j), Concat(·) de-

notes concatenating feature maps along the channel direction. f k represents the kth filter
in the filter group, implemented based on a 0–1 mask map, with the ratio of 0–1 regions
adjusted to control the range of frequency bands to be filtered. Figure 3 shows the com-
position of the mask map, which is the same size as the patch size. Assuming the top-left
coordinate of the input image is (0, 0), then the kth mask map maskk has value 1 within the
area formed by coordinates (0, (k − 1)H/n), (0, kH/n), ((k − 1)W/n, 0), (kW/n, 0), and
0 elsewhere.

Subsequently, PFRE
(i,j) is reassembled according to its original spatial position to generate

a frequency domain feature representation BFRE ∈ Rn×(S×H′)×(S×W ′), where H′ and W ′

are the vertical and horizontal steps of the sliding window. Finally, local frequency domain
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information is adaptively extracted through depthwise separable convolution to form a
fine-grained frequency representation XFRE ∈ RC′×H′×W ′

, as follows:

XFRE = ReLU(BN(DW(BFRE))), (2)

where, ReLU is the activation function, BN is batch normalization. DW denotes depthwise
separable convolution, with the kernel size of the Depthwise operation set to S × S, stride
to S, and the number of groups to n. The kernel size of the Pointwise operation is 1 × 1,
used for adaptively extracting features of different frequency bands.

Figure 3. The process of computing fine-grained frequency features from RGB images.

ALFEM decomposes the original input and reconstructs it into fine-grained frequency-
aware data. This process effectively exposes local anomalies in forged images across various
frequency bands while preserving spatial relationships to accommodate shift invariance.
Consequently, ALFEM establishes a solid foundation for extracting detailed features from
both authentic and manipulated facial regions.

3.2. Dual-Channel Feature Fusion Module

To effectively capture the anomalous textures and subtle manipulations in forged faces,
we have introduced a Dual-Channel Feature Fusion Module that seamlessly integrates RGB
and frequency information, ensuring a comprehensive representation of facial data. The
structure of the DCFFM is depicted in Figure 2.

Original RGB images XRGB and the fine-grained frequency features XFRE produced
by the ALFEM module are processed through a parallel dual-channel backbone network to
extract deep features. Each channel independently processes its respective feature maps
until the l-th layer, where we obtain Il

RGB ∈ RC×H×W and Il
FRE ∈ RC×H×W , representing
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the feature maps of the RGB and frequency branches, respectively. The objective is to
integrate these dual-branch features.

First, these two features are concatenated along the channel dimension to obtain the
fused feature map Il ∈ R2C×H×W , expressed as

Il = [Il
RGB; Il

FRE], (3)

The fused feature map Il goes through a series of operations including a 1 × 1 con-
volution layer, Batch Normalization, and ReLU non-linear mapping, followed by a 3 × 3
convolution layer and a sigmoid function to derive the attention map A ∈ R2×H×W . The
complete process can be represented as

V = ReLU{BN{Conv1×1(Il)}}, (4)

A = sigmoid(Conv3×3(V)), (5)

Here, A contains two channels of attention weights, specifically represented as A1 ∈
R1×H×W and A2 ∈ R1×H×W . Then, repeat each channel C times and concatenate them
according to the original channel order to form a new feature tensor A′ ∈ R2C×H×W . Finally,
the feature Il and the attention vector A′ are fused through a weighted combination.

A′ = [Repeat(A1); Repeat(A2)], (6)

O = Il + Il ⊙ A′, (7)

where, ⊙ represents element-wise multiplication, and the output O ∈ R2C×H×W represents
the robustly fused features derived from both RGB and frequency data, followed by
remaining processing via a single channel.

DCFFM can adaptively learn the dependency between RGB and frequency information.
By integrating these two distinct types of data, the model develops a comprehensive
understanding, which enhances feature representation for downstream tasks and ensures
robust facial forgery detection.

3.3. Restricted Local Attention Module

To understand local relationships of forgery patterns at different scales, we have devel-
oped an innovative attention mechanism named Restricted Self-Attention. This mechanism
confines the scope of self-attention to deep CNN features, thereby enabling the learning of
multi-scale local relationships and improving the detection of subtle forgery traces.

As depicted in Figure 2, ReLAM comprises two components: (1) Fine-grained Local
Relation Extractor, which identifies subtle manipulation traces by extracting fine-grained
feature relationships within local patches; and (2) Global Feature Relation Enhancer,
which learns inter-regional relationships in groups to better extract deep dependency
relationships. By modularizing restricted self-attention as ReLAM, we facilitate its seam-
less integration into CNN networks, significantly enhancing detection performance and
generalization capacity.

3.3.1. Fine-Grained Local Relation Extractor

As shown in Figure 4a, given an input feature map F ∈ RC×H×W , where C is the
number of channels and the spatial dimensions are H × W, the input feature is divided
into multiple local regions in the spatial dimensions, with each local region being of size
H′ × W ′. This results in a total of H/H′ × W/W ′ local patches. The Fine-grained Local
Relation Extractor limits the computation scope of self-attention within each local area
Xp ∈ RC×H′×W ′

.
First, compute the input query vector qp, key vector kp, and value vector vp for

self-attention as follows:
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qp = XpWQ
p , kp = XpWK

p , vp = XpWV
p , (8)

Next, apply multi-head attention within the local region Xp to learn fine-grained local
relationships. The calculation process is as follows:

Att(Xp) = MultiHead(qp, kp, vp), (9)

For each local area X(i,j)
p , the calculated Att(X(i,j)

p ) is reassembled according to its
position in the original feature F, thus obtaining an attention map Agroup that represents
fine-grained local relationships, expressed as follows:

Agroup
(i×W ′ ,j×H′)→((i+1)×W ′ ,(j+1)×H′) = Att(X(i,j)

p ), (10)

Finally, Agroup and the input feature F are connected via a residual connection, and
the output of the extractor F′ ∈ RC×H×W is as shown below:

F′ = F + F ⊙ Agroup, (11)

Figure 4. The dimensional transformation process of feature embedding in ReLAM. (a) is the process
of Fine-grained Local Relation Extractor. (b) is the process of Global Feature Relation Enhancer.

3.3.2. Global Feature Relation Enhancer

For the output F′ of the Fine-grained Local Relation Extractor, first use two layers of
depthwise separable convolutions for global subsampling. The sparse connections of the
depthwise separable convolutions allow for effectively learning representations for each
group, as shown below:

Z = σ(DW1(σ(DW0(F′)))), (12)
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Here, DWi represents the ith layer of the depthwise separable convolution, Z ∈
RC×Ĥ×Ŵ , where Ĥ = H

H′ and Ŵ = W
W ′ , respectively, represent the number of patches in the

vertical and horizontal directions.
Next, apply multi-head attention to the feature Z, thereby learning dependencies

between regions at the global feature level, obtaining a global attention map Att(Z) ∈
RC×Ĥ×Ŵ , as shown in Figure 4b.

Aglobal
(i×W ′ ,j×H′)→((i+1)×W ′ ,(j+1)×H′) = Âtt(Z(i,j)) = Fill(Att(Z)i,j), (13)

The feature of Att(Z) at the spatial position (i, j) can be represented as Att(Z)i,j ∈
RC×1×1. By filling Att(Z)i,j to transform it into Âtt(Z)i,j ∈ RC×H′×W ′

. Then, combine
all Âtt(Z)i,j according to their original positions to obtain the attention map Aglobal ∈
RC×H×W , as described in Equation (13). Finally, Aglabal and F′ are connected via a residual
connection, as follows:

F′′ = F′ + F′ ⊙ Aglobal , (14)

Additionally, before both the Fine-grained Local Relation Extractor and the Global
Feature Relation Enhancer, convolution-based positional encoding is introduced, as follows:

PEG(x) = x + Conv(x), (15)

The Restricted Local Attention Module measures the relevance of each segment of
the input information to others, enhancing relevant areas and suppressing less pertinent
ones. Consequently, this module proficiently learns the dependencies between subtle facial
features and can be effectively used for distinguishing between genuine and fake faces,
thereby boosting the model’s discriminative power and generalization capabilities.

3.4. Loss Function

This method uses the cross-entropy loss function, which is expressed as follows:

L = − 1
N

N

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)), (16)

where N represents the number of samples, yi is the actual label of the ith sample, and ŷi is
the corresponding sample’s predicted value.

4. Experiments and Results Analysis

This section describes the experimental setup and provides the results of the compari-
son and ablation experiments, which are analyzed and summarized.

4.1. Experimental Setup
4.1.1. Datasets

With the proliferation of deepfake content, related research has also emerged, and
more and more public datasets have been released, aimed at advancing the detection and
defense research against deepfakes. We evaluate the proposed method on four widely used
public datasets, including FF++ [3], Celeb-DF [44], DFD [45], and DFDC [46], where the
first two datasets are used for training and evaluation, and the latter two are used only for
cross-dataset evaluation.

• The FF++ dataset contains 1000 real videos and 4000 fake videos created using four
different face tampering techniques, including DeepFakes, FaceSwap, Face2Face, and
Neural Textures. Additionally, for all videos, three versions of compression treatment
using the H.264 codec are provided: C0 (raw), C23 (HQ), and C40 (LQ). The diversity
of the FF++ dataset can evaluate the model’s generalization ability and robustness to
unknown forgery methods and videos of different compression levels, allowing for a
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comprehensive assessment of the performance and robustness of deepfake detection
models. Therefore, the FF++ dataset plays an important role in the field of deepfake
detection, providing strong support for the development of related fields.

• The Celeb-DF dataset contains 890 real videos and 5639 fake videos, where the fake
videos were generated using an improved DeepFake algorithm, greatly reducing
visual artifacts and possessing higher visual quality.

• The DFD dataset contains 363 original videos shot in 16 different scenes by 28 actors
and 3068 fake videos generated using deep learning methods, with the specific forgery
method not disclosed.

• The DFDC dataset contains 23,654 real videos and 104,500 fake videos. Due to the
variety and unknown nature of the forgery methods, and the presence of various
complex scenes, it is very challenging for existing forgery detection.

The original videos are stored in MP4 format. For frame-based training, we adhere
to established protocols by utilizing OpenCV to extract the first 300 frames from each
video, from which we randomly select 50 frames for training and testing. Subsequently, the
Dlib library is employed to detect and align faces within these frames. All facial images
are then cropped and normalized to 299 × 299 pixels and saved in PNG format. For the
FF++ dataset, following the settings in reference [3], we divided the dataset into training,
validation, and testing sets in a ratio of 720:140:140. The division of the training and test
sets for the Celeb-DF dataset followed the official guidelines. The DFD and DFDC datasets
are used exclusively for cross-dataset evaluation experiments. Due to the imbalance in
sample distribution, in the DFD dataset, we selected all 363 real videos and one-tenth of
the fake videos. Considering the large volume of the DFDC dataset, only 1000 videos were
selected to construct the testing set. Table 1 shows the statistical information of the frames
collected from each dataset. Additionally, during the training process using FF++ and
Celeb-DF, a series of data augmentation techniques were applied to the positive samples
due to the imbalance issue between positive and negative samples. Specifically, horizontal
flipping, random cropping, color transformation, and combinations of these methods were
used to increase the number of positive samples, thereby achieving sample balance.

Table 1. Frame number statistics of the datasets used for training, validation, and testing.

Datasets Label Train (Frame) Valid (Frame) Test (Frame)

FF++ Real 36k 7k 7k
Fake 144k 28k 28k

Celeb-DF Real 35.6k - 8.9k
Fake 264.95k - 17k

DFD Real - - 18.15k
Fake - - 15.3k

DFDC Real - - 25k
Fake - - 25k

4.1.2. Evaluation Metrics

This paper proposes a frame-level detection method for videos, hence the evaluation
is conducted at the image level, using accuracy (ACC), the receiver operating characteristic
curve (ROC), and the area under the curve (AUC) as the model performance evaluation
metrics. The experimental results of other methods are directly cited for comparison.

4.1.3. Implementation Details

The dual-branch backbone network employs the Xception [47] pre-trained on Ima-
geNet. Xception has 14 residual convolutional blocks, with the first convolutional layer in
the frequency domain branch replaced by ALFEM, DCFFM inserted after the 10th block,
followed by a 1 × 1 convolution and ReLAM, and subsequent Xception structure serving
as the classification layer. The input RGB image shape is 3 × 299 × 299, the sliding window
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for DCT transform is 10 × 10, and the number of filters in the filter group is 6. The output
dimension of the ALFEM module is 32× 149× 149, and the output dimension of DCFFM is
1024× 10× 10. Moreover, restricted self-attention is implemented in the form of multi-head
attention, with the restricted window size being 2 × 2, the number of heads being 8, and
the embedding dimension per attention head being 128.

All experiments were conducted on an Ubuntu 20.04 system using the Pytorch and
NVIDIA RTX 3090 24 GB. During the network training process, the Adam optimizer was
used, where β1 and β2 are set to 0.9 and 0.999, respectively, with an initial learning rate
of 0.0002, and weight decay of 1 × 10−8. The batch size is 32, the number of epochs is set
to 50, and a StepLR scheduler is adopted, halving the learning rate after every 5 epochs.
Additionally, an early stopping strategy is employed to store the best model weights, to
prevent model overfitting.

4.2. Quantitative Results
4.2.1. In-Dataset Evaluations

Evaluations were conducted within the datasets using two qualities (HQ and LQ) of
FF++ and the Celeb-DF dataset. As shown in Tables 2 and 3, our method demonstrated
superior performance on both datasets. Specifically, on the FF++ dataset, compared to
methods based on local relations, such as LRL and MRL, our method increased the average
AUC by 1.26% and 1.37% for the two different compression ratios, respectively. Moreover,
the proposed scheme also showed significant improvements over methods based on fre-
quency features, such as F3-Net, SPSL, and Freq-SCL, as well as the attention-based method
MAT. Experimental results on the Celeb-DF dataset were also superior to all comparison
schemes. Therefore, the in-dataset experimental results demonstrate the effectiveness of
our proposed detection method.

Table 2. Quantitative results on FaceForensics++ dataset with different qualities (HQ and LQ).

Methods
FF++ (LQ) FF++ (HQ)

ACC (%) AUC (%) ACC (%) AUC (%)

Xception [3] 86.86 89.30 95.73 96.30
Face X-ray [18] - 61.10 - 87.40

F3-Net [20] 90.43 93.30 97.52 98.10
SPSL [17] 81.57 82.82 91.50 95.32

Freq-SCL [21] 89.00 92.40 96.69 99.30
MAT [29] 88.69 90.40 97.60 99.29
SIA [23] 90.23 93.45 97.64 99.35

RECCE [25] 91.03 95.02 97.06 99.32
BOF [15] 87.86 91.61 96.57 99.36
LRL [11] 91.47 95.21 97.59 99.46
MRL [12] 91.81 96.18 93.82 98.27

OUR 93.95 * 97.48 * 97.92 * 99.72 *
The highest results are highlighted with *.

Table 3. Quantitative results on Celeb-DF dataset.

Methods ACC (%) AUC (%)

Xception [3] 97.90 99.73
F3-Net [20] 95.95 98.93
MAT [29] 97.92 99.94
SIA [23] 98.48 99.64

RECCE [25] 98.59 99.94
MRL [12] - 99.96
SFDG [48] 99.22 99.96

OUR 99.60 * 99.98 *
The highest results are highlighted with *.
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4.2.2. Cross-Manipulation Evaluations

The FF++ dataset explicitly divides four different forgery methods into subsets, which
enables the study of generalization to unknown forgery methods. Based on the experi-
mental setup of Freq-SCL [21], we conducted cross-manipulation experiments on the FF++
(HQ) dataset, with AUC (%) as the evaluation metric.

As shown in Table 4, our method achieves higher average AUC on the four forgery
subsets when trained on datasets containing only one type of forgery method, compared
to the comparative methods. Also, in most individual comparisons, it performed better
than the comparative methods. Notably, models trained on DF and NT and tested on FS
and F2F showed results below RECCE. We speculate that the possible reason is that FS and
F2F are forgeries based on computer graphics, and RECCE’s learning approach based on
reconstruction networks and identity features may better generalize to these two forgery
methods. Figure 5 presents the average AUC results of training on one forgery method
and testing on the remaining three forgery methods. Overall, the method proposed in this
chapter demonstrates good generalization ability in dealing with unseen forgery types.

Table 4. Cross-manipulation evaluation in terms of AUC (%) on FaceForensics++ (HQ) with four
manipulation methods.

Train Set Methods
Test Set

AVG
DF FS F2F NT

DF

Freq-SCL [21] 98.91 66.87 58.90 63.61 63.13
MAT [29] 99.51 67.33 66.41 66.01 66.58

RECCE [25] 99.65 74.29 * 70.66 67.34 70.76
OUR 99.74 * 65.84 72.15 * 76.57 * 78.58 *

FS

Freq-SCL [21] 75.90 98.37 54.64 49.72 60.09
MAT [29] 82.33 98.82 61.65 54.79 66.26

RECCE [25] 82.39 * 98.82 64.44 56.70 * 67.84
OUR 76.74 99.56 * 71.59 * 55.11 75.75 *

F2F

Freq-SCL [21] 67.55 55.35 93.06 66.66 63.19
MAT [29] 73.04 65.10 97.96 71.88 70.01

RECCE [25] 75.99 64.53 98.06 72.32 * 70.95
OUR 78.38 * 77.57 * 98.88 * 62.07 79.22 *

NT

Freq-SCL [21] 79.09 53.99 74.21 88.54 69.10
MAT [29] 74.56 60.90 80.61 93.34 72.02

RECCE [25] 78.83 63.70 * 80.89 * 93.63 74.47
OUR 88.45 * 59.43 74.39 98.20 * 80.12 *

The highest results are highlighted with *.

Figure 5. Comparative experimental results of cross-manipulation evaluations.
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4.2.3. Cross-Dataset Evaluations

To further ascertain the generalization performance of ReLAF-Net across unseen
data, the model was trained exclusively on the FF++ (HQ) dataset and then subjected to
cross-dataset evaluations on Celeb-DF, DFDC, and DFD datasets, utilizing AUC (%) as the
evaluation metric. The summarized results are presented in Table 5. While the Xception
baseline model exhibited suboptimal generalization capabilities, our proposed ReLAF-Net
showed commendable performance across all datasets not encountered during the training
phase, even with Xception as the backbone. Despite being marginally outperformed by
MLR and IID on Celeb-DF, and by IID on DFDC, ReLAF-Net maintained solid results.
Notably, ReLAF-Net attained the highest performance on the DFD dataset, emphatically
confirming the robust generalization proficiency of our proposed model when confronted
with unfamiliar data. This remarkable performance is predominantly due to the strategic
incorporation of restricted self-attention for local relationship learning and the meticulous
mining of fine-grained frequency features.

Table 5. Cross-dataset generalization results of frame-level AUC (%) by training on FaceForensics++
(HQ) dataset.

Methods FaceForensics++ Celeb-DF DFDC DFD

Xception [3] 96.30 36.19 48.98 87.86
SPSL [17] 96.91 76.88 66.16 -
MAT [29] 99.80 67.44 - -
SIA [23] 96.94 77.35 - -
IID [27] 99.32 83.00 81.23 * 93.92

BOF [15] 99.36 78.26 - -
LRL [11] 99.46 78.26 76.53 89.24
MRL [12] 96.18 83.58 * 71.53 -
SFDG [48] 99.53 75.83 73.64 88.00

OUR 99.72 * 82.16 80.35 94.33 *
The highest results are highlighted with *.

In addition, it should be noted that when the model trained on FF++ is tested on
different datasets, the detection efficacy varies. Specifically, the generalization performance
is high for DFD, but it progressively declines for Celeb-DF and DFDC. This variation
is primarily attributed to inherent differences in data quality, the deepfake generation
techniques utilized in each dataset, and dataset-specific biases. Unlike FF++, the datasets
DFD, Celeb-DF, and DFDC employ advanced forgery methods, the details of which remain
undisclosed. Moreover, Celeb-DF and DFDC often implement post-processing techniques
to diminish the signs of forgery. Additionally, DFDC represents more realistic scenarios with
faces presented at various angles and under different lighting conditions. Consequently,
when conducting tests across datasets, the AUC score decreases in response to these factors.

4.2.4. Robustness to Perturbations

In addition to excellent generalization over unknown data, it is essential for detectors to
withstand the common damages that videos may experience on social media. We examined
the effect of degrees of H.264 video compression on detector performance by training the
detector with FF++ c23 (i.e., HQ version) and subsequently testing it at video compression
rates c23 and c40. Figure 6 illustrates that although Face X-ray exhibits strong generalization
capabilities, it is highly sensitive to compression, suggesting that hybrid boundaries are
vulnerable. The F3-Net delivered results that were slightly below ours but demonstrated
significant enhancement over two comparative methods, indicating that incorporating
frequency information effectively alleviates compression effects. Moreover, we evaluated
our method against the Xception backbone by measuring the AUC at six distinct levels
of three specific image perturbations: color saturation changes, Gaussian blur, and block-
wise distortion, following the settings outlined in reference [49]. As depicted in Figure 7,
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our method showed superior robustness to the backbone network, particularly under
Gaussian blur scenarios where Xception nearly failed as interference intensified, whereas
our method remained effective. This advantage stems from our method’s reliance on
detecting block-level correlations rather than visual features. However, this also resulted in
weaker robustness of our method under block-wise distortion compared to the backbone. It
is crucial to note that in practical scenarios, such block damage is significantly less frequent
than the other two perturbations, thus maintaining our method’s considerable benefits.

Figure 6. Robustness to compression.

Figure 7. Robustness to common perturbations.

4.3. Ablation Study

For the three components proposed, we designed six different combinations to conduct
ablation studies, to evaluate the contribution of each component to the model’s performance.

• No.1: BASE only (the check mark indicates that this component is included), which
refers to using only the baseline model Xception for testing on the RGB branch;

• No.2: Adds ReLAM on the basis of BASE;
• No.3: Uses the baseline model with ALFEM for detection in the frequency domain;
• No.4: Adds ReLAM on the basis of ALFEM;
• No.5: Uses a dual-branch network paired with both DCFFM and ALFEM;
• No.6: Incorporates the full model with all three proposed components.

As shown in Table 6, by comparing the results of Experiment No.1 and Experiment
No.2, it can be seen that when only the baseline model BASE is used, the accuracy and AUC
of the model are 95.25% and 96.93%, respectively. However, when the ReLAM module
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is introduced on top of BASE, the accuracy and AUC of the model increase to 96.61%
and 99.19%, respectively, proving the significant improvement of the ReLAM module on
the overall performance of the model. Similarly, by comparing the results of Experiment
No.3 and Experiment No.4, the effectiveness of the ReLAM module is also confirmed on
the frequency domain branch. Furthermore, by comparing the results of Experiments
No.1, No.3, No.5, and Experiments No.2, No.4, No.6, it is found that under the same
configuration, the performance of the dual-branch structure model surpasses that of the
single-branch model. Finally, when all modules (BASE, ALFEM, DCFFM, and ReLAM)
are combined, the model’s accuracy and AUC reach the highest at 97.92% and 99.72%,
respectively, fully proving that the combination of these four modules can achieve the best
model performance. The comparison results of the ROC curves for different component
models are shown in Figure 8.

Table 6. Abalation study on the influence of different components on FaceForensics++ (HQ) dataset.

Number BASE ALFEM DCFFM ReLAM ACC (%) AUC (%)

1 " 95.25 96.93
2 " " 96.61 99.19
3 " 95.32 97.44
4 " " 96.73 99.27
5 " " " 96.39 99.02
6 " " " " 97.92 99.72

Figure 8. Ablation experiment results plotted using ROC curve.

4.4. Results Display

To demonstrate the actual detection efficacy of our model on input face images, we
selected several face sequences from the test sets of FF++, DFD, Celeb-DF, and DFDC, and
recorded the prediction scores from the final binary classification feed-forward layer of
the model. In this system, a real face is labeled as 0, while a fake face is labeled as 1. As
illustrated in Figure 9, the classifier’s output distinctly differentiates between real and
fake faces in the FF++ and DFD datasets. Although the score discrepancy is reduced for
the Celeb-DF and DFDC samples, the classifier still effectively decides the authenticity of
the video.
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Figure 9. Binary classification prediction scores of our model on input sequence samples of FF++,
DFD, Celeb-DF and DFDC datasets.

5. Conclusions

In summary, this study introduces a novel model that refines localized attention
features through multi-scale relationships in the spatial-frequency domain, significantly
enhancing deepfake detection. By integrating a restricted self-attention mechanism and
a fine-grained frequency feature extraction algorithm, the model substantially improves
generalizability and the ability to detect subtle forgery traces. This approach effectively
addresses the challenge of identifying sophisticated deepfake manipulations and demon-
strates superior performance in accurately recognizing altered images and videos compared
to existing methods. However, it is crucial to acknowledge the limitations of our model. Al-
though effective in various testing scenarios, its performance may fluctuate with extremely
high-quality deepfakes or those generated by novel methods. Moreover, the computational
complexity associated with refining localized attention features may restrict its applicability
in real-time detection systems.

Despite these limitations, our method offers significant potential for use in areas that
require robust verification of digital media authenticity, such as security surveillance, media
forensics, and content moderation on social platforms. Additionally, the three improvement
modules we propose can be integrated with various model architectures in the field of
computer vision to address similar challenges in their respective tasks.

Further research and adaptation of this model could play a crucial role in protecting
digital content integrity and combating the spread of misinformation through deepfakes.
Future studies should explore the feature patterns of various forgery methods, optimize
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the model’s computational efficiency, and enhance its robustness through the application
of data augmentation and adversarial training strategies.
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