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Abstract: The generation of co-speech gestures for digital humans is an emerging area in the field of
virtual human creation. Prior research has progressed by using acoustic and semantic information
as input and adopting a classification method to identify the person’s ID and emotion for driving
co-speech gesture generation. However, this endeavor still faces significant challenges. These chal-
lenges go beyond the intricate interplay among co-speech gestures, speech acoustic, and semantics;
they also encompass the complexities associated with personality, emotion, and other obscure but
important factors. This paper introduces “DiT-Gestures”, a speech-conditional diffusion-based and
non-autoregressive transformer-based generative model with the WavLM pre-trained model and
a dynamic mask attention network (DMAN). It can produce individual and stylized full-body co-
speech gestures by only using raw speech audio, eliminating the need for complex multimodal
processing and manual annotation. Firstly, considering that speech audio contains acoustic and
semantic features and conveys personality traits, emotions, and more subtle information related to
accompanying gestures, we pioneer the adaptation of WavLM, a large-scale pre-trained model, to
extract the style from raw audio information. Secondly, we replace the causal mask by introducing a
learnable dynamic mask for better local modeling in the neighborhood of the target frames. Extensive
subjective evaluation experiments are conducted on the Trinity, ZEGGS, and BEAT datasets to confirm
WavLM’s and the model’s ability to synthesize natural co-speech gestures with various styles.

Keywords: gesture generation; gesture synthesis; cross-modal; speech driven; diffusion model;
transformer; DMAN

1. Introduction

Recently, The utilization of 3D virtual human technology has witnessed a notable
surge in popularity, paralleling the emergence of the metaverse. This technology finds
extensive applications in various domains of real-world society, encompassing animation,
gaming, human–computer interaction, VTuber platforms, virtual guidance systems, digital
receptionists, presenters, and various other areas.

To create realistic and engaging virtual humans, a crucial objective is the integration of
non-verbal (co-speech) gestures that appear natural and align with human communication
patterns. Although motion capture systems have been developed to fulfill this requirement,
their implementation necessitates specialized hardware, dedicated space, and trained
actors, resulting in significant expenses. As an alternative, automatic gesture generation
presents a cost-effective approach that eliminates the need for human intervention during
the production phase. Among the potential solutions, speech-driven gesture generation
emerges as a viable option. Nevertheless, a major challenge in this endeavor lies in
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effectively matching and synchronizing relevant gestures with the input speech, given
the inherent complexities of cross-modal mapping, many-to-many relationships, and the
diverse and ambiguous nature of gesture patterns. Furthermore, the same utterance often
elicits distinct gestures at different temporal instances, even when uttered by the same or
different individuals [1].

The close relationship between gestures and the acoustic signals of speech is widely
acknowledged in scholarly discourse. Consequently, considerable research [2–5] has been
dedicated to extracting pertinent features from speech audio signals, such as mel-frequency
cepstrum coefficients (MFCCs). These extracted features serve as input for neural networks,
thereby facilitating the generation of corresponding co-speech gestures. However, it is im-
portant to recognize that gestures are not exclusively tied to speech acoustic features. Rather,
they exhibit intricate associations with various other factors, including well-established
aspects such as personalities, emotions, and speech context, among others, as well as a
multitude of unknown variables. This intricate interplay presents significant challenges in
the pursuit of generating co-speech gestures that possess enhanced naturalness and realism.

Prior research [6–10] has explored the use of manual labels and diverse feature in-
puts to facilitate the synthesis of personalized gestures. However, these methodologies
exhibit a pronounced reliance on various unstructured feature inputs and necessitate com-
plex multimodal processing. This dependency poses a significant barrier to the practical
implementation and broader adoption of virtual human technologies.

Due to the multifaceted nature of speech signals, encompassing aspects such as speaker
personality, acoustic, etc., our objective is to exclusively extract the signal originating from
raw speech audio while abstaining from processing various modalities concurrently.

The recent emergence of expansive pre-training models offers a promising opportunity
to significantly improve pre-training outcomes. These models can potentially be effectively
transferred to various subsequent tasks. In our exploration, we have identified WavLM, a
noteworthy system that learns from a massive number of unlabeled speech data to acquire
universal speech representations. WavLM demonstrates remarkable adaptability across
diverse speech-processing tasks, from Automatic Speech Recognition (ASR) to non-ASR,
further validating its efficacy and potential for practical applications.

A further challenge within this domain pertains to achieving a high degree of gesture-
speech synchronization while maintaining naturalness in gestures. Recent advancements
have centered on employing generative models, marking a pivotal shift in methodologies
that has significantly enhanced the efficiency and flexibility of gesture generation technolo-
gies. Prominent examples of such innovative efforts include Style Gesture (SG) [5], Diffuse
Style Gesture (DSG) [7], Diffuse Style Gesture+ (DSG+) [8], and Diffmotion [2]. Neverthe-
less, these approaches often grapple with challenges related to achieving insufficient or
excessive correlation between gesture and speech, compromising the naturalness of the
generated gestures.

This paper presents DiT-Gestures, a novel transformer, and diffusion-based proba-
bilistic architecture specifically developed to generate speech-driven gestures. The core
innovation of DiT-Gestures lies in its ability to automatically extract these stylistic at-
tributes directly from speech audio. This capability ensures that the generated gestures
are synchronized with speech in terms of timing and rhythm and rich in contextual and
emotional subtleties.

Furthermore, we integrate the Dense Motion Attention Network (DMAN) module
into the transformer architecture to enhance its ability to capture local gesture relationships.
This integration allows the transformer to focus more precisely on short-term dependencies
within the gesture data, improving the accuracy and realism of the generated movements.
This enhancement is crucial to generating fluid and lifelike animations that accurately
reflect the subtleties of human motion in response to speech.

Our contributions can be summarized as follows:
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• We are involved in pioneering the use of the WavLM generative pre-trained trans-
former large model for extracting style features from raw speech audio features
without any manual annotation.

• We extended our previous autoregressive Diffmotion model to a non-autoregressive
variant known as DiT-Gestures. This extension encompasses a novel diffusion model,
which adopts a transformer-based architecture that replaces the causal mask with
a dynamic mask attention network (DMAN). The DMAN effectively enhances the
adaptive modeling of local frames.

• Extensive subjective and objective evaluations reveal that our model outperforms the
current state-of-the-art approaches. These results show the remarkable capability of
our method in generating natural, speech-appropriate, and stylized gestures.

This research builds upon our prior architecture, Diffmotion [2]. However, this work
extends the previous paper significantly by introducing novel features and improvements.
Firstly, we introduce a non-autoregressive generative model that employs a transformer-
based architecture. Unlike its predecessor, DiT-Gestures generates the entire sequence of
full-body gestures instead of generating them frame by frame, resulting in more coherent
and holistic gesture synthesis. Secondly, we enhance the feature extraction process by
replacing the traditional mel-frequency cepstral coefficients (MFCCs) with the WavLM
generative pre-trained transformer large model. Lastly, unlike Diffmotion, which generates
redundancy gestures and necessitates post-processing techniques to mitigate jitter-induced
inconsistencies in the gesture sequence, DiT-Gestures overcomes this limitation and pro-
duces more stable and refined gesture sequences.

The remainder of this paper is organized as follows: The related works about co-speech
gesture generation are described in Section 2. Then, we elaborate on the DiT-Gestures
schedule in Section 3. The experimental results of three baseline detection algorithms on
our dataset are presented in Section 4. We conclude this paper in Section 5.

2. Related Work

The alignment of non-verbal communication, specifically co-speech gestures, with the
communicative intent of virtual agents requires the establishment of a meaningful corre-
spondence between the two modalities. The investigation of automated co-speech gesture
generation, relying on speech information, can be broadly categorized into two primary
domains: rule-based methods and data-driven approaches. In light of the notable success
of deep learning techniques in various computer tasks, synthesizing co-speech gestures
has shifted from rule-based approaches (extensively reviewed by Wanger et al. [11]) to
data-driven approaches, particularly with the introduction of deep learning methodologies.
Moreover, within the realm of deep learning, a distinction exists between determinis-
tic and generative models. This discussion will briefly focus on generative models for
speech-driven gesture generation.

2.1. Data-Driven Generative Approaches

In real-life scenarios, the same utterance can be accompanied by varying gestures,
even when repeated by the same speaker at different time points, highlighting the lack of
coherence in gesture production. This presents a significant challenge for deterministic
models, which struggle to capture the extensive variation between speech and gestures.
Consequently, there has been a shift in research focus from deterministic models to proba-
bilistic generative models. Generative adversarial networks (GANs) have shown promise in
generating persuasive random samples. Accordingly, Ylva et al. [12] attempted to explore
GANs [13] with multiple discriminators to convert speech into 3D gesture motion. How-
ever, this approach requires manual dataset annotation, and the results still lack realism.
In contrast, Wu et al. [14] verified the effectiveness of conditional and unrolled GANs,
showing that they outperformed existing deterministic models.

Normalizing flows [15], built on unsupervised learning algorithms such as NICE [16]
and RealNVP [17], are capable of constructing complex distributions and approximating
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the true posterior distribution. Impressively, Alexanderson et al. [5] demonstrated the
effectiveness of a network called MoGlow, based on normalizing flows, in generating a
diverse set of plausible gestures given the same input speech signal, without the need for
manual annotation. Li et al. [18] employed a conditional variational autoencoder (VAE)
model to capture the strong correlation between audio and motion, enabling the random
generation of diverse motions. Taylor et al. [3] extended normalizing flows by combining
them with a variational autoencoder called Flow-VAE. Their evaluation demonstrated that
this approach produces expressive body motion close to the ground truth while utilizing
fewer trainable parameters. However, it should be noted that normalizing flows requires
the imposition of topological constraints on the transformation [16,17]. Furthermore, the
MoGlow method employs an LSTM architecture, necessitating the generation of the entire
sequence of gestures frame by frame in an autoregressive manner. This approach inevitably
results in an obvious increase in the overall generation time.

Diffusion models [19,20] represent an alternative class of generative models that lever-
age a Markov chain to transform a simple distribution into a complex data distribution
gradually. These models can be efficiently trained by optimizing the variational lower
bound (ELBO). They have been successfully applied in image synthesis [19] and mul-
tivariate probabilistic time-series forecasting [21], with connections to denoising score
matching [22]. Our previous work proposed DiffMotion [2], a diffusion model-based
framework with an LSTM architecture that generates co-speech gestures frame by frame [2].
Furthermore, Alexanderson et al. [4] adapted the DiffWave architecture, replacing dilated
convolutions with Conformers [23] to enhance the modeling power and incorporating
classifier-free guidance to adjust the strength of stylistic expression. Another diffusion
model-based framework, called GestureDiffuCLIP [24], learns a latent diffusion model to
generate high-quality gestures and incorporates large-scale Contrastive Language–Image
Pre-training (CLIP) representations for style control. However, this system requires learn-
ing a joint embedding space between corresponding gestures and transcripts by using
contrastive learning, which provides semantic cues for the generator and effective semantic
loss during training.

2.2. Condition Encoding Strategy

Co-speech gesture generation systems have recently incorporated conditional infor-
mation as input, including audio, transcripts, style labels, and other relevant factors. This
approach allows the system to consider additional contextual information during the ges-
ture generation process. By incorporating these conditional inputs, the system can generate
gestures more aligned with the speech content, style, and other specified conditions, leading
to more contextually appropriate and expressive gestures.

2.2.1. Audio Representation

The most suitable audio representation is an open research question [25]. One of the
most common audio speech representations chosen in previous work is mel-frequency
cepstral coefficients (MFCCs) [2,3,5], which better approximates how humans perceive
sounds. Another approach, ZeroEGGS [10], combines the log amplitude of the spectrogram,
the mel-frequency scale, and the energy of the audio as speech audio features. While in
GestureDiffuCLIP [24], the speech audio (A = [ai]

L
i=1) is parameterized as a sequence of

acoustic features, where each ai encodes the onsets and amplitude envelopes that reflect
the beat and volume of speech, respectively. Although these approaches have provided
impressive results, these approaches only represent acoustic information; there is scope for
more descriptive features.

2.2.2. Style Control

For the creation of style-specific gestures, Diffuse Style Gesture [7] and Diffuse Style
Gesture+ [8] utilize discrete labels to direct the stylistic attributes of the gestures pro-
duced. Considering that human emotions are more accurately depicted on a continuous
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spectrum [26,27] and arise from a complex interplay of fuzzy factors, reliance on discrete
emotion labels may oversimplify the gesture generation process, potentially curtailing
the expressiveness and subtlety of the resulting gestures. To overcome these constraints,
Ghrobani et al. [10] developed ZeroEGGS, a model that employs example motion clips to
influence the style of gestures. Although this approach allows for zero-shot capabilities, it
still requires the use of sample animation clips.

To address the challenges posed by the reliance on structured feature inputs and
complex multimodal processing in previous gesture generation models, we turned to
WavLM [28], a cutting-edge pre-trained model. WavLM leverages a vast dataset of unla-
beled raw speech audio to learn comprehensive speech representations. Its effectiveness
has been extensively validated across a wide array of speech-processing tasks in Auto-
matic Speech Recognition (ASR) and non-ASR applications such as speaker diarization,
speech separation, speech recognition, and emotion recognition. The versatility and ro-
bust performance of WavLM make it an ideal candidate for enhancing the synthesis of
speech-driven gestures.

This study investigates the potential of leveraging WavLM to generate stylized gestures
driven by raw speech audio inputs without any discrete style labels. By harnessing the
detailed speech representations learned by WavLM, we aim to create a gesture synthesis
model that can interpret and convert spoken language into personalized gestures.

Furthermore, to bolster the model’s capability to capture the nuanced dynamics
between speech and gestures, we integrate a DMAN transformer architecture. This archi-
tecture enhances the model’s ability to process and interpret the complex temporal and
spatial relationships inherent in speech-driven gesture generation. The DMAN transformer,
by handling sequential data more effectively, contributes significantly to improving the
fidelity and naturalness of the generated gestures, thus promising a more realistic and
responsive virtual human interaction experience.

3. Proposed Approach

The task in this paper is to generate a sequence of human poses x1:T given a raw
speech audio waveform a1:T for the same time instances.

3.1. Problem Formulation

First, we define the co-speech gesture generation problem. We denote the gesture
features and the acoustic signal by x0 = x0

1:T ∈ [x0
1, . . . , x0

t , . . . , x0
T ] ∈ RT×D and a = a1:T ∈

[a1, . . . , at, . . . , aT ] ∈ RT , where x0
t = RD is the angle of the 3D skeleton joints at frame t,

D indicates the number of channels of the skeleton joints, the superscript represents the
diffusion time step, at is the current subsequence audio waveform signal at frame t, and T
is the sequence length. Let pθ(·) denote the Probability Density Function (PDF), which aims
to approximate the actual gesture data distribution p(·) and allows for easy sampling. We
are tasked with generating the whole sequence of pose x ∼ pθ(·) in a non-autoregressive
manner according to its conditional probability distribution given acoustic signal a as
the covariate:

x0 ∼ pθ

(
x0|a

)
≈ p(·) := p

(
x0|a

)
(1)

where pθ(·) aims to approximate p(·) trained by the denoising diffusion model. We discuss
these two modules in detail in Section 3.5.

3.2. Model Architecture

We propose extending the diffusion models by utilizing a transformer architecture
as the backbone. The architecture referred to as DiT-Gestures is depicted in Figure 1.
The architecture comprises three main components: (1) a condition encoder, (2) a gesture
encoder and a gesture decoder, (3) stacks of multi-head attention blocks with dynamic
mask attention networks (DMANs), and (3) a final layer.
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Figure 1. The architecture of DiT-Gestures. The model is a multi-block causal attention structure
with a dynamic mask attention network (DMAN), a learnable mask matrix that can model localness
adaptively. The condition encoder takes the raw speech audio features extracted by WavLM as input.
It feeds them to the multi-head causal attention blocks to learn the relation between the co-speech
gestures and the audio features, estimating the diffusion noise. (a) The whole architecture. (b) The
condition encoder and final layer. (c) Multi-head attention with the DMAN.

The condition encoder is vital to extracting and embedding speech audio features
by using the WavLM model while incorporating the embedded diffusion time step n.
Simultaneously, the gesture encoder processes the input gesture sequence and transforms
it into a latent representation. To capture the complex relationship between speech and
gestures, the model employs stacks of multi-head attention blocks with the DMAN, which
are stacked M times. This architecture enables the model to capture the dependencies and
interactions between speech and gestures effectively. To ensure precise generation of the
gesture sequence, the final layer incorporates a size 1 conv 1D for output noise prediction.
This architectural design enhances the generation process, enabling the production of
realistic and diverse gestures within the context of co-speech communication.

3.2.1. Condition Encoder

The condition encoder, illustrated in Figure 1b, converts raw audio input into a
sequence of speech embedding space by the WavLM large-scale pre-trained model [19].
In our study, we integrated the WavLM model due to its ability to effectively handle
the intricate nature of speech audio signals and its capacity to discern diverse speech
styles, encompassing emotions, personalities, and other related aspects. The WavLM
model has been extensively trained on a large-scale dataset consisting of unlabeled speech
audio data, covering a wide range of tasks, Automatic Speech Recognition (ASR) and
non-ASR tasks, such as speaker verification, speech recognition, paralinguistics, spoken
content, and emotion recognition. The model was trained on a substantial amount of
English audio, totaling 94k hours, featuring diverse speakers, topics, speaking styles,
and scenarios. We believe that the WavLM model exhibits enhanced robustness and can
extract various features from the speech audio data, including acoustic characteristics,
speaker personalities, affective information, and more. The pre-training process equips the
model with the ability to capture universal latent representations, denoted by Za, which
encapsulate the essential information contained within the speech signals.

By leveraging the capabilities of the WavLM model, we aim to enhance the perfor-
mance of co-speech stylized gesture generation tasks. This approach differs from the
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conventional methodology that relies solely on mel-frequency cepstral coefficients (MFCCs)
for audio feature extraction, as observed in our previous Diffmotion model and other
related studies. The WavLM model offers promising prospects because it can go beyond
acoustic information and incorporate knowledge from various tasks, leading to more
comprehensive and contextually relevant gesture generation.

A downsampling module is seamlessly integrated into the architecture to ensure align-
ment between each latent representation and the corresponding sequence of poses. This
module takes the form of a Conv1D layer with a kernel size of 41, which means that every
41 lengths of target label output of WavLM is mapped to one frame of the gesture sequence.
Its primary objective is to facilitate the synchronization of latent representations with the
gesture sequence, enabling the generation of coherent and contextually relevant gestures.

3.2.2. Gesture Encoder and Decoder

We employ convolution 1D with a kernel size of 3 to embed the sequence of gestures
from sequential data. convolution 1D operates by sliding the kernel across the input
sequence and performing element-wise multiplication and summation to generate feature
maps [14,23].

The selection of a kernel size of 3 is driven by its efficacy in capturing local patterns
and dependencies within the sequence. It enables the model to consider neighboring
elements and effectively capture short-term temporal dependencies [29]. This is particularly
advantageous in gesture sequences, where adjacent frames often exhibit specific patterns
or transitions contributing to overall motion dynamics.

By utilizing a kernel size of 3, we balance capturing fine-grained details and avoiding
excessive parameterization. Smaller kernel sizes may overlook important contextual in-
formation, while larger ones can introduce more parameters and increase computational
complexity [30]. Our experimental analysis found that using a kernel size of 1 resulted
in animation jitter, underscoring the importance of an appropriate kernel size for gesture
sequence extraction.

We employ convolution with a kernel size of 1 instead of a fully connected layer for
several reasons in the context of gesture decoding. Convolution 1D with a kernel size
of 1 enables us to capture local dependencies and interactions within the sequence while
preserving the spatial dimensionality of the data. By convolving a 1D kernel with each
position in the input sequence, the model can extract meaningful features and relationships
between adjacent elements [31,32]. In contrast, a fully connected layer would necessitate
connecting each input element to every output neuron, resulting in a significantly larger
number of parameters and loss of the spatial structure of the data. Furthermore, using
convolution with a kernel size of 1 provides flexibility in capturing local patterns and
fine-grained details within the sequence. This enables the model to learn non-linear
relationships between neighboring elements, which is particularly crucial in tasks such as
gesture decoding, where short-term dependencies significantly contribute to understanding
motion dynamics [33].

3.3. Transformer with DMAN

We present a novel transformer model designed to elucidate the intricate relationship
between speech and gestures. This transformer is structured around multiple blocks of
multi-head attention, integrated with the dynamic mask attention network (DMAN), as
shown in Figure 2. A cross-attention mechanism is employed to forge a direct correlation
between speech and gesture modalities. The introduction of the DMAN [34] augments the
transformer’s capacity for localness modeling, thereby enhancing its ability to focus on
specific input segments for more precise gesture generation.
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Figure 2. The masks of the causal mask (left) and the DMAN (right). Color that fades from deep
cyan to white means that the values in the mask matrices decrease from 1 to 0.

In this study, we construct a distance-dependent mask matrix, denoted by SM. This
matrix is designed to encapsulate the modeling of relationships between the frames of
features, conditional upon the constraint that each frame of features only interacts with
other frames within a bounded distance of b units. To achieve this, we define a specific
function as follows:

SM[t, s] =
{

0, |t − s| > b,
1, |t − s| ⩽ b,

(2)

where t and s represent the positions of the query and key, respectively. The value of
SM[t, s] is then defined as the entry located at the intersection of the t-th row and s-th
column within matrix SM.

By leveraging the mask matrix (SM), our approach selectively considers frame features
that are within b units of proximity and disregards those beyond this range. Although
this static mask effectively prioritizes frames within a specified neighborhood, it notably
lacks adaptability. This is because the optimal neighborhood size is not uniform across
all query frames; different frames may derive varying degrees of benefit from their local
semantic contexts. Additionally, the requirement for mask matrices to align with distinct
attention heads and layers within mask attention networks (MANs) further complicates
this issue. Drawing inspiration from the work of [34], we propose the dynamic mask
attention network (DMAN), which supersedes the static mask matrix with a more flexible
approach. By integrating considerations of query tokens, relative distances, attention heads,
and network layers, we develop a dynamic mask function. This function transitions from
the binary gating mechanism, traditionally represented by hard 0/1 values, to a graduated
gating mechanism employing a sigmoid activation function, as delineated in Equation (3).
This innovative modification facilitates a more nuanced and adaptable attention mechanism
within MANs.

DMl
i [t, s] = σ(hl

tW
l + Pl

t−s + Ul
i ) (3)

where s and t denote the positions of the key and query, respectively, while i represents the
attention head, and l denotes the layer within the network. The term Pl

t−s is introduced as
a parameterized scalar that accounts for the relative position between t and s. Similarly,
Ul

i is designated for the i-th attention head. Furthermore, we introduce W l as a matrix
belonging to the real space Rd×1, where d represents the dimensionality of the input features.
Importantly, W l , Pl

t−s, and Ul
i are identified as trainable parameters within the model. This

parameterization enables the dynamic adjustment of the mask function, tailoring the
model’s focus to specific interactions between query and key positions, attention heads,
and layers, thus enhancing the adaptability and effectiveness of the dynamic mask attention
network (DMAN).
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3.4. Final Layer

The architecture culminates in a gesture decoding layer, which incorporates 1 × 1 con-
volution (conv 1 × 1). This terminal layer is responsible for outputting the predicted noise.

3.5. Training and Inference with Denoising Diffusion Probabilistic Model

We have introduced the Denoising Diffusion Probabilistic Model (DDPM), a specific
variant within the broader category of diffusion models [20], formalized by the equation
pθ :=

∫
pθ

(
x0:N)

dx1:N , where x1, . . . , xN denote the latent variables of identical dimen-
sionality to data xn at the n-th diffusion time stage. This model comprises two primary
processes: the diffusion process and the generation process. During training, the diffusion
process incrementally transitions the original data (x0) into white noise (xN) by optimizing
a variational bound on the data likelihood. Conversely, during inference, the generation
process reconstructs the data by inversely navigating this noise introduction via a Markov
chain that employs Langevin sampling [35]. This methodology enables the generation
of an entire gesture sequence in a non-autoregressive manner by drawing samples from
the conditional data distribution. The Markov chains integral to both the diffusion and
generation processes are delineated as follows:

p
(

xn|x0
)
= N

(
xn;

√
αnx0, (1 − αn)I

)
and

pθ

(
xn−1|xn, x0

)
= N

(
xn−1; µ̃n

(
xn, x0

)
, β̃n I

)
,

(4)

where αn := 1 − βn and αn := ∏n
i=1 αi. As shown by [19], βn is a increasing variance

schedule β1, . . . , βN with βn ∈ (0, 1), and β̃n := 1−αn−1

1−αn βn.
The training objective is to optimize the parameters θ that minimize the NLL via Mean

Squared Error (MSE) loss between the true noise (ϵ ∼ N (0, I)) and the predicted noise (ϵθ):

Ex0
1:T ,ϵ,n[||ϵ − ϵθ

(√
αnx0 +

√
1 − αnϵ, a1:T , n

)
||2], (5)

where ϵθ is a neural network, which uses input xn−1 , a, and n to predict ϵ, and the architec-
ture is shown in Figure 1a. The complete training procedure is outlined in Algorithm 1.

Algorithm 1: Training for the whole sequence gestures.

Input: data x0
1:T ∼ p

(
x0|a1:T

)
and a1:T

repeat
Initialize n ∼ Uniform(1, . . . , N) and ϵ ∼ N (0, I)
Take gradient step on

∇θ ||ϵ − ϵθ

(√
αnx0

1:T +
√

1 − αnϵ, a1:T , n
)
||2

until converged;

After training, we expect to use variational inference to generate new gestures match-
ing the original data distribution (x0 ∼ pθ

(
x0, a

)
). We follow the sampling procedure in

Algorithm 2 to obtain a sample x0
t of the current frame. σθ is the standard deviation of

pθ

(
xn−1|xn). We choose σθ := β̃n.

In the inference phase, our approach has evolved from the methodology detailed in
our previous work [2], where concatenated data comprising past poses x0 and acoustic
features a were utilized as inputs. Instead, we now exclusively input raw audio into
the condition encoder, specifically the WavLM model. The output from WavLM is then
channeled directly into the diffusion model, which is tasked with generating the entire
sequence of the accompanying gesture (x0). This refined method underscores a streamlined
process that leverages the sophisticated audio processing capabilities of WavLM to enhance
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the generation of gesture sequences, simplifying the input requirements and potentially
improving the efficiency and accuracy of gesture synthesis.

Algorithm 2: Sampling x0
1:T via annealed Langevin dynamics.

Input: noise xN
1:T ∼ N (0, I) and raw audio waveform a1:T

for n = N to 1 do
if n > 1 then

z ∼ N (0, I)
else

z = 0
end if

xn−1
1:T = 1√

αn

(
xn

1:T − βn
√

1−αn ϵθ

(
xn

1:T , a1:T , n
))

+
√

σθz

end for
Return: x0

1:T

4. Experiments

To demonstrate the efficacy of our approach, we utilized three co-speech gesture
datasets for training and inference with our model. All experiments in this study exclusively
focused on generating 3D gestures involving the full body. This deliberate selection
presented a more demanding task than generating solely upper- body motions, as it entails
higher dimensionality in the output space and introduces significant visual challenges,
such as addressing artifacts like foot skating and ground penetration.

4.1. Dataset and Data Processing
4.1.1. Datasets

Our system underwent both the training and evaluation phases on three distinguished
speech–gesture datasets: Trinity [36], ZEGGS [10], and BEAT [37]. Each dataset is char-
acterized by a unique focus: the Trinity dataset is dedicated to individual spontaneous
speech, the ZEGGS dataset captures a broad spectrum of emotional expressions, and the
BEAT dataset comprises personalized movements demonstrated by diverse individuals, as
shown in Table 1.

Table 1 presents an overview of the three datasets (Trinity, ZEGGS, and BEAT).

Table 1. Overview of the three datasets.

Dataset Total Time fps Rate Audio Sample Character Content

Trinity 244 min 60 44 kHz 1 male
Spontaneous speech
on different topics

ZEGGS 135 min 60 48 kHz 1 female
19 different
motion styles

BEAT 35 h 120 48 kHz 30 speakers
Speech on diverse
content

4.1.2. Speech Audio Data Process

Within the Trinity dataset, audio recordings were initially captured at a sampling
rate of 44 kHz. Conversely, for both the ZEGGS and BEAT datasets, audio was recorded
at a higher sampling rate of 48 kHz. Given the foundational pre-training of the WavLM
large model on speech audio specifically sampled at 16 kHz, we opted to uniformly
resample all audio data across these datasets to align them with this lower frequency.
This standardization facilitates compatibility with the WavLM model’s parameters and
optimizes our system’s performance by ensuring consistent input data characteristics.
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4.1.3. Gesture Data Process

We concentrated exclusively on full-body gestures, employing the data processing
methods delineated by Alexanderson et al. [5] (https://github.com/simonalexanderson/
StyleGestures (accessed on 25 April 2024)). Due to data quality and structure variability
across motion datasets, we adapted our approach by selectively analyzing specific joints
in each dataset. We excluded hand skeleton data from the Trinity gesture dataset because
of their lower quality. Conversely, our ZEGGS and BEAT datasets analysis encompassed
finger joints, which were standardized to the same set of joints as those in the Trinity
dataset. All datasets capture both translational and rotational velocities to record the root’s
trajectory and orientation accurately. The data were uniformly downsampled to a frame
rate of 20 fps to maintain consistency. To ensure a precise and continuous representation of
joint angles, we employed the exponential map technique [38]. For training and validation,
data were segmented into 20-s clips. We segmented the generated gesture sequences into
10-s clips for user evaluation to enhance the evaluation process’s efficiency.

To streamline the processes of training, evaluation, and testing, we structured the
dataset into segments, each with a fixed duration of 20 s. This methodology guarantees
a uniform and manageable input size for the model, significantly enhancing the learning
phase’s efficiency and performance evaluation’s accuracy. This uniform segmentation
simplifies data handling and ensures that the model receives consistently sized inputs,
facilitating a more structured and effective learning environment.

4.2. Model Settings

Our experimental framework was anchored on a configuration comprising 12 trans-
former blocks, each containing 16 attention heads, a structural detail illustrated in Figure 1.
This architecture processes each frame of the gesture sequence through an encoding mech-
anism, transforming it into hidden states denoted by h ∈ R1280. In conjunction with
this, we incorporated the WavLM Base+ model, accessed from the pre-trained repository
(https://huggingface.co/microsoft/wavlm-base-plus (accessed on 25 April 2024)). This
model is characterized by 12 transformer encoder layers, each producing hidden states with
a dimensionality of 768, and is equipped with 8 attention heads. A translation-invariant
self-attention (TISA) mechanism [39] was employed to achieve temporal translation in-
variance within our model. The bounded distance, b, of the DMAN was set to 80. All the
settings can be found in our open code at https://github.com/zf223669/DiT-Gestures
(accessed on 25 April 2024).

For the diffusion process, we adopted a quaternary variance schedule beginning from
β1 = 1 × 10−4 and concluding at βN = 5 × 10−5, following a linear beat schedule. The
diffusion sequence was set to N = 500 steps. The model’s training protocol specified a
batch size of 32 per GPU, leveraging an AdamW optimizer with a learning rate of 20× 10−5

and employing a LinearScheduler with 103 warm-up steps.
The entire model architecture was developed by using the PyTorch Lightning frame-

work to streamline the construction and scalability of our experiments. Computational
resources included an Intel i9 processor and a solitary A100 GPU. The duration of model
training varied across datasets, amounting to approximately 4 h for Trinity, 4 h for ZEGGS,
and an extended 21 h for the BEAT dataset.

4.3. Visualization Results

The visual outcomes of our system, designed to generate lifelike gestures from training
across three distinct datasets, are shown in the figures below for each dataset—Trinity (ref-
erenced in Figure 3), ZeroEGGS (referenced in Figure 4), and BEAT (referenced in Figure 5).
Our model demonstrates high proficiency in creating gestures that exhibit a lifelike quality
and synchronize precisely with the corresponding speech audio. Furthermore, it adeptly en-
capsulates and reflects the acoustic properties, semantic content, emotions, and personality
traits inherent in speech, thereby offering a holistic representation of gestural expression.

https://github.com/simonalexanderson/StyleGestures
https://github.com/simonalexanderson/StyleGestures
https://huggingface.co/microsoft/wavlm-base-plus
https://github.com/zf223669/DiT-Gestures
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Figure 3. The full-body gestures generated in response to the audio from Record_008.wav in the Trin-
ity dataset. The results suggest that the proposed architecture can generate gestures that accompany
audio and produce more diverse, relaxed, and non-hyperactive gestures.

Figure 4. The results obtained by utilizing various audio styles in the ZEGGS dataset. It illus-
trates the model’s ability to generate diverse motion styles, such as emotions, and age-related
nuances. Remarkably, this variability is achieved solely by leveraging the speech audio information
extracted by WavLM without requiring any manual annotation. Each row represents a distinct
emotional gesture, arranged in the following order from top to bottom (the audio corresponding to
the gesture is indicated within parentheses): happiness (011_Happy_0_x_1_0.wav), anger (026_An-
gry_0_x_0_9.wav), sadness (006_Sad_0_x_0_9.wav), threatening (051_Threatening_0_x_1_0.wav), old
(022_Old_1_x_0_9.wav), and tired (063_Tired_1_x_0_9.wav).

Figure 6 (left) employs the t-SNE method to depict the distribution of generated
gestures linked to various emotional states, as further detailed in Figure 6 (right) for
personalities. This visual representation reveals distinct clusters for certain emotional
states or personality types, whereas others show similarities yet are sufficiently distinct
to be distinguishable. Such delineation underscores our approach’s efficacy in generating
nuanced and identifiable gestures solely based on raw speech audio without requiring
explicit labels or manual annotation.
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Figure 5. Extrapolating results on the BEAT dataset confirmed the ability of the proposed method
to distinguish between different personalities of different people based solely on speech audio.
The method effectively generates co-speech gestures that mirror the distinguishing features of the
respective persons. Each row represents different personalities. Each row represents a distinct
personalized gesture, arranged in the following order from top to bottom (the audio corresponding
to the gesture is indicated within parentheses): Kieks (10_kieks_0_9_9.wav), Lu (13_lu_0_9_9.wav),
Carlos (15_carlos_0_2_2.wav), Zhao (12_zhao_0_88_88.wav), Zhang (14_zhang_1_3_3.wav), and
Wayne (1_wayne_0_39_39.wav).

Figure 6. The visualization of gesture differentiation via T-SNE clustering reveals a compelling
narrative about the capabilities of our method. Distinct colors signify varying emotions or personal-
ity gestures.

4.4. Comparison

Consistently with the prevailing practices in gesture generation research, we con-
ducted a series of subjective and objective evaluations to evaluate the co-speech gestures
generated by our DiT-Gestures (DG) model. For fairness and comparability, we selected
baselines followed by (1) utilization of the same dataset, (2) availability as open-source re-
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sources, (3) incorporation of 3D full-body gestures, and (4) capability to generate sequences
of at least 20 s.

For the Trinity dataset, we integrated insights from our prior work, Diffmotion
(DMV1) [2], alongside StyleGestures (SG) [5], which utilizes a flow-based mechanism
combined with LSTM technology. In the case of the ZEGGS dataset, our approach included
the application of Zero-EGGS [10] and DiffuseStyleGesture (DSG) [7], noting that DSG
is designed to accommodate only six distinct styles: happy, sad, neutral, old, relaxed,
and angry. Additionally, for the BEAT dataset, we employed Cascaded Motion Network
(CaMN) [37] and also DSG+ [8], albeit with its limitation in terms of speaker diversity [8].
These baseline models were meticulously selected to facilitate a thorough evaluation of our
methodology across various datasets. Given the constraints of DSG’s style classifications in
both the ZEGGS and BEAT dataset experiments, our evaluation of this model is confined to
the outcomes relevant to these predefined styles. Conversely, for the remaining models,
our assessment spans all accessible classifications, ensuring a comprehensive analysis. We
summary all the selected methods in Table 2.

Table 2. The summary information of all chosen approaches.

Method Condition Encoding Strategy Style Control Architecture

SG [5] MFCCs
Hand height,
hand speed,

and gesticulation radius

LSTM architecture combined with
normalizing flows

ZeroEGGS [10]
Log amplitude of spectrogram,

mel-frequency scale,
and energy of audio

Employs example motion clips to
influence style

in a zero-shot learning framework

Uses a variational framework
to learn

style embedding

CAMN [37] Raw audio and text Emotion and
Speaker ID label LSTM-based structure

DSG [7] Raw audio with WavLM and
linear component

Uses classifier-free guidance to
adjust stylistic expression

based on discrete style labels

Diffusion model with
self-cross local attention

DSG+ [8]
Similar to DSG but

augmented with
text semantic information

Similar to DSG; however, it employs
categorical labels for

the representation of distinct personality roles
Similar to DSG

Diffmotion [2] MFCCs No LSTM-based
diffusion model

DiT-Gestures
(ours)

Raw audio with WavLM and
Conv component Raw audio Diffusion +

DMAN transformer

Our ablation study aimed to assess the comparative impact of incorporating the
WavLM encoder (DG-W) versus mel-frequency cepstral coefficients (MFCCs) (denoted
as DG-M) within our model’s architectural framework. Further, we scrutinized the effect
of employing the dynamic mask attention network (DMAN) by juxtaposing it with the
alternative of integrating a causal mask (designated as DG-CM). This experimental setup
allowed us to methodically evaluate the contribution of each component—WavLM and
MFCC for audio encoding and DMAN versus causal mask for attention modulation—to
the model’s overall performance in generating gestures.

4.4.1. User Study

The primary intent of speech-driven gesture generation is to generate gestures that
exhibit naturalness and persuasiveness. However, relying solely on objective measures for
assessing gesture synthesis may not fully capture the subjective perception of quality by
humans [5,40,41]. This study primarily emphasizes conducting subjective evaluations to
assess human perception. Furthermore, we include supplementary objective evaluations,
which are discussed in Section 4.4.2. For the subjective evaluation, we utilized a five-point
Likert scale to rate three evaluation metrics: (1) human likeness, (2) appropriateness, and
(3) style appropriateness.
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The aspect of human likeness evaluates the naturalness and resemblance of the gen-
erated gestures to those made by an actual human, regardless of accompanying speech.
Conversely, the aspect of appropriateness assesses the temporal consistency of the gen-
erated gestures, particularly in terms of their alignment with speech rhythm. Lastly, the
aspect of style appropriateness measures the degree of similarity between the generated
and original gestures. By incorporating these evaluation aspects, we aimed to assess the
quality of the generated gestures comprehensively.

Each model was trained, and three gesture clips, each lasting 20 s, were generated
with the same speech audio as input. The experiments were chosen separately for each
emotional state audio in the ZEGGS dataset and per-person ID audio in the BEAT dataset.
In the Trinity dataset, Record_008.wav and Record_015.wav were chosen.

A total of 30 volunteers were recruited, including 18 males and 12 females (aged
19–23). All of them were from China (22 from China and 8 international students from the
USA, UK, etc.). They were asked to rate the scale for the evaluation aspects. The scores
were assigned from 1 to 5, representing worst to best.

To initiate the formal experimental phase, we first acquainted participants with the
methodology, showcasing example clips external to the evaluation dataset. Subsequently,
participants were instructed to don headphones and position themselves in a serene en-
vironment, free from distractions, facing a computer screen. The identity of the method
associated with each video remained undisclosed to the participants throughout the dura-
tion of the experiment. To ensure a randomized yet comprehensive exposure, the sequence
of video presentations was randomized; however, each video was assured to be displayed
thrice, with participants rendering their assessments immediately following each viewing.

The evaluation of human likeness involved the sequential presentation of individual
videos devoid of any accompanying speech audio, to focus solely on the gestures. In
contrast, the assessment of appropriateness included the additional element of the cor-
responding speech audio, mirroring the protocol of the human likeness evaluation save
for this inclusion. For the evaluation of style appropriateness, the display was bifurcated
into two segments: the left section featured ground truth (GT) gestures as a referential
benchmark, whereas the right section exhibited a randomly chosen assortment of co-speech
gestures synthesized by various models, enabling a comparative analysis of gesture style
against the reference material.

One-way Analysis of Variance (ANOVA) was performed to assess the presence of
statistical differences among the models’ scores across the three distinct evaluation criteria.
The outcomes are summarized in Table 3 for a tabulated overview. This analytical approach
enabled us to quantitatively compare the effectiveness of each model in generating human-
like gestures, assessing appropriateness in relation to accompanying speech, and evaluating
style appropriateness, thereby providing a comprehensive understanding of each model’s
performance in these key areas.

The analysis yielded results indicating a statistically significant variation in the human
likeness ratings between the GT gestures and those synthesized by the models across
experiments conducted on the three datasets. Observationally, it was noted that the GT
gestures encompass a relatively limited assortment of diverse movements, each marked by
unique traits that contribute to the overall realism and dynamism of the depicted actions.
Nevertheless, these particular gestures are characterized by their rarity within the dataset,
falling into the long-tail distribution, which inherently complicates the models’ ability to
learn and replicate them accurately. Furthermore, the presence of these distinct gestures
not only affects the scores related to human likeness but also has a discernible impact on
the evaluations of appropriateness and style appropriateness, suggesting their influential
role in the comprehensive assessment of gesture synthesis models.
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Table 3. Subject mean perceptual rating scores. Bold fonts are utilized to emphasize the best results
for each metric among the different methods, except for the GT (ground truth). The upward arrow (↑)
signifies that higher scores indicate superior performance, while the downward arrow (↓) denotes
that lower scores are associated with better outcomes.

Methods Subject Evaluation
Metric

Objective Evaluation
Metric

Dataset Model Human ↑
Likeness Appropriateness ↑ Style ↑

Appropriateness
FGD ↓

on Feature Space
FGD ↓

on Raw Data Space BeatAlign ↑

Trinity

GT 4.32 ± 0.35 4.53 ± 0.42 / / / 0.76
SG [5] 2.11 ± 1.52 2.71 ± 0.88 2.77 ± 1.15 187.32 21,568.25 0.43

DMV1 [2] 2.9 ± 0.67 2.37 ± 1.26 2.61 ± 1.21 179.52 21,356.86 0.50
(Ours) DG-W 4.30 ± 0.26 4.31 ± 0.13 4.19 ± 0.82 43.52 3358.18 0.67

(Ours) DG-CM 4.01 ± 0.70 4.12 ± 0.82 4.00 ± 0.25 46.45 3652.12 0.60
(Ours) DG-M 4.22 ± 0.50 4.22 ± 1.18 4.02 ± 0.75 53.56 3925.66 0.61

ZEGGS

GT 4.50 ± 0.50 4.51 ± 0.50 / / / 0.81
Zero-EGGS [10] 4.29 ± 0.77 4.26 ± 0.78 4.11 ± 0.23 32.05 2886.56 0.62

DSG [7] 4.18 ± 0.84 4.15 ± 0.92 4.02 ± 0.25 33.26 3011.22 0.63
(Ours) DG-W 4.30 ± 0.72 4.27 ± 0.81 4.82 ± 0.32 31.96 2864.70 0.68

(Ours) DG-CM 3.00 ± 1.42 2.95 ± 1.41 4.11 ± 1.22 36.15 3021.53 0.62
(Ours) DG-M 2.96 ± 1.40 2.95 ± 1.41 3.02 ± 1.28 47.24 3681.95 0.61

BEATS

GT 4.51 ± 0.50 4.50 ± 0.50 / / / 0.83
CaMN [37] 3.49 ± 1.13 3.48 ± 1.12 3.48 ± 1.12 123.63 16,873.89 0.63
DSG+ [8] 4.25 ± 0.75 4.24 ± 0.80 4.32 ± 0.73 18.04 1495.65 0.59

(Ours) DG-W 4.31 ± 0.73 4.30 ± 0.76 4.37 ± 0.70 18.04 1490.70 0.66
(Ours) DG-CM 4.24 ± 0.43 4.16 ± 0.47 4.00 ± 0.71 38.69 2597.23 0.61
(Ours) DG-M 4.23 ± 0.42 4.02 ± 0.70 3.99 ± 0.70 38.78 2619.85 0.62

The findings from our experiments with the Trinity dataset demonstrate that our
developed model, designated as DG-W, manifests statistically significant performance en-
hancements, outperforming the DMV1 and SG architectures in terms of all three evaluated
metrics. This superiority is largely ascribable to the observed inconsistencies, such as the
jitter present in full-body gestures generated by both DMV1 and SG. Specifically, DMV1 is
characterized by a tendency towards hyperactivity in its generated gestures, whereas SG is
prone to a gradual deceleration of motion over time. In contrast, the gestures synthesized
by DG-W are characterized by their natural flow and relaxed dynamics, which markedly
bolsters its performance across the evaluated metrics.

During the evaluations carried out on the ZEGGS dataset, our model showcased
statistically significant differences in terms of human likeness, appropriateness, and style
appropriateness metrics in comparison to both the Zero-EGGS and DSG models. These
findings indicate that our model either outperforms or is outperformed by Zero-EGGS and
DSG in these critical dimensions of gesture synthesis, underlining the distinct capabilities
and limitations of each approach. The identification of statistically significant disparities
suggests that our model offers a unique contribution to the field, either by advancing the
realism and contextual alignment of the generated gestures or by highlighting areas for
further refinement.

Within the experimental framework utilizing the BEAT dataset, our model (DG-W)
manifested statistically significant enhancements across three evaluative metrics when
benchmarked against CaMN and DSG. This outcome underscores the inherent benefits
associated with integrating transformer and diffusion model architectures within our
approach. The observed distinctions particularly underscore DG-W’s capability to generate
gestures of greater stability, circumventing the foot-skating problems that were evident
with the DSG method. These results affirm the effectiveness of DG-W in addressing and
mitigating specific challenges encountered in gesture synthesis, thereby evidencing its
superior performance in creating more realistic and contextually appropriate gestures.

The outcomes derived from the investigations carried out on the ZEGGS and BEAT
datasets underscore the efficacy of our methodology in producing a broad array of gestures.
A pivotal aspect of our approach is its ability to accomplish this feat autonomously, without
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the dependency on preliminary seed sequences or the necessity for classification labels.
This capability not only showcases the method’s adaptability but also solidifies its standing
as a significant advancement in the realm of gesture generation. By enabling the creation of
a diverse spectrum of gestures tailored to various speech contexts, our model presents a
compelling solution to the challenge of enhancing the naturalness and expressiveness of
virtual or robotic entities.

4.4.2. Objective Evaluation

In our study, we implemented three objective evaluations to assess gesture generation
quality rigorously: Fréchet Gesture Distance (FGD) evaluated in two dimensions—FGD
in the feature space and FGD in the raw data space [42]—along with the BeatAlign met-
ric [43]. FGD draws inspiration from the Fréchet Inception Distance (FID) [44], a renowned
measure designed to quantify the quality of visual content generated by models. FGD has
demonstrated a moderate albeit nonzero correlation with human assessments of gesture
likeness, positioning it as a valuable tool for objective quality evaluation compared with
other metrics [41]. Additionally, BeatAlign measures synchrony by quantifying the gesture–
audio beat alignment by computing the Chamfer Distance between audio beats and gesture
markers. This multifaceted evaluation framework enabled a comprehensive assessment of
the generated gestures, focusing on both their qualitative likeness to human gestures and
their temporal alignment with the corresponding audio cues.

The final results are shown in Table 3. Our methods demonstrated SoTA performance
based on objective evaluations using the FGD and BeatAlign metrics. Our model outper-
formed other architectures in both FGD metrics, demonstrating its capability to generate
distributions closely resembling the ground truth. Furthermore, it achieved a superior
BeatAlign score compared with alternative approaches, highlighting its proficiency in
synthesizing co-speech that closely aligns with the rhythm of the audio.

4.4.3. Ablation Studies

Our research included detailed ablation studies designed to elucidate the performance
impact of distinct components integrated within our model. Specifically, we focused on
evaluating the effectiveness of two key aspects: (1) the employment of WavLM features as
opposed to MFCCs and (2) the incorporation of the DMAN versus substituting the DMAN
with a causal mask. To ensure a comprehensive understanding of each component’s
contribution, user studies were meticulously conducted independently for each aspect.
The outcomes of these evaluations were systematically compiled and are accessible in
Table 3. This structured approach allowed us to discern these components’ individual and
combined effects on our model’s overall performance, facilitating targeted improvements
and optimization.

After replacing the WavLM audio feature extraction method with MFCCs, the scores
in all three metrics decreased, particularly in the style appropriateness metrics. These
results suggest that utilizing WavLM as a feature extractor better facilitates the synthesis of
style-corresponding gestures than using MFCC features. The aforementioned observation
can be ascribed to the pre-trained WavLM model’s marvelous capacity for extracting more
comprehensive information from speech audio.

Upon substituting the dynamic mask attention network (DMAN) with a causal mask
within our model, there was a discernible decrease in the scores across all three evaluated
metrics. This outcome suggests that the DMAN plays a crucial role in enhancing the
model’s performance by contributing to the precision and quality of gesture generation.
The observed decline across the metrics indicates the DMAN’s effectiveness in facilitating
more nuanced attention mechanisms, which the causal mask, by comparison, does not
equally support. This finding underscores the importance of the DMAN component in the
architectural design of gesture synthesis models for achieving superior results.
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5. Conclusions

This study introduced “DiT-Gestures”, a novel approach to generating co-speech ges-
tures utilizing a speech-conditional diffusion-based and non-autoregressive transformer-
based generative model. Our methodology distinctively leverages the WavLM pre-trained
model and a dynamic mask attention network (DMAN) to synthesize individualized and
stylized full-body gestures from raw speech audio. This advancement represents a signifi-
cant leap in the virtual human technology domain, notably enhancing the naturalness and
realism of virtual human interactions without requiring complex multimodal processing or
manual annotation.

Our approach offers several advantages: (1) It relies solely on raw speech audio to
generate stylized gestures, eliminating the need for additional inputs and thus enhancing
user friendliness. (2) It ensures superior synchronization of full-body gestures with speech,
adeptly capturing rhythm, intonation, and certain semantics without sacrificing naturalness.

The extensive subjective and objective evaluations conducted across the Trinity, ZEGGS,
and BEAT datasets demonstrated our model’s superior performance in generating co-
speech gestures that exhibit high degrees of naturalness, human likeness, and synchrony
with the accompanying speech. Our approach has shown exceptional capability in cap-
turing and expressing the nuanced variations attributable to different speakers’ emotions,
personality traits, and styles solely from the speech audio. These outcomes underscore the
efficacy of integrating the WavLM model for speech feature extraction, which enables the
extraction of a richer and more nuanced feature set that goes beyond basic acoustic prop-
erties to include semantic cues, emotional valence, and personality indicators embedded
within the speech signal.

Our findings also highlight the critical role of the dynamic mask attention network
(DMAN) in our model’s architecture. The DMAN significantly contributes to the model’s
ability to generate more contextually aligned and expressive gestures by facilitating a
more flexible and adaptive attention mechanism. This feature is particularly beneficial in
addressing the inherent variability and complexity of human gesture–speech interactions,
where the same speech content can elicit a wide range of gesture responses based on the
speaker’s emotional state, personality, and interaction context.

Our study identifies several key areas for improvement: Firstly, the model’s exclusive
reliance on speech audio may limit its capability to capture style features in segments
characterized by minimal speech. Secondly, using the diffusion model (DDPM) extends the
generation times. Thirdly, our model might not effectively replicate certain gestures that are
essential to expressing specific emotional or contextual states. Fourthly, we will investigate
the utilization of large-scale models based on different languages, such as Chinese. These
observations underscore the necessity for further enhancements to broaden the model’s
ability to convey a wider spectrum of human gestures accurately.
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