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Abstract: This paper proposes a reactive shield structure to reduce the leakage magnetic field of a
wireless power transfer (WPT) system with a dipole coil structure. The reactive shield resonates
at a frequency lower than that of the WPT system and operates in an inductive region where the
reactance is positive. Therefore, the magnetic field generated by the shield coil is 180◦ different in
phase from that generated by the transmitting coil, resulting in an effective reduction in the leakage
magnetic field. The methodology for designing the reactive shield for the dipole coil structure is
mathematically analyzed, and the current and magnetic field phases are compared. Its effectiveness
has been validated through simulations and experiments. Specifically, the proposed method is
validated through a 50 W class WPT experiment, which showed that the proposed shielding structure
achieves efficiency reductions ranging from 0.3% to 1.5% and has a leakage magnetic field reduction
effect of up to 67% compared to the comparison groups.
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1. Introduction

Wireless power transfer (WPT) technology has garnered significant attention as a
viable replacement for wired power transfer [1–3]. WPT systems transfer energy through a
magnetic field without connecting a conductor between the transmitting side (TX) and the
receiving side (RX). Therefore, the WPT system is safe, eliminating the risk of electric shock,
and convenient as it does not require a separate physical connection [4,5]. In particular, as
various applications operate using electrical energy and batteries are essential, the WPT
system is receiving significant attention as a battery charging technology [6]. Representative
examples of WPT system applications are being studied in various areas, including electric
vehicles, mobile applications, industrial electronics, and biomedical devices [7–9].

The most commonly used coil structure in WPT systems is the planar-type coil, as
shown in Figure 1 [10,11]. As shown in Figure 1a, WPT systems with planar-type coils face
each other. This is because the magnetic field is transmitted from the TX side to the RX side
in a direction perpendicular to the coil, as shown in Figure 1b. Consequently, the wider
the cross-sectional area of the coil, the better the various characteristics of the WPT system,
including power transfer efficiency and power transfer capacity [12–14].

However, securing a large coil cross-sectional area is not feasible in certain applications.
For example, in biomedical device applications where WPT systems are widely used,
securing a large coil cross-sectional area is challenging [9,15,16]. Additionally, in-home
appliance applications, such as wireless charging between monitors or televisions, the
cross-sectional area where TX and RX face each other is often very narrow [17].

In applications with such a narrow coil cross-sectional area, a dipole-type coil is used
instead of a planar-type coil [18–21]. The dipole coil shape is shown in Figure 2. The
dipole-type coil has a structure in which the coil is wound around a magnetic material
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(ferrite) with high magnetic permeability, such as a solenoid. Figure 2b shows how the
magnetic field is transmitted from TX to RX in the dipole-type coil. It can be observed that
most of the magnetic field in the dipole-type coil is transmitted through the magnetic core,
and the magnetic field is transmitted from the TX to RX coils at both ends of the magnetic
core. The amount of magnetic field transmitted is significantly less dependent on the area
facing the WPT coil system than on the planar type. Therefore, the dipole coil structure is
used in various applications where the area facing each other is very narrow.
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vices that are inevitably sensitive to leakage magnetic fields. For example, devices used 
near the human body must meet the ICNIRP 1998 standard for magnetic field strength 
[18], and biomedical devices used very closely to the human body must meet the Specific 
Absorption Rate (SAR) standard [19]. 

Research on WPT systems with dipole structures has been extensive [20–24]. First, 
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tively long distance using a dipole structure. Specifically, they found that the effectiveness 
of the dipole coil structure was maximized when the cross-sectional area between the TX 
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Figure 2. Structure of dipole-type WPT coils: (a) bird’s-eye view and (b) the shape of the magnetic field.

However, the dipole coil structure has a major disadvantage compared to the planar-
type coil structure, which is the problem of leakage magnetic fields [18]. In a planar-type
coil, the magnetic field is mainly transmitted between the magnetic cores, whereas in the
dipole coil structure, it radiates outward from the ends of the magnetic core, as shown in
Figure 2b. Due to the nature of the dipole structure in which the magnetic field radiates
in the longitudinal direction, it is very difficult to reduce leakage magnetic fields. This
drawback of the dipole coil structure poses a significant obstacle to its application in devices
that are inevitably sensitive to leakage magnetic fields. For example, devices used near the
human body must meet the ICNIRP 1998 standard for magnetic field strength [18], and
biomedical devices used very closely to the human body must meet the Specific Absorption
Rate (SAR) standard [19].

Research on WPT systems with dipole structures has been extensive [20–24]. First,
Choi et al. [20] and Park et al. [21] proposed a method for transmitting power over a
relatively long distance using a dipole structure. Specifically, they found that the effective-
ness of the dipole coil structure was maximized when the cross-sectional area between
the TX and RX sections was small compared to the power transfer distance. In addition,
Rong et al. [22] proposed a WPT system capable of transferring power omnidirectionally
in low-power applications using multiple dipole coils, and Rong et al. [23] studied an
angle-free WPT system with a similar structure. Moreover, in Khan et al.’s study [24],
the WPT system was applied using a dipole coil structure in a missile application with a
small cross-sectional area where the TX and RX sections faced each other. However, in
the above-mentioned WPT systems using the dipole structure, no mention was made of
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reducing the leakage magnetic field of the corresponding structure. In fact, there has been
no research to date on reducing the leakage magnetic field of the dipole structure.

Among the methods for reducing magnetic leakage from planar coils, the most actively
researched is the reactive shield (SH) method [25–27]. Park et al. [25] proposed a method
to reduce magnetic leakage in a WPT system using a planar coil for mobile applications.
In Kim et al.’s study [27], power transfer efficiency was increased, and the leakage magnetic
field was reduced using a dual-loop reactive shield. Furthermore, Wei and Wu [28] studied
similar content using the frequency split phenomenon. However, these reactive shield
methods all have the limitation that they apply only to planar coils. The reason why so
much research has only been conducted on magnetic field reduction methods in planar-type
WPT coils is because, as can be seen in Figure 1b, the magnetic field radiating outward
from this type of coil is relatively smaller than that of the dipole type.

This paper proposes a reactive shield coil structure to minimize leakage magnetic
fields from a WPT system with a dipole-type coil. The proposed reactive shield generates
an induced voltage by Faraday’s law. The induced voltage generates a current with an
opposite phase to the magnetic field generated from the WPT coil, thereby producing a
magnetic field with an opposite phase. Therefore, the magnetic fields are canceled at both
ends of the magnetic material, reducing the leakage magnetic field. Section 2 provides a
mathematical analysis of the reactive shield for the dipole structure. Section 3 confirms
the shield performance through simulation, while Section 4 validates the performance of
the proposed shield structure through experimentation. Finally, Section 5 presents the
conclusion of this paper.

2. Principle of Reactive Shield for Dipole Coil Type

The dipole-type WPT coil with the proposed reactive shield applied is shown in
Figure 3. The proposed reactive shield has a structure in which reactive shield coils are
added to both sides of the TX coil in a typical dipole-type coil, as shown in Figure 2. The
RX side lacks a separate reactive shield structure because WPT systems with a dipole coil
structure are generally designed in very narrow spaces, especially considering the severe
spatial constraints of the RX. Therefore, only the TX side, with fewer spatial constraints, has
a re-active shield structure. As will be validated in Sections 3 and 4, the leakage magnetic
field from the coil of the dipole structure can be reduced, even with a shield structure only
on the TX side.
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The equivalent circuit of the dipole-type WPT system with the proposed shield struc-
ture in Figure 3 is shown in Figure 4. Figure 4a shows the entire circuit from direct current
(DC) input to DC output. The input DC voltage (Vin) is converted into an alternating
current (AC) component through an inverter and transferred as a DC voltage (Vload) to
the load (Rload) through resonant circuits, coils, and a rectifier. The resonant circuit for
impedance compensation adopted the LCC-series topology, known for its constant voltage
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out-put characteristics, and its effectiveness has been proven in various studies [12,28–31].
In addition, as the resonant circuit on the RX side only has a capacitor, it provides spatial
advantages on the RX side and is suitable for a dipole-structured coil. As shown in Figure 3,
there are four coils (TX, RX, SH1, and SH2), resulting in six types of mutual inductance
between coils, as shown in Figure 4a (four combinations of two).
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Figure 4b is a simplified and approximated circuit of Figure 4a. In Figure 4b, Vinv
represents the root mean square (RMS) value of the fundamental component of the inverter
output voltage. This has a relationship (1) with the Vin:

Vinv =
4

π
√2

Vin∠0◦ (1)

As Vinv is an RMS value, all voltages and currents in Figure 4a,b are RMS values.
Additionally, the load resistance (Rrect) seen from the rectifier is as shown in (2):

Rrect =
8

π2 Rload (2)

Furthermore, the six magnetic couplings (mutual inductances) approximate only two
meaningful mutual inductances. First, the mutual inductance between the TX and RX
coils (MTX-RX) is significant in the WPT system. Second, because RX and shield coils (SH1
and SH2) are sufficiently far apart magnetically, the corresponding mutual inductances
(MRX-SH1, MRX-SH2) are ignored:

MRX-SH1 = MRX-SH2 ' 0 (3)
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Third, the resonant capacitor of the shield coils is selected simultaneously by winding
the two shield coils in series. Specifically, the two shield coils are viewed as one. Therefore,
the relationships between LSH1 and LSH2 in Figure 4a and LSH in Figure 4b are as follows (4):

LSH = LSH1 + LSH2 + 2MSH1-SH2 ' LSH1 + LSH2 (4)

As shown in Figure 3, the SH coils are sufficiently far apart, making the mutual induc-
tance (MSH1-SH2) between them negligible. Finally, because LSH1 and LSH2 are connected in
series, the relationships between MTX-SH1 and MTX-SH2 in Figure 4a and MTX-SH in Figure 4b
can be expressed as follows (5):

MTX-SH = MTX-SH1 + MTX-SH2 (5)

All approximations will be validated through simulation in Appendix A.
Next, the resonant condition on the TX side follows that of the LCC topology [12].

This is equivalent to (6), and the resulting TX coil current (I1) is equivalent to (7):

1√
LS1CP1

=
1√

(LTX − LS1)CS1
= ωn1 = ωo (6)

I1 = −jωoCP1Vinv = −j
4

π
√2

ωoCP1Vin∠0◦ (7)

In (6), ωn1 is the resonant frequency of the TX side, and ωo is the operating frequency
of the inverter. Additionally, the resonant condition of the RX side is a series topology, so
it is equal to (8), and the voltage delivered to the load (Rrect) due to mutual inductance is
equal to (9):

1√
LRXCS2

= ωn2 = ωo (8)

Vrect = jωo MTX-RXI1 = ω2
o MTX-RXCP1Vinv (9)

In (8), ωn2 is the resonant frequency of the RX side.
Meanwhile, the resonant circuit on the SH side is adjusted with a capacitor (CSH),

as shown in Figure 4. Studies have found that for the magnetic field generated in the
SH coil to have an opposite phase of the magnetic field generated in the TX coil, the
resonant frequency of the SH coil (ωSH) must be set lower than that of the system operating
frequency (ωo) [25–27]. In essence, the resonant of the SH coil must be in the inductive
region, as shown in Figure 5a,b.
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To have the above relationship, the impedance of the SH coil must be equal to (10)
and (11):

ZSH = j
(

ωoLSH −
1

ωoCSH

)
= jωoLeq (10)

1√
LSHCSH

= ωSH < ωo (11)

In (10), the resonant condition on the SH coil side is in the inductive region, so Leq is
the equivalent inductance. According to Faraday’s law, voltage is induced in the SH coil by
the TX coil current, as shown in (12), if the resonant condition on the SH side is equal to
(10) and (11), and the current (ISH) flowing through the SH coil is equal to (13):

VSH = jωo MTX-SHI1 (12)

ISH =
−jωo MTX-SHI1

ZSH
= −MTX-SH

Leq
I1 (13)

As seen in (13), the current phase of the SH coil (ISH) is 180◦ different from that of the
TX coil (I1).

In Figure 3, the dipole shares the same structure as the solenoid; hence, the magnetic
field at its end equals (14):

Bcoil ' µnIcoil (14)

Therefore, the phase of the magnetic field generated in the coils aligns with the coil
current. Specifically, as the currents in the TX and SH coils have a 180◦ phase difference, as
shown in (13), the magnetic field generated in the TX coil will be reduced by that generated
in the SH coil. Figure 6 shows a phasor diagram of the magnetic field of the WPT system
with and without the SH coil. As shown in Figure 6a, without an SH coil, only the sum of
the magnetic fields generated from the TX and RX coils exists. However, with an SH coil,
the magnetic field (BSH) caused by the SH coil reduces the magnetic field of the TX coil
(BTX), thereby reducing the vector sum (Btotal) of the magnetic field. Moreover, as can be
seen in Figure 3, since the SH coil is wound in high permeability ferrite, the magnetic field
generated by the SH (BSH) coil will become stronger and cancel out the magnetic field of
the TX coil (BTX).
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The magnetic fields of the TX and SH coils have opposite phases, causing them to
cancel each other, as depicted in Figure 7. This figure shows only the TX, RX, and SH coils;
the magnetic core (ferrite) is omitted to emphasize the magnetic field. For the standard
of current and magnetic field phase, a dot convention is indicated for each coil. The TX
and SH coil currents have a phase difference of 180◦. Therefore, in the direction where
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the magnetic field of the TX coil goes out, the counterpart SH coil (LSH2) is also generated
in the outgoing direction. Similarly, in the direction where the magnetic field of the TX
coil enters the coil, a magnetic field is generated in the direction where the counterpart
SH coil (LSH1) also enters. However, the TX magnetic field, essential for power transfer,
passes through without cancellation and reaches the RX coil. In essence, the reactive SH coil
cancels unnecessary leakage magnetic fields, allowing only the magnetic fields essential
for the WPT to reach the RX coil. The reactive shield for the dipole-type coil limits the
magnetic field of the WPT coils and reduces the leakage magnetic field.
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3. Validation of the Effectiveness of the Proposed Reactive Shield through Simulation

Figure 8a is WPT coils with the proposed reactive shield, as shown in Figure 3, and
Figure 8b,c are comparison groups to validate the reactive shield performance. Figure 8c,
unlike Figure 8a, has a structure in which only ferrite is added without SH coils. In other
words, both Figure 8b,c are structures in which the reactive shield structure is not applied.
The geometric information of each coil model is shown in Figure 8. In addition, Table 1 lists
the remaining information on the simulation (operating frequencies, air gaps, and wire
information). In Figure 8a–c, note that the color of the magnetic material on the SH side
is shown in gray, and the color of the magnetic material on the WTP coil side is shown in
blue. This is simply to distinguish the magnetic material structure and the permeability
of all magnetic materials is the same. Table 2 summarizes the information on the coils
extracted by performing magnetic field simulation with the setup in Figure 8 and Table 1.
The notation for each inductance matches the circuit in Figure 4.
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Table 1. Additional information on magnetic field simulation.

Parameters Value

Operating frequency 85 kHz
Relative permeability of magnetic core (TX, RX, SH) 150

Air gap (d) 15 mm
Air gap (dshield) 3 mm

Diameter of coil wire 2.8 mm
Number of turns of TX and RX coils 12 turns

Number of turns of SH coil 4 turns

Table 2. Inductance extraction results through magnetic field simulation.

Model Parameters Value [µH]

Proposed model

Inductance of TX coil (LTX) 29.52
Inductance of RX coil (LRX) 25.41

Mutual inductance between TX and RX (MTX-RX) 6.2
Inductance of SH coils (LSH1, LSH2) 5.82

Mutual inductance between SH and TX (MTX-SH) 3.91

Comparison Case 1
Inductance of TX coil (LTX) 35.76
Inductance of RX coil (LRX) 25.62

Mutual inductance between TX and RX (MTX-RX) 7.15

Comparison Case 2
Inductance of TX coil (LTX) 29.57
Inductance of RX coil (LRX) 25.44

Mutual inductance between TX and RX (MTX-RX) 6.21

Table 3 shows the resonant circuit values for each case. Please refer to Figure 4 for
the notation of resonant circuit values. In the circuit simulation, the Vin of Figure 4 is 60 V,
and the target TX current (I1) is selected as 6 ARMS. Based on the selected values, each
resonant circuit value is calculated through (6) to (8). All resonant frequencies except for the
SH coil are set to 85 kHz, matching the system operating frequency. Additionally, the SH
frequency of the proposed model is selected as 50 kHz (fSH = 50 kHz). The power delivered
to the final load resistance (Rload) is 50 W in all three cases. The current magnitude of each
part for 50 W of power to be delivered to the loads is summarized in Table 4. Due to the
characteristics of the LCC topology, the TX coil currents are all identical, while the RX coil
currents vary. Notably, the output current required to deliver 50 W to the load is the largest
for the proposed model.

Table 3. Resonant circuit parameters for circuit simulation.

Model Parameters Value

Proposed model

TX series inductance (LS1) 16.8 µH
TX parallel capacitance (CP1) 208 nF
TX series capacitance (CS1) 302 nF
RX series capacitance (CS2) 140 nF

SH capacitance (CSH) 1740 nF

Comparison Case 1

TX series inductance (LS1) 16.8 µH
TX parallel capacitance (CP1) 208 nF
TX series capacitance (CS1) 217 nF
RX series capacitance (CS2) 138 nF

Comparison Case 2

TX series inductance (LS1) 16.8 µH
TX parallel capacitance (CP1) 208 nF
TX series capacitance (CS1) 217 nF
RX series capacitance (CS2) 139 nF
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Table 4. Current in each coil when transmitting 50 W of power.

Model Parameters Value

Proposed model

Current of TX coil (I1) 6 ARMS
Current of RX coil (I2) 2.35 ARMS

Current of SH coil (ISH) 5.6 ARMS
Phase difference between TX

current and SH current 177◦

Comparison Case 1 Current of TX coil (I1) 6 ARMS
Current of RX coil (I2) 1.98 ARMS

Comparison Case 2 Current of TX coil (I1) 6 ARMS
Current of RX coil (I2) 2.21 ARMS

Figure 9 shows the simulation setup for leakage magnetic field measurements. To
simulate the leakage magnetic field measurement, the currents in Table 4 are applied
to the dipole coil structures in Figure 8. The magnitude of the current and the phase
difference between the currents are considered. In the x-axis direction, measurements are
made starting from the center of the TX and RX coil air gap, while in the y-axis direction,
measurements are made in the longitudinal direction from the end of the magnetic material.
Additionally, in the z direction, the magnetic field is simulated upward from the end of
the RX coil. Simulations are performed to measure the magnetic field from 0 to 300 mm in
all axial directions. Moreover, the magnetic field simulation method shown in Figure 9 is
performed identically for all coils in Figure 8.
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Figure 10 shows the magnetic field simulation results. In Figure 10a–c, the proposed
case shown in the blue line is the case to which the shield structure is applied, and com-
parison Case 1 on the orange line and comparison Case 2 on the yellow line are both cases
where the shield is not applied. As shown in Figure 10a–c, the magnetic field is the lowest
in the dipole coil structure with the proposed reactive shield in all directions. The case
with the next lowest magnetic field level is comparison Case 2 in Figure 8c, attributed to
the addition of ferrites on both sides of the TX coil, which partially inhibits the magnetic
field from leaking outside. Finally, in comparison Case 1 in Figure 8b, the TX magnetic core
has a long ferrite bar, and in this case, the leakage magnetic field is the highest. Moreover,
a common belief suggests that in a planar coil, large or thick magnetic material (ferrite)
minimizes the leakage magnetic field. However, it can be confirmed that this does not apply
to the dipole coil structure. Figure 11 shows a graphical representation of the magnetic field
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strength simulation results, specifically for the yz-plane shown in Figure 9. As expected, in
Figure 10, the dipole coil structure with the proposed reactive shield showed the lowest
magnetic field intensity. In addition, it can be confirmed graphically that the magnetic field
of comparison Case 2 is slightly lower than that of comparison Case 1, aligning with the
results depicted in Figure 10.
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4. Validation of the Effectiveness of the Proposed Reactive Shield
through Experiments

Figure 12 shows coil structures fabricated to experimentally validate the effective-
ness of the proposed reactive shield for dipole coil structures. The geometric dimensions
of the coil structures in Figure 12 align with the simulation setup shown in Figure 8
and Table 1. Dipole coils are fabricated using Litz wire with a diameter of 2.8 mm
(0.05 mm/1300 strands) to reduce the AC resistance of the coils. In Figure 12, polycar-
bonate with a relative permeability of 1 is used as the gap between the TX, RX, and SH
coils. In addition, the shape of the magnetic core is created by stacking several magnetic
plates with a thickness of 5 mm and a relative magnetic permeability of 150. Table 5 shows
the results of measuring the electrical parameters (inductance, equivalent series resistance)
of the coils fabricated in Figure 12.
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Table 5. Measured electrical parameters of fabricated coils.

Model Parameters Value

Proposed model

Inductance of TX coil (LTX) 30.0 µH
Equivalent series resistance of TX coil (RTX) 30 mΩ

Inductance of RX coil (LRX) 25.7 µH
Equivalent series resistance of RX coil (RRX) 27 mΩ

Mutual inductance between TX and RX (MTX-RX) 6.01 µH
Inductance of SH coils (LSH) 6.11 µH

Equivalent series resistance of SH coils (RSH) 16 mΩ
Mutual inductance between SH and TX (MTX-SH) 3.78 µH
Mutual inductance between SH and RX (MRX-SH) 0.1 µH

Comparison Case 1

Inductance of TX coil (LTX) 34.2 µH
Equivalent series resistance of TX coil (RTX) 37 mΩ

Inductance of RX coil (LRX) 26.7 µH
Equivalent series resistance of RX coil (RRX) 27 mΩ

Mutual inductance between TX and RX (MTX-RX) 6.15 µH

Comparison Case 2

Inductance of TX coil (LTX) 30.7 µH
Equivalent series resistance of TX coil (RTX) 30 mΩ

Inductance of RX coil (LRX) 26.7 µH
Equivalent series resistance of RX coil (RRX) 27 mΩ

Mutual inductance between TX and RX (MTX-RX) 6.03 µH

Table 6 shows the resonant parameters of each circuit under 85 kHz resonant condi-
tions. As can be seen from Table 5, the inductance of the TX and RX coils is different in
each case. Therefore, to compensate circuit values for the changed coil inductances, the
values of the compensation circuits must be different, which can be confirmed in Table 6.
As explained previously, the LCC topology is applied to all TX sides, and the resonant
conditions are as in (6). In all cases, the resonant value is calculated to ensure that the
current of the TX coil is 6 ARMS. As with the simulation, the Vin is selected as 60 V, and
resonant parameters are calculated. Furthermore, a series topology is applied to the RX
side with the same resonant conditions as (8). The resonant capacitance (CSH) of the shield
coil is 1410 nF, and the resonant frequency of the SH side is 54.2 kHz. Given that the system
operating frequency (ωo) is 85 kHz and the resonant frequency of the SH side (ωSH) is
54.2 kHz, the SH side operates in the inductive region, as shown in Figure 5. As with the
simulation, the notation of each circuit element aligns with Figure 4.
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Table 6. Resonant circuit parameter values for the experiment.

Model Parameters Value

Proposed model

TX series inductance (LS1) 16.9 µH
TX parallel capacitance (CP1) 203 nF
TX series capacitance (CS1) 260 nF
RX series capacitance (CS2) 136 nF

SH capacitance (CSH) 1410 nF

Comparison Case 1

TX series inductance (LS1) 16.9 µH
TX parallel capacitance (CP1) 203 nF
TX series capacitance (CS1) 203 nF
RX series capacitance (CS2) 136 nF

Comparison Case 2

TX series inductance (LS1) 17.0 µH
TX parallel capacitance (CP1) 203 nF
TX series capacitance (CS1) 256 nF
RX series capacitance (CS2) 136 nF

Figure 13 shows the overall configuration for a WPT experiment. As shown in Figure 4,
DC power is supplied from the DC power supply to the input and is subsequently delivered
to the DC electronic load. The resonant elements on the TX, RX, and SH sides are configured,
as shown in Figure 13. In addition, a full bridge inverter and rectifier are configured.
All waveform measurements are performed using an oscilloscope, and DC input and
output are referenced to the values displayed on the DC power supply and electronic load,
respectively. Table 7 shows the measurement results of the WPT experiment. As in the
previous simulation, the current of the TX coil (ITX) is fixed at 6 ARMS, and the power
delivered to the load is fixed at 50 W. Similar to the simulation results, the output current
in the proposed model is the highest when delivering 50 W to the load. Therefore, the
power transfer efficiency in the proposed model is reduced by about 1.5% compared to
comparison Case 1 and by about 0.3% compared to comparison Case 2. This is because,
as shown from the measurement results in Table 5, the mutual inductance is the lowest
in the WPT coils to which the proposed reactive shield is applied. Figure 14 shows the
current waveforms of the TX and SH coils measured through an oscilloscope. As previously
analyzed in Figures 6 and 7, the TX and SH coil currents are about 180◦ out of phase.
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Table 7. Power transfer experiment results.

Model Parameters Value

Common condition
Operating frequency (ωo) 85 kHz
Target TX coil current (I1) 6 ARMS
Target load power (Pload) 50 W

Proposed model

Input voltage (Vin) 60 VDC
Input current (Iin) 1.15 ADC
Input power (Pin) 69 W

Output voltage (Vload) 19.09 VDC
Output current (Iload) 2.63 ADC
Output power (Pout) 50.2

Power transfer efficiency (Pout/Pin × 100) 72.8%

Comparison Case 1

Input voltage (Vin) 60 VDC
Input current (Iin) 1.12 ADC
Input power (Pin) 67 W

Output voltage (Vload) 20.6 VDC
Output current (Iload) 2.43 ADC
Output power (Pout) 50.1

Power transfer efficiency (Pout/Pin × 100) 74.2%

Comparison Case 2

Input voltage (Vin) 60 VDC
Input current (Iin) 1.15 ADC
Input power (Pin) 69 W

Output voltage (Vload) 19.3 VDC
Output current (Iload) 2.62 ADC
Output power (Pout) 50.5

Power transfer efficiency (Pout/Pin × 100) 73.1%
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Figure 14. Measurement results of TX and SH coil currents in the proposed model.

Figure 15 shows how to measure the leakage magnetic field from each WPT coil.
Magnetic field measurements are performed using NARDA’s ELT-400 EMF antenna (mea-
surement uncertainty of ELT-400: ±6%). Similar to the simulation, the measurement
method involves varying the distance from the WPT coil in each axis direction, as shown in
Figure 9. That is, the x-axis direction is measured in the horizontal direction of the coil, the
y-axis direction is measured in the longitudinal direction of the coil, and the z-axis direction
is measured in the height direction of the coil. The measured magnetic field is converted to
Tesla (T) and recorded.
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axis direction) and power transfer efficiency of the dipole coil with the proposed reactive 
shield and the comparison case. Compared to the comparison groups, the proposed reac-
tive shield reduces power transfer efficiency by about 1.5% and 0.3%, respectively. This 
can be attributed to the cancellation of some of the magnetic fields generated from the TX 
coil with the SH coil, as shown in Figure 7, resulting in a decrease in mutual inductance 
and, thus, a decrease in efficiency. However, the leakage magnetic field, a significant prob-
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Figure 15. Measurement of the magnetic field from the WPT coil.

Figure 16 shows the measurement results of the magnetic field from each WPT coil.
Similar to the previous simulation, the leakage magnetic field is the lowest in the dipole
coil structure with the proposed reactive shield applied in all x-, y-, and z-axis directions.
Specifically, the proposed model showed a magnetic field reduction rate ranging from
50.4% to 67.7% compared to comparison Case 1. Additionally, compared to comparison
Case 1, the magnetic field reduction rate is shown to be from a minimum of 17.4% to a
maximum of 41.8%. The decrease is particularly high in the longitudinal direction (y-axis)
of the magnetic core.
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Figure 16. Magnetic field measurement results depending on the distance from the WPT coil system:
(a) x-axis, (b) y-axis, and (c) z-axis.

Finally, Figure 17 shows the measured magnetic field (measured at 300 mm in the
y-axis direction) and power transfer efficiency of the dipole coil with the proposed reactive
shield and the comparison case. Compared to the comparison groups, the proposed reactive
shield reduces power transfer efficiency by about 1.5% and 0.3%, respectively. This can
be attributed to the cancellation of some of the magnetic fields generated from the TX coil
with the SH coil, as shown in Figure 7, resulting in a decrease in mutual inductance and,
thus, a decrease in efficiency. However, the leakage magnetic field, a significant problem in
the dipole structure, is reduced by up to 63% compared to the comparison groups. This
illustrates a trade-off relationship between efficiency and the magnetic field. However,
in applications in which leakage magnetic fields are a crucial design indicator, the dipole
structure for the reactive shield is deemed sufficiently useful.
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5. Conclusions

This paper proposes a reactive shield for a WPT system using dipole coils. The dipole
coil structure has a magnetic field that radiates in the length direction of the magnetic core,
making leakage magnetic fields a significant design concern. The reactive shield for the
dipole structure proposed in this paper is designed to resonate at a frequency lower than
that of the operating frequency and operates in an inductive region where the reactance
is positive. Therefore, the magnetic field induced by the current in the reactive shield is
generated in the direction opposite to the magnetic field of the TX coil, thereby reducing
the leakage magnetic field. The method for designing the shield coil was mathematically
analyzed, and the current and magnetic field phases of each coil were compared. In
addition, through simulation and experiment, the effectiveness of the reactive shield was
validated in a 50 W class WPT system. Specifically, it was experimentally validated that in
a WPT system with a reactive shield, the power transfer efficiency is reduced by at least
0.3% to up to 1.5%, whereas the leakage magnetic field is reduced by up to 68%. Although
the shielding system increases the weight, size, and cost of the TX side, the 68% reduction
in leakage magnetic fields is well worth it. Since there is no need to include a separate SH
system on the RX side, the proposed system is judged to be sufficiently valuable. Therefore,
the reactive shield proposed in this paper is sufficiently effective in a WPT system adopting
dipole-type coils, where the leakage magnetic field is a crucial design factor. In particular, it
is expected that the magnetic field shielding method proposed in this paper can be actively
used in human body implantable applications where reducing leakage magnetic fields is
very important.
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Appendix A

In Appendix A, two of the contents of the text are verified through simulation. The first
is whether it is reasonable to consider only two inductances out of six mutual inductances in
Figure 4 of the text, and the second is whether the approximation of inductance calculations
as in (4) and (5) is reasonable. Table A1 shows the inductance extraction values for the
model that separates the windings of the two SH coils in Figure 8a and the model that
combines the windings.

Table A1. Electrical parameters of the coil measured according to winding connection and disconnection.

Model Parameters Value (µH)

Model with SH coil windings combined
(Figure 4a)

Inductance of TX coil (LTX) 29.51
Inductance of RX coil (LRX) 25.4
Mutual inductance between

TX and RX (MTX-RX) 6.2

Inductance of SH coil 1 (LSH1) 2.75
Inductance of SH coil 2 (LSH2) 2.75
Mutual inductance between

TX and SH1 (MTX-SH1) 1.95

Mutual inductance between
TX and SH2 (MRX-SH2) 1.96

Mutual inductance between
RX and SH1 (MRX-SH1) 0.0036

Mutual inductance between
RX and SH2 (MRX-SH2) 0.0035

Mutual inductance between
SH1 and SH2 (MSH1-SH2) 0.0157

Model with separated SH coil windings
(Figure 4b)

Inductance of TX coil (LTX) 29.51
Inductance of RX coil (LRX) 25.4
Mutual inductance between

TX and RX (MTX-RX) 6.2

Inductance of SH coil 2 (LSH2) 5.82
Mutual inductance between

TX and SH (MTX-SH) 3.91

Mutual inductance between
RX and SH (MRX-SH) 0.0071

First, both simulation results show that the mutual inductance between the RX and SH
shields (MRX-SH1, MRX-SH2, and MRX-SH) is minimal. Therefore, it is logically reasonable
not to consider this. Next, to verify (4) in the text, if we substitute the self-inductances of
the SH coils (LSH1 and LSH2) with separated windings and the mutual inductance between
the SH coils (MSH1-SH2) into (4), it is exactly the same as the self-inductance value of the SH
coil with the windings combined (LSH). However, given the minimal mutual inductance
between SH coils (MSH1-SH2), the approximation used in (4) is valid. Finally, considering
the mutual inductance between the TX and the SH coils, we can see that the sum of the
mutual inductances of the SH coil’s windings separated (MTX-SH1 and MTX-SH2) is exactly
the same as that of the mutual inductance of the windings combined as one (MTX-SH), as
shown in Equation (5). Therefore, (5) can also be found to be valid.

Appendix B

In Appendix B, power transfer efficiency and shielding performance are analyzed
according to changes in the resonant frequency of the SH coil and changes in the number
of turns of the SH coil.

First, to change the resonant frequency of the SH coil, a parameter sweep is conducted
on the SH side resonant capacitance (CSH) from 1000 nF to 4000 nF in 500 nF increments.
If CSH changes while SH coil inductance LSH is constant, the resonant frequency changes,
and both system efficiency and shielding performance change. Table A2 shows the SH side
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resonant frequency and SH coil current according to changes in SH capacitance CSH. As
can be seen from (10) to (13), the lower the resonant frequency on the SH side, the larger
the impedance ZSH on the SH side, so Table A2 shows that the SH current decreases.

Additionally, Figure A1 shows the WPT power transfer efficiency and leakage mag-
netic field according to the resonant capacitance (resonant frequency) of the SH side. In
Table A2, when the SH coil resonant frequency is large, the SH coil current increases,
which means that the loss due to the SH coil increases, so the power transfer efficiency
increases. On the other hand, as the SH coil current increases, the leakage magnetic field
also decreases because the shielding magnetic field generated by the SH coil increases. Con-
versely, when the SH coil resonant frequency decreases and the SH coil current decreases,
efficiency increases, but shielding performance decreases. In other words, it is confirmed
that efficiency and power transfer efficiency have a trade-off relationship.

Table A2. Changes in SH side resonant frequency and SH coil current depending on SH side
capacitance CSH change.

SH Capacitance (CSH) [nF] 1000 1500 2000 2500 3000 3500 4000

Resonant frequency [kHz] 64 53 46 41 37 34 32
SH coil current [ARMS] 9.15 6.01 5.13 4.72 4.47 4.32 4.2
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SH side capacitance.

Table A3. Changes in SH side inductance and SH coil current according to SH coil turns change.

SH Coil Turns [Turns] 2 3 4 5 6 7 8

LSH [µH] 1.46 3.29 5.84 9.13 1.31 1.79 2.34
MTX-SH [µH] 1.97 2.95 3.93 4.92 5.94 6.87 7.86

SH coil current [ARMS] 12.8 8.54 64.1 5.15 4.35 3.67 3.22
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Figure A2. Changes in power transfer efficiency and leakage magnetic field according to changes in
SH coil turns.

In another parameter sweep, the power transfer efficiency and shielding performance
at different turns of the SH coil are analyzed. Figure A2 shows the change in SH side
inductance (LSH, MTX-SH) and SH coil current according to the number of SH coil turns. As
the number of SH coil turns increases, the inductances increase, but since the capacitance
(CSH) on the SH coil side remains the same, the SH coil current decreases. And Figure A2
shows the power transfer efficiency and leakage magnetic field according to the number of
SH coil turns. As the number of SH turns increases, the current decreases and the efficiency
increases rapidly, but the shielding performance also slowly decreases. In other words, the
shielding performance is maintained to some extent. This is because the number of turns of
the SH coil increases, and the magnetomotive force is maintained.

Appendix C

In Appendix C, an analysis is conducted on changes in design parameters due to the
magnetic core. Figure A3 shows a typical dipole coil structure represented as a magnetic
circuit. R1-1, R1-2, R2-1, and R2-2 represent the magnetic reluctance of the TX and RX coils
and magnetic core, respectively, and R12-1 and R12-2 represent the reluctance of the air gap
between TX and RX. If R1-1, R1-2, R2-1, and R2-2 are expressed as Rcore and R12-1 and R12-2
are expressed as Rair, reluctance can be expressed as (A1), (A2):

Rcore =
lcore

µcore Acore
(A1)

Rair =
lair

µair Aair
(A2)

In (A1) and (A2), l and A represent the length and cross-sectional area, respectively,
and µcore and µair represent the permeability of the core and air, respectively. In general,
µcore is a hundred to several thousand times larger than µair. Therefore, Rcore and Rair have
the same relationship as (A3):

Rair � Rcore (A3)

Therefore, what can be inferred from (A3) is that it is the air gap, not the permeability
or shape of the magnetic material, that determines the magnetic flux of the WPT system.
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Figure A3. A typical dipole coil structure modeled as a magnetic circuit.

Table A4. Change in circuit parameter values according to change in permeability of magnetic core
in dipole coil structure.

Permeability
of Core LTX (µH) LRX (µH) MTX-RX (µH) LSH (µH) MTX-SH (µH)

150 29.52 25.41 6.2 5.82 3.91
650 30.06 25.75 6.32 5.93 4.04

1150 30.46 26.03 6.47 5.96 4.14
1650 30.60 26.12 6.54 5.99 4.17
2150 30.71 26.21 6.57 6.00 4.19

Table A4 shows the results of extracting the electrical parameters by simulating
changes in the magnetic permeability of the magnetic cores in the proposed model of
Figure 8a. Although the permeability of the core varied in the range of up to 2000 (up to
1300%), the inductance changes of the coils are only up to 7%. In other words, it can be
concluded that in a WPT system adopting a reactive shield, the permeability of the core or
core is not that important. This is because, as can be seen from (A1) to (A3), the magnetic
permeability of the core is much larger than that of air, and the magnetic reluctance due to
the air gap is very dominant in the WPT system with a dipole structure. However, on the
other hand, this means that the structure of the core that determines the voids will be very
important.
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Table A5. Change in circuit parameter values according to change in SH core shape and structure in
dipole coil structure.

SH Core Size [mm] 40 42 44 46 48 50 52

MTX-SH [µH] 2.39 2.61 2.85 3.13 3.48 3.94 4.57
SH coil current [ARMS] 4.7 4.95 5.21 5.5 5.87 6.33 6.94

Next, to check various performance changes of the WPT system with a dipole coil
structure according to the structure of the SH core, simulations are performed as shown in
Figure A4. Simulations are performed by varying the size of the SH core in the longitudinal
direction. Note that, except for the structure of the SH core, the number of turns of the SH
coil, and all parameters on the TX and RX sides are kept the same. Table A5 shows the
change in current of mutual inductance between TX and RX (MTX-SH) and SH coil according
to the size of the SH core. Table A5 shows that the larger the SH core size, the larger the
MTX-SH, and thus the increased current induced in the SH coil. This is because the larger
the SH core, the larger the voltage induced in the SH coil and the larger the current.
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Figure A5. Changes in power transfer efficiency and leakage magnetic field according to changes in
SH core size.

Figure A5 shows the results of simulating changes in power transfer efficiency and
leakage magnetic field according to core size. The leakage magnetic field is simulated
at 100 mm in the y-direction of the coil. As the core size increases, the SH coil current
increases, which improves SH performance and reduces the leakage magnetic field, but on
the other hand, the power loss increases due to the current flowing in the SH coil. Therefore,
it can be concluded that, unlike the permeability of the previous core, the structure of the
SH core is a very important factor in determining SH performance.
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