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Abstract: Despite advances in security technology, it is impractical to entirely prevent intrusion
threats. Consequently, developing effective service migration strategies is crucial to maintaining the
continuity of network services. Current service migration strategies initiate the migration process
only upon detecting a loss of service functionality in the nodes, which increases the risk of service
interruptions. Moreover, the migration decision-making process has not adequately accounted for
the alignment between tasks and node resources, thereby amplifying the risk of system overload. To
address these shortcomings, we introduce a Quality-Driven Resource Migration Strategy (QD-RMS).
Specifically, QD-RMS initiates the migration process at an opportune moment, determined through
an analysis of service quality. Subsequently, it employs a method combining Pareto optimality and
the simulated annealing algorithm to identify the node most suitable for migration. This approach
not only guarantees seamless service continuity but also ensures optimal resource distribution and
load balancing. The experiments demonstrate that, in comparison with conventional migration
strategies, QD-RMS achieves superior service quality and an approximate 20% increase in maximum
task capacity. This substantiates the strategic superiority and technological advancement of the
proposed strategy.

Keywords: service continuity; resource migration; Pareto optimality; load balancing

1. Introduction

As networking technologies rapidly advance, significant enhancements in network
security have strengthened the defenses of network infrastructure against malicious in-
trusions. Nonetheless, the dynamic nature of cyber threats makes the complete evasion
of intrusion risks impractical [1]. Even the most robust security measures may fall short
in fully deterring hackers who employ increasingly complex tactics. The “WannaCry”
ransomware incident serves as a pertinent example; it exploited system vulnerabilities,
affecting vital services globally like hospitals and banks, and resulted in extensive service
disruptions and data encryption despite stringent security. Hence, the advent of intrusion
tolerance technology is pivotal, designed not merely to counter attacks but, more crucially,
to ensure the ongoing operation of essential services during cyber incidents. This is vital for
users, as the continuity and reliability of services profoundly impact their perception of the
network system’s performance [2,3]. In the realm of cybersecurity challenges, maintaining
service continuity is central to users’ assessment of network service quality.

Thus, the development of effective service migration strategies has become a subject
of significant interest within the intrusion tolerance domain [4], garnering substantial atten-
tion and investigation from scholars worldwide. Wang et al. [5] proposed a polymorphic
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heterogeneous security architecture, which is grounded in an intrusion tolerance mecha-
nism. This architecture permits the migration of services from one executor to another in
the event of a system attack. Such a migration mechanism is instrumental in preserving
system continuity and reliability, thereby bolstering the system’s capabilities to tolerate
network attacks. The efficacy of this method in delivering a high recovery rate has been
validated through experiments, which also highlighted its advantages of quicker execution
and reduced costs in link mapping. Kang et al. [6] introduced a primary-backup Virtual
Network Function (VNF) placement model, predicated on an availability schedule. This
model treats the service migration challenge as an integer linear programming problem,
aiming primarily to optimize the least count of continuous available time slots across all
service function chains. This objective inherently seeks to mitigate service disruptions
attributable to node unavailability. Zhao et al. [7] introduced a Fault-Tolerant Redundant
Path Service Migration (FRSM) approach, utilizing a sliding window-based model for
pinpointing potential service migration paths. This method integrates re-submission and
replication mechanisms to enhance fault tolerance. By opting for several redundant paths,
it devises an edge service migration strategy, significantly bolstering the migration’s re-
liability and efficiency. Ma et al. [8] introduced a Predictive, Reliability-Assured Service
Migration Path Selection Method (PTSM), which integrates user movement trajectory
prediction with the reliability needs of service migration to optimize migration paths.
This integration aims to guarantee uninterrupted service and optimal performance. The
PTSM method is particularly effective in minimizing service disruptions and upholding
service quality.

In the domain of research and implementation concerning service migration strategies,
two main obstacles are encountered. First, the majority of existing strategies are only
triggered in the event of a node losing its service provision capability or when a specific
metric surpasses a preset static threshold. This approach fails to adequately predict or
rectify potential decreases in service quality, resulting in prolonged service interruptions
and a notable degradation in user experience. Second, current research predominantly
focuses on evaluating the volume of task loads on nodes to inform migration decisions,
often neglecting the compatibility between tasks and node resources during the migration
process. As a consequence, services may be moved to nodes that are close to or have
exceeded their capacity, thereby increasing the likelihood of system overloads.

This article presents the Quality-Driven Resource Migration Strategy (QD-RMS), which
focuses on a migration timing decision approach influenced by service quality and a node
selection algorithm that prioritizes load balancing. QD-RMS utilizes a comprehensive Ser-
vice Migration Index (SMI) for the accurate assessment of service migration requirements.
By employing SMI for evaluation, QD-RMS strategically initiates migration to ensure unin-
terrupted service continuity. In terms of node selection after determining migration timing,
QD-RMS combines Pareto optimality theory with a simulated annealing algorithm to select
the most suitable node for migration. This methodology not only facilitates effective service
migration but also optimizes resource allocation and achieves load balance, resulting in
improved task support after migration and enhanced overall system performance. The
contributions of this paper are as follows.

1. Quality-guided migration timing decision: QD-RMS introduces a Service Migration
Index (SMI) for the holistic evaluation of node service quality, aiding in the prediction
of migration propensities. This index amalgamates crucial indicators like the average
distance between users and base stations, service throughput, and node resource
utilization. Continual SMI monitoring allows QD-RMS to proactively discern the
necessity for service migration, facilitating an immediate assessment of service status.
Upon the SMI hitting or surpassing a dynamic threshold, the system interprets this as
an indicator of deteriorating service quality, thereby initiating the migration process
and adaptively recalibrating the threshold to align with current node conditions.
If the SMI remains below this threshold, the service shifts into a dormant state,
pending subsequent evaluation. This approach preemptively triggers migration to
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avert significant service quality decline, effectively stabilizing service quality levels
and curtailing both service downtime and the duration required for migration.

2. Optimize the load through Pareto optimality theory: QD-RMS starts by merging node
resources and task loads to evaluate the load status of potential migration nodes, lead-
ing to the development of a multi-objective optimization model. This model, utilizing
Pareto optimality theory, gauges the load quality of these nodes and is efficiently
resolved through the simulated annealing algorithm, facilitating the identification of
superior candidate nodes promptly. Distinct from conventional load balancing meth-
ods, QD-RMS accentuates the compatibility of resources between tasks and nodes,
thereby circumventing the selection of nodes at the brink of resource saturation,
minimizing overload risks, and fostering a more sophisticated load-balancing regime.

3. Effective experimental validation: Comprehensive empirical tests were carried out on
QD-RMS to assess its effectiveness in real-world applications, particularly in terms
of service quality and maximum task capacity at nodes. By simulating four different
service requests on a virtual machine platform, we compared the performance of
QD-RMS with that of conventional reference strategies in service migration, illustrat-
ing their service quality in comparative graphs. The results highlighted QD-RMS’s
significant advantage in maintaining service quality, evidenced by more stable service
performance and smaller fluctuation ranges. Additionally, the load-balancing per-
formance of QD-RMS was evaluated, with experimental data confirming that, under
similar hardware configurations, QD-RMS improved the maximum task capacity by
approximately 20% compared to traditional load-balancing algorithms.

2. Related Work

Service migration, driven by user mobility and the limited nature of server resources,
is an unavoidable component within the realm of mobile intrusion tolerance. The selection
of appropriate timing for service migration is crucial, as it directly influences the duration
of service interruptions. Notably, the length of these interruptions significantly affects the
user’s experience of the service.

Traditionally, the decision to migrate services is triggered by monitoring the uti-
lization rate of a system’s static resources, initiating migration when this rate meets a
predefined threshold [9]. Kulshrestha et al. [9] have refined this approach by introduc-
ing a three-parameter Exponential Weighted Moving Average (EWMA3) model, aimed
at detecting overload situations in hosts within cloud data centers. Conversely, Yang
et al. [10] developed a resource transaction model for determining the optimal timing for
migration, albeit with the limitation of considering only bandwidth as the measure for
migration thresholds, thus narrowing its applicability. These studies primarily focused
on the static utilization rate of server resources. However, in distributed systems with
constrained resources and stringent Quality of Service (QoS) demands, such as Mobile
Edge Computing (MEC), relying solely on static thresholds for service migration is deemed
inappropriate [11].

Beyond server load considerations, the dynamic nature of user mobility and request
patterns also plays a pivotal role in service migration strategies. X. Chen et al. [12]
emphasized the real-time monitoring of network conditions and user demands to dy-
namically initiate service migration, aiming to minimize latency and enhance service
continuity. E. Bozkaya et al. [13] leveraged digital twin models to simulate user mobility
and the MEC environment, facilitating dynamic predictions of service migration needs
and timing. H. Wang et al. [14] adopted deep reinforcement learning to optimize the
timing of service migration with a focus on reducing user access delays and network costs.
This approach dynamically adapts to user mobility patterns and network status changes.
Z. Liang [15] et al. explored user mobility support within the mobile edge computing
context, employing an optimization-based method to dynamically determine the optimal
timing for service migration based on user mobility trajectories and edge network resource
status. MoDEMS [16] predicts user future locations and mobility patterns by analyzing
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mobility data, enabling the system to make proactive migration decisions to ensure service
continuity and quality as users move to new geographical locations.

This body of research on service migration timing highlights the challenges posed by
the high heterogeneity of mobile edge networks and the specificity of applications, making
rapid service migration without compromising user experience a challenging endeavor.

In the domain of intrusion tolerance, service migration trust and security garner
significant attention. The proximity of edge nodes to end-users in mobile intrusion-tolerant
networks, coupled with the limited computational and storage resources available at edge
servers, introduces higher security risks compared to traditional cloud computing. Edge
nodes are vulnerable to network attacks, and the control of a service node by malicious
attackers can lead to severe security threats such as data theft and privacy breaches. Yi Xu
et al. [17] employed three-way decision theory in service migration strategies, enhancing
decision-making flexibility and predictability by considering the necessity and timing of
migration, thereby avoiding unreliable migration nodes. Le et al. [18] developed a trust
score-based algorithm for migration node selection, combining EigenTrust and RLIoT
reputation systems with dynamic distance algorithms to provide credible choices. Chunlin
Li et al. [19] demonstrated how SDN architecture supports granular network management
and security policy enforcement, offering real-time insights into network traffic and node
behavior to indirectly improve trust management in migration nodes. An Du et al. [20]
applied reinforcement learning to dynamically adjust service deployment in response to
user mobility, balancing the trade-off between service migration response times and quality
maintenance. PreGAN [21] aims to predict edge nodes likely to fail, facilitating preemptive
service migration to minimize security vulnerabilities and data loss risks.

In addition to the “trust and security” concerns at the terminals and server levels,
ensuring the “capability security” within edge networks emerges as a critical aspect. The
inherently uneven distribution of tasks across the MEC system, driven by user mobility and
task randomness, underscores the necessity for load balancing on edge network servers.
This balancing act not only safeguards the servers’ “capability security” but also forms
a foundational element of service migration’s overall security framework. Through the
dispersion of task processing across devices, X. Dai et al. [22] have effectively alleviated
the burden on edge servers, facilitating a more equitable allocation of resources. Moon
et al. [23] introduced a novel approach by advocating for the subdivision of tasks into
multiple subtasks for parallel processing across several servers. This strategy, aimed at load
equilibrium, entails reallocating subtasks from overloaded to under- or adequately-loaded
MECs, based on prevailing load disparities. Addressing the challenge of load balancing
within the MEC from a novel angle, Zhao et al. [24] conceptualized it as a dual objective of
minimizing energy consumption and reducing queue redundancy, subsequently applying
the Lyapunov optimization technique as a resolution mechanism. Similarly, Liu et al. [25]
ventured into the domain of game theory for load-balancing solutions, initially framing the
issue as a population game model before introducing two evolutionary dynamics and proto-
col modification-based algorithms for load equilibrium. Song S and colleagues [26] refined
the task offloading process to diverse edge nodes, ensuring cost-efficiency while averting
the risk of overloading individual nodes, thereby promoting a harmonious distribution
of workload.

The realm of intrusion-tolerant service migration research is rapidly expanding, yet it is
not devoid of limitations in existing studies. Predominantly, the exploration into the timing
of service migration has been marked by a narrow focus on singular factors, such as service
node overload scenarios or the proximity between users and service nodes, neglecting the
multifaceted nature of service quality indicators. Furthermore, the discourse on the security
of service nodes within intrusion-tolerant services remains comparatively underexplored,
especially against the backdrop of terminal security, with the applicability and scope of
trust models in evaluating service nodes presenting certain constraints. Drawing from
these observations, the discourse on intrusion-tolerant service migration has garnered
extensive attention and undergone significant evolution in recent years. Nonetheless, there
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remains a pressing need for deeper inquiries into aspects of migration timing and node
security. Anchored in the objectives of enhancing security and efficiency within intrusion-
tolerant service migration, this paper aspires to align with and contribute to the vanguard
of ongoing research trajectories in this field.

3. Preliminaries
3.1. Service Migration

Service migration refers to the process of transferring services from the original server
to a new server within a different geographical region when users move beyond the service
coverage or when server resources are insufficient to support the services. The process is
shown in Figure 1. The goal of service migration is to ensure the uninterrupted operation of
computing services for users during their movement. To achieve this, the following points
must be addressed:

1. Service continuity: If a user moves to another location, the services associated with
that user must remain available.

2. Service mobility: Services must be capable of being migrated to new servers when needed.
3. User state mobility: The data associated with user services must be moved along with

the services.

The transfer of user context information is crucial during the service migration process,
as it determines whether users can seamlessly continue using the current services. Context
can be categorized into the following four types:

1. System context: This includes any information related to computing and communica-
tion systems.

2. User context: This refers to any context information associated with user characteristics.
3. Environmental context: This encompasses any context information related to the

physical environment, excluding system and user context.
4. Temporal context: This defines any context information related to time.

Figure 1. Schematic diagram of data transfer in service migration.

Furthermore, service migration presents security-related challenges, as different en-
terprises operate servers. If data are sent from a trusted source server to a destination
server that is in a compromised state, it may potentially give rise to security issues. Hence,
the security of the servers should also be taken into consideration during the service
migration process.

3.2. Load Balancing

Load balancing is a cost-effective mechanism for expanding network equipment
bandwidth, enhancing data throughput and processing capabilities, and bolstering network
robustness, all without the need for additional hardware investment. Its central principle
involves evenly distributing tasks across all servers to ensure the efficient operation of
all devices. As a key apparatus for achieving this goal, load balancers disperse inbound
requests across multiple servers, maintaining balanced loads and preventing network
bottlenecks and single points of failure. Additionally, load balancing facilitates automatic
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failover, fault tolerance, and redundancy backup to ensure continuous system operation in
emergencies. Common load balancing algorithms include the following:

1. Random Algorithm: Random algorithms distribute incoming requests by selecting
servers at random. These methods do not account for the server’s load or response
metrics, relying solely on random selection.

2. Round Robin Algorithm: Requests are distributed to servers in a sequential, rotating
order. Despite its simplicity, it does not account for performance differences between
servers, which can lead to inefficient resource allocation.

3. Least Connection Algorithm: Requests are assigned based on the current number
of connections to each server, aiming for balanced task distribution. However,
this can still result in unbalanced resource utilization when server performance
varies significantly.

3.3. Pareto Optimality

Pareto optimality, introduced by Italian economist Vilfredo Pareto, is a seminal con-
cept in welfare economics and is predominantly applied in the context of multi-objective
optimization problems. The core of Pareto optimality is to find a solution that facilitates
the optimal trade-off among various conflicting objectives, such as cost, efficiency, and
environmental impact. The set of solutions that achieves this optimality forms the “Pareto
frontier” or the “Pareto boundary”. At any point along this frontier, enhancing one objective
necessitates compromising another.

This concept is grounded in the principle of Pareto efficiency. This principle posits
that in a system with two objectives, labeled A and B, and under conditions of fixed to-
tal resources without the possibility of additional investments, enhancing one objective
invariably leads to the diminution of the other. Pareto efficiency is the state in which no
further improvements can be made to any objective without diminishing the others. In
practical terms, Pareto optimality is achieved by formulating and adhering to specific
constraints. Decision-makers can delineate the objective function and constraints to ex-
plore all viable solutions within the solution space, thereby identifying the set of Pareto
optimal solutions.

4. Methodology
4.1. Active Migration Timing Based on Service Quality

In recent years, within the field of intrusion tolerance, studies have proposed the
concept of “active migration” in service migration, as opposed to the earlier default “pas-
sive migration” (where migration occurs only when a service node is unable to continue
providing service due to certain factors or when a user completely exits the coverage area of
the service node). The comparative analysis of active versus passive migration is presented
in Table 1. Active migration ensures a better service experience. Active migration refers
to the process during which, to safeguard user service experience, decisions on service
migration are made based on operational factors such as the load on service nodes, the
distance between users and service nodes, service quality, etc. This occurs while the service
node remains in normal operation; thus, it is termed as active migration.

Table 1. Comparison between active migration and passive migration.

Active Migration Passive Migration

Service node status during migration Running Suspended

Factors affecting the timing of migration Quality of users and status of service
node Availability of services

Purpose of migration Ensure high-quality services Ensure continuous services

This paper introduces a Quality-Driven Resource Migration Strategy, rooted in the
concept of active migration, which significantly enhances the intrusion tolerance mecha-
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nism by enabling migration through anticipatory resource management and optimizing the
load on network resources. This strategy not only minimizes service disruptions caused
by migration but also ensures service continuity and security through rapid resource re-
organization in response to network security threats, thereby strengthening the system’s
self-protective capabilities following an intrusion.

Following a review of existing research, it is evident that current studies on active
migration predominantly determine migration timing based on the resource utilization of
service nodes or user locations [9], often overlooking the service quality of these nodes.
However, significantly compromised service quality, resulting from various factors, can
severely impact the user experience. Therefore, QD-RMS recognizes service quality as a
critical metric for determining the timing of active migration and initially introduces a
method for this determination in this section.

4.1.1. Service Migration Index

In order to quantify the migration trend of services, the Service Migration Index (SMI)
is introduced, as shown in Equation (1):

SMI =
D ·Q
f (R)

(1)

where D is the average distance between all session users and the service node, Q is the
total throughput of all session instances, and R is the resource utilization of the service node.
Since resource utilization rates do not necessarily have an inverse proportional relationship
with the SMI, Equation (1) employs a function f (R) in the denominator. The function
f (R) illustrates that the impact of resource utilization rates on the Service Migration Index
decreases first and then increases, with a peak value at 70%. This implies that when the
resource utilization rate reaches 70%, the service node is in an optimal state in terms of
resource utilization for the Service Migration Index. We can efficiently calculate D, Q, R,
and f (R) as follows.

D =
∑n

i=1 di

n
(2)

Q =
n

∑
i=1

qi (3)

R =
W1 · rnorm

1 + W2 · rnorm
2 + W3 · rnorm

3 + W4 · rnorm
4

∑4
j=1 Wj

(4)

f (R) = −50R2 + 50R (5)

where di is the distance between user i and the service node; qi is the throughput of a
particular session instance i; n is the total number of users; and Wi and rnorm

i represent the
weight and the normalized utilization rate of a specific resource i, respectively.

Due to varying degrees of resource requirements by different applications running
on service nodes, it is necessary to assign different weights to various resources based on
the type of application. For instance, in Internet of Things (IoT) networks, an intelligent
metering application aggregating utility meter readings may have a higher weight assigned
to disk storage resources, whereas a high-definition video streaming application may
prioritize network resources for enhanced defense mechanisms. Furthermore, in environ-
ments with multiple types of resources, each resource may exhibit distinct scales and units.
Standardization ensures that when resources are allocated, weighting factors are applied
appropriately according to application requirements, thereby reducing scale differences
among resources. Consequently, the efficiency of resource utilization is evaluated through
standardized and normalized metrics. For instance, CPU utilization can be described in
millions of instructions per second (MIPS), memory utilization in megabytes (MB), network
bandwidth utilization in megabits per second (Mbps), and disk utilization in gigabytes
(GB). Resource utilization is standardized so that all metrics, such as CPU, memory, disk,



Electronics 2024, 13, 1666 8 of 21

and network bandwidth utilization rates, are represented on a uniform scale ranging from
0 to 100%. The rnorm

i of a specific resources i can be determined by employing Equation (6).

rnorm
i =

ri − rmin
rmax − rmin

(6)

where ri denotes the utilization rate of a specific resource i, while rmax and rmin represent
the maximum and minimum utilization rates observed across all resources, respectively.

4.1.2. Service Monitoring

The concept of the Service Migration Index was introduced in the preceding text. To
calculate the Service Migration Index, the monitoring of service programs is necessary,
including measuring metrics such as throughput and resource utilization rates. The combi-
nation of Prometheus and exporters is considered for monitoring service programs. The
metrics and methods for data collection are encapsulated in Table 2.

Table 2. The metrics and methods for data collection.

Data Collection Method Collection Cycle

Throughput (queries_per_second) Exposing exporter 1 (s)
CPU Utilization (node_cpu_seconds_total) Exposing exporter 1 (s)

Memory Utilization (node_memory_MemTotal_bytes) Exposing exporter 1 (s)
Storage Utilization (node_disk_io_time_second) Exposing exporter 1 (s)

Network Activity (node_netstat_Tcp_(Active|Passive)Opens) Exposing exporter 1 (s)
Average user session distance Provided by base station Determined by base station

Prometheus is a service monitoring software that encompasses four common metric types:

1. Counter: An incrementing counter used for tracking request counts, task completion
counts, and similar metrics.

2. Gauge: A metric that can take on arbitrary values, suitable for metrics like CPU
utilization, memory usage, and other numerical data.

3. Histogram: Categorizes a set of observations into multiple bins and exposes the
number of bins and the respective observation value ranges.

4. Summary: An extension of Histogram that aggregates data (sums, counts) and pro-
vides metrics like mean and sample standard deviation.

Exporter is a tool designed to export metric data from existing applications or systems.
Exporter is often an essential component in Prometheus monitoring systems as it feeds
monitoring data to Prometheus. Common exporters include the following:

1. Node Exporter: For Linux/Unix systems, providing data on CPU, disk, network,
memory, and more.

2. Blackbox Exporter: For probing network ports, HTTP, DNS, ICMP, and other network
services to assess service statuses.

3. Redis Exporter: For monitoring the performance of Redis databases and exporting
metric data to Prometheus.

The operational principle of Prometheus and exporters involves each exporter ex-
posing an HTTP interface to Prometheus. Periodically, Prometheus calls the metrics data
interface provided by the exporter to retrieve data. The exporter gathers data from the
target system and transforms it into a format supported by Prometheus. Due to its in-
dependent process nature, the exporter can seamlessly integrate with any application or
system. Hence, it is feasible to deploy the required exporter for monitoring service pro-
grams on individual service nodes via Kubernetes, deploy Prometheus on a management
platform, and establish connections with the exporters on the service nodes, thus enabling
the monitoring of service programs on each node, as illustrated in Figure 2.
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Figure 2. Service monitoring method.

4.1.3. Active Migration Process

Initiating service migration prematurely may result in the underutilization of the
host’s resources. Conversely, delayed migration can adversely affect user experience. Thus,
optimal timing for service migration hinges on setting an appropriate migration threshold;
migration should be triggered when the Service Migration Index hits this threshold. This
section introduces a proactive migration strategy guided by the Service Migration Index and
migration threshold, determining the optimal juncture for transferring service operations.
This strategy encompasses three phases: index monitoring, service migration, and threshold
updating. The detailed procedure is depicted in Figure 3.

Figure 3. Active migration process.

1. Index Monitoring Module: This module monitors the status of applications on service
nodes using monitoring software. It calculates the Service Migration Index SMI in real-
time based on relevant parameters and compares it with the migration threshold to
determine the migration trend for the service. The primary objective of the monitoring
program is to monitor and compute parameters. As shown in Algorithm 1, this
module calculates the real-time SMI by continuously collecting data on the current
service’s resource utilization, the average distance of all session users, and the total
throughput of all session instances Q. If the SMI is less than the set threshold (SMI-T)
for the current round, the system will sleep for a period before resuming the process.
If the SMI is greater than or equal to the SMI-T threshold, the service status is
changed to migration mode, the loop is terminated, and the service migration module
is invoked.
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Algorithm 1 Index monitoring

Input: Application APP, Resource weight W, Threshold SMI-T
Output: Application state app_status

app_status← normal
while app_status == normal do

f (R)← calculate_ f (R)(APP, W)
D ← calculate_D(APP)
Q← calculate_Q(APP)
SMI ← calculate_SMI( f (R), D, Q)
if SMI < SMI-T then

Wait some time
else

app_status← migration_trend /*Application enters migration state*/
end if

end while
run Service migration
return app_status

2. Service Migration Module: Initially, all session instances within the service are scanned
and sorted based on the distance of each user from the nodes, and users are sequen-
tially moved to a migration queue for migrating instances starting with users farthest
from the nodes. This process continues until the SMI drops below the migration
threshold, at which point migration stops. During this process, violations by mi-
grating users are monitored and recorded. The service migration program primarily
selects session instances for migration based on the SMI. It iterates through all current
session instances, calculates the distance of each user from the service nodes, adds this
information to a distance queue, and then proceeds to migrate users in order of their
distance from the service nodes until the SMI falls below the set threshold (SMI-T),
at which point the loop stops, and the threshold update module is called. Algorithm 2
demonstrates the procedure of a service migration.

Algorithm 2 Service migration

Input: Application APP, Service migration index SMI
Output: otal number of service violations sla_violations_count

while SMI ≥ SMI-T do
for all instance do

Distance[]← [d[instance1] . . . d[instancen]]
Sort Distance[]
MI ← arg max(d[instancei])
migration MI
max.sla_violations← calculate_sla(MI) /* Calculate the maximum number of
violation incidents about MI*/
if max.sla_violations then

sla_violations_count+ = max.sla_violations
end if

end for
end while
run Threshold updating
return sla_violations_count

3. Threshold Updating Module: This module compares the product of distance and
average waiting delay with a predefined base value to evaluate the reasonableness
of the threshold. A violation value of 0 indicates an appropriately set threshold for
migration in the current context, and a slight random increase in the threshold can
enhance the utilization of service nodes. If the violation value is greater than 0, it
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signifies that the threshold set is too high, causing multiple violations by the time the
SMI reaches the threshold. In such cases, a small random decrease in the threshold is
necessary. The threshold update program first calculates the current migration round
for the service. If the migration rounds are relatively low, such as equal to or less than
5, the SMI-T is randomly adjusted based on violations, with the adjustment value
correlated to the violation severity. For higher migration rounds, the module takes
the SMI-T and average waiting delay into account, using the method of least squares
to fit a function. The computation determines the maximum value of the independent
variable for which the fitted function equals 0, providing a new SMI-T value. The
threshold update strategy is shown in Algorithm 3.

Algorithm 3 Threshold updating

Input: Application APP, Distance D, Average waiting delay delay, Migration round
migration_round, Total number of service violations sla_violations_count

Output: updated threshold SMI-T
if migration_round ≤ 5 then

if sla_violations_count == 0 then
SMI-T increase small random number

else
SMI-T descend small random number

end if
else

f (x)← poly f it(D, delay) /*Using least squares method for function fitting*/
end if
X ← arg max f (x)==0 x /*Calculating the maximum value of the independent variable
when the fitted function f equals 0*/
SMI-T ← X
return SMI-T

4.2. Node Selection Algorithm Based on Load Balancing

Following the determination of the need for migration as outlined in Section 4.1, the
ensuing critical task is to strategically select the optimal target node to manage the migration.
In this section, we present a migration node selection algorithm designed to enhance
migration decisions through load balancing, aiming to improve system performance and
maintain stability across the network. The essence of load balancing is to evenly distribute
various tasks across each server in the network as much as possible, allowing these servers
to share the workload and enabling all network devices to operate efficiently. Neglecting
server loads during the migration process may result in some servers bearing a heavy
burden of tasks while others remain idle. This imbalance can lead to overloaded servers or
even server crashes, along with the wastage of resources on many idle servers. Therefore,
when allocating tasks to servers, it is essential to strive for a balanced distribution, ensuring
that the load on each server is close to equilibrium, thus maximizing the utilization of the
computational and storage resources provided by the servers.

Figure 4 illustrates an uneven load distribution within a service area. From the
depicted load states in the figure, it is evident that the load distribution across the servers
is uneven. For instance, servers S2, S4, and S6 are already experiencing high levels of load,
whereas S1 and S5 remain at relatively low load levels. As analyzed earlier, an uneven
load distribution significantly decreases the operational efficiency of servers and results in
wastage of computational and storage resources.
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Figure 4. Imbalanced load distribution.

Figure 5 depicts a schematic diagram illustrating the load status at each server after
load-balancing adjustments. By appropriately distributing tasks to balance the workload
among servers, load balancing aims to enhance the operational efficiency among servers.

Figure 5. Balanced load distribution.

Currently, there has been extensive research in the field of load balancing. Clas-
sic load-balancing approaches are implemented using random algorithm, round-robin
scheduling, and least-connection algorithm. Additionally, there are new explorations into
load-balancing issues. For example, P. Zhao et al. [24] initially framed load balancing in
MEC (Multi-access Edge Computing) as a problem of minimizing energy consumption and
queue redundancy. Then, they applied Lyapunov algorithms to solve such optimization
problems. L. Liu et al. [27] considered forcing an overloaded server to randomly select two
servers from a group of adjacent servers and then unload to the one with the smallest load.
However, this approach leads to redirecting a large number of tasks to originally lightly
loaded servers, causing them to become overloaded, thus failing to address the issue of
load imbalance. Abedin et al. [28] used game theory to solve load-balancing problems by
formulating the problem of minimizing costs as a transportation problem and employ-
ing the Vogel approximation method to compute the optimal solution. Similarly, D. Liu
et al. [25] considered introducing game theory to solve load-balancing problems. They
initially formulated the load-balancing problem as a population game model and proposed
two load-balancing algorithms based on evolutionary dynamics and modified protocols.

However, the aforementioned studies mainly focus on balancing the number of tasks
among servers, neglecting a consideration of the sizes of tasks themselves. Assuming that
the computational resource requirements for Task A are several times greater than Task B,
treating Tasks A and B as equivalent tasks and allocating server resources based solely on
task quantity may not fully utilize server resources. Therefore, this section further advances



Electronics 2024, 13, 1666 13 of 21

the existing load-balancing algorithms by incorporating considerations for matching task
resource demands with server resource capacities, proposing a migration node selection
algorithm based on load balancing to more effectively utilize the computational resources
of service nodes.

4.2.1. Resource-Based Load Balancing

Considering the existence of a cluster of n servers S = (S1, S2, S3, . . . , Sn), for a server
Si, its total resource content is a resource vector Rinit

i , as shown in Equation (7):

Rinit
i = (C, M, H, B) (7)

where C, M, H, and B represent the CPU, memory, disk, and network bandwidth resource,
respectively. Additionally, the vector of remaining available resources at the current
moment t is the following:

Rt
i = (Ct, Mt, Ht, Bt) (8)

where Ct, Mt, Ht, and Bt represent the remaining available resources of the CPU, memory,
disk, and network bandwidth resource at the current moment t, respectively.

A closer ratio of Rinit
i to Rt

i to ω (0 < ω < 1) suggests a higher level of resource
utilization equality. This indicates that the resources are being used more efficiently and
effectively. When the two resource vectors are not proportional, this indicates a deviation
from the optimal utilization of resources. τ represents the cosine similarity between two
resource vectors, serving to quantify the degree of deviation in resource utilization.

τ = cos (Rt
i , Rinit

i ) (9)

If the allocated tasks can correct the deviation in resource utilization rate, it can be
considered as beneficial for the load balancing of server resources.

Let the resource vector required for the user’s task at time t be denoted as Dt
i . The

remaining resource vector after accepting the task Ṙt
i can be calculated using Equation (10).

We can then determine the deviation in resource utilization following the acceptance of
task τ̇ using Equation (11).

Ṙt
i = Rt

i − Dt
i (10)

τ̇ = cos (Ṙt
i , Rinit

i ) (11)

If σ = τ̇ − τ > 0, it indicates that the task can contribute to improving the balance of
resource utilization in the server.

4.2.2. Task-Based Load Balancing

For the server Si, the vector of total resource content and remaining available resources
at the current moment t is denoted by Equations (7) and (8). The load level on each resource
can be calculated using the following equations:

LBC =
Ct

C
(12)

LBM =
Mt

M
(13)

LBH =
Ht

H
(14)

LBB =
Bt

B
(15)

where LBC, LBM, LBH , and LBB represent the load level on CPU, memory, disk, and net-
work bandwidth resource, respectively.
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Furthermore, ω is the load level of the server Si, which can be calculated using
Equation (16). The average load on the server cluster ω̄ is given by Equation (17).

ω =
LBC + LBM + LBH + LBB

4
(16)

ω̄ =
∑n

i=1 ωi

n
(17)

Finally, the variance value of the average load on the server cluster ω̇ can be calculated
by Equation (18), which reflects the load balancing of tasks undertaken by individual
servers in the server cluster.

ω̇ =
n

∑
i=1

(ωi − ω̄)2 (18)

4.2.3. Migration Node Selection Algorithm Based on Task-Resource Matching

The preceding two subsections analyzed the balance of server resources and the load
balancing of task quantities across servers. Therefore, the consideration of load balancing
on nodes in the candidate server pool during task migration can be transformed into
optimization problems concerning the aforementioned two metrics. This issue fundamen-
tally constitutes a multi-objective optimization problem. Due to the heterogeneity of user
devices and the diversity of user tasks, optimizing one metric inevitably impacts another.
Introducing Pareto optimality theory measures superior load balancing solution nodes.
The concept of Pareto optimality refers to a state of resource allocation where modifying the
allocation status does not compromise any objective function, while benefiting at least one
objective function. If no further allocation changes can be made in this manner, the solution
is considered one of the Pareto optimal solutions. Thus, the consideration of load balancing
aims to achieve Pareto optimal status for the two aforementioned metrics. However, given
the need for service continuity in the data center, excessive time spent seeking Pareto
optimal solutions may lead to a misplaced emphasis, thereby compromising the original
objective of efficient and high-quality migrations. Hence, in this scenario, considerations
should be made regarding the magnitude of service nodes, delineating different scenarios.
When the number of candidate nodes does not exceed a specific threshold (subject to real-
world conditions), comprehensive screening is conducted, wherein each node undergoes
Pareto adjustments to find the optimal solution.

Considering that the search latency of Algorithm 4 would become unmanageable with
a large number of nodes, the adoption of Algorithm 5 with a simulated annealing approach
is contemplated for expedited exploration, aiming to identify a set of superior solutions
within an acceptable timeframe.

Algorithm 4 Comprehensive screening of Pareto optimal nodes

Input: Server nodes ID, User demand resource vector
Output: Set of servers that achieves Pareto optimality µ

for i ∈ n do
Calculate the resource balance degree τ̇ − τ after server i accepts the task
Calculate the load balancing degree ω̇ after server i accepts the task

end for
for i ∈ n do

for y ∈ n do
if (τ̇y ≥ τ̇i and ω̇y ≥ ω̇i) and (τ̇y ≥ τ̇i or ω̇y ≥ ω̇i) then

Replace node i with node y
Record the serial number of node i

end if
end for
σ← σ ∪ y
Delete all recorded nodes from n

end for
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Algorithm 5 Simulated annealing searches for Pareto optimal nodes

Input: Serialized server nodes ID, User demand resource vector
Output: Set of servers that achieves Pareto optimality σ

for i ∈ n do
Calculate the resource balance degree τ̇ − τ after server i accepts the task
Calculate the load balancing degree ω̇ after server i accepts the task
Perform range perturbation Rand(i± ϵ) to generate new solutions
Calculate the degree of equilibrium
if new > old then

Accept and record new optimal
else

Accept with a certain probability according to metropolis guidelines
end if
Iterate for multiple times
Terminate gradually according to annealing temperature

end for

5. Evaluation
5.1. Active Migration Based on Service Quality

In our research, we evaluated passive and active migration strategies across four
service program types. The outcomes for the passive migration algorithm are depicted in
Figure 6, with the experiment’s duration plotted on the x-axis in seconds. The left y-axis
indicates the number of request sessions, represented by blue bars in the graph. The right
y-axis calculates the product of average distance D and average request waiting time AWT,
in milliseconds, offering a composite measure of spatial and temporal efficiency in service
delivery. This product, D× AWT, acts as a service quality index SQ, where the distance D
reflects the spatial component related to transmission delay.

The red line in the figure denotes the benchmark for desirable service quality, preset
in this experiment. In contrast, the green curve shows the actual performance of the service
program. The threshold represented by the red line is adaptable, allowing for customization
based on various operational scenarios and requirements. For this experiment, the threshold
was set at 50 ms, indicating a higher standard of service quality. Any segment of the green
curve surpassing the red line signals a period when the service quality dips below the
established threshold.

Passive migration is initiated when the resources for a service program are depleted
or when users exit the service area, rendering continued service impossible. Consequently,
services may remain active but suffer from diminished quality. As demonstrated in
Figure 6, for matrix calculation, video service, and website service, the green curve, indica-
tive of service demand, escalates swiftly with increasing service requests. When session
numbers escalate to a certain threshold, the latency, represented by the green curve, sub-
stantially exceeds the established benchmark for superior service quality, subjecting users
to excessive delays and a substandard service experience. Notably, in game service, ap-
proaching 150 session requests triggers passive migration due to resource depletion at the
node. This leads to the migration of about half the session processes from the node, causing
a decline in the green curve to below the threshold, which corresponds to an enhancement
in service quality. The analysis of passive migration experiments illustrates the challenge in
selecting the optimal timing for passive migration, crucial for maintaining service quality
at edge nodes across various scenarios.
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Figure 6. Results of passive transfer experiment.

Figure 7 presents the experimental results of proactive migration based on static
resource utilization rates. The decision to migrate is contingent upon reaching a predeter-
mined threshold of resource utilization at the service node, meaning that migration occurs
when the node’s resource utilization hits this predefined limit.

The experimental findings indicate that, compared to passive migration, proactive
migration based on static resource utilization can, to some extent, ensure a higher quality
of service. For instance, in the experiment involving matrix calculation, migration was
initiated once the session count hit 100, effectively reducing latency to below the baseline.
However, the performance in video and web service applications was less than ideal.
In the video service scenario, despite the latency significantly exceeding the baseline,
migration was not executed because the resource utilization had not met the established
threshold. A similar situation occurred with the web service application, where migration
was delayed until the session count neared 150, reaching the resource utilization ceiling,
by which point the latency had already significantly exceeded the baseline, indicating
severely compromised service quality. Conversely, in the game service, migration was
triggered even though the actual latency had not yet reached the baseline, leading to the
underutilization of the service node’s resources.

Figure 7. Results of active migration based on static resource utilization.
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Further expanding on this, we present the findings based on the service quality of
proactive migration. As depicted in Figure 8, across the four service programs tested,
migration is instantaneously triggered when the green curve (representing real-time service
quality metrics) surpasses the red line (the set threshold), subsequently maintaining a
position almost equivalent to the red line. This effectiveness stems from the algorithm’s
dynamic threshold-updating mechanism, where the Service Migration Index Threshold
(SMI-T) is adjusted according to the deviation from the standard Service Quality (SQ) value.
This adjustment enables the green curve to precisely gauge the SMI’s upper boundary in
the experiments. In comparison to passive migration and proactive migration based on
static resource utilization, the service quality-based proactive migration strategy proposed
herein optimizes the timing of migration, thereby maximizing the utilization of service
node resources without compromising on service quality.

Figure 8. Results of active migration based on quality of service.

5.2. Migration Node Selection for Task-Resource Matching

To assess the effectiveness of our migration node selection algorithm based on task-
resource matching, we conducted several tests across diverse scenarios and compared the
results of our algorithm with those of the random algorithm, round robin algorithm, and
least connection algorithm in the same situation. First, we simulated a user who sends
30 task requests to the load balancer. Figure 9 shows the tasks assigned to each server
where the x-axis is the server serial number, and the y-axis is the number of tasks assigned.
Figure 10 shows the resource deviation of service system nodes after load balancer alloca-
tion. It can be seen from the results of the Figures 9 and 10 that the four algorithms have
little difference in the number of tasks assigned, but there is a significant difference in the
degree of resource deviation. Since the traditional random algorithm, round robin algo-
rithm, and least connection algorithm do not consider the problem of resource matching
between tasks and servers, it can be seen from the experimental results that the resource
deviation of the service node is large. This also means that the resource utilization of service
nodes is not balanced, and the full capacity of the server is not fully utilized. The task
resource matching algorithm proposed in this paper can ensure lower resource deviation
and allocate different types of tasks to appropriate service nodes more reasonably.
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Figure 9. Results of 30 assignment requests.

Figure 10. Resource deviation degree of a service node after 30 tasks are assigned.

Second, we simulated users who apply for tasks from the load balancer indefinitely
until a resource on the server is exhausted. Figure 11 shows the tasks assigned to each
server and Figure 12 shows the degree of deviation in resource utilization τ (as the value
approaches 1, resource utilization becomes more balanced; see Equation (9)) of service
nodes after an unlimited number of tasks are assigned. It can be seen from the results
that under the infinite number of task requests, the QD-RMS proposed in this paper has
a significant improvement in the number of tasks carried out and still maintains a good
performance in the resource deviation.

Figure 11. Results of an unlimited number of task requests.
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Figure 12. Resource deviation degree of a service node after an infinite number of tasks are assigned.

Lastly, we compare the maximum task carrying capacity of various algorithms, that
is, the total number of tasks carried out by all service nodes. As shown in Figure 13, the
algorithm proposed in this paper can make full use of the resources of service nodes because
it takes into account the matching degree between the resources required by different task
types and the server resources. Under the same equipment conditions, the maximum task
load is increased by about 20%.

Figure 13. Comparison of Maximum Task Capacity

6. Conclusions

In conclusion, this research introduces the Quality-Driven Resource Migration Strategy
(QD-RMS), a policy focused on optimizing resource allocation and enhancing decision
making in service migration, guided by service quality metrics. QD-RMS proactively trig-
gers resource migration prior to any decline in service quality through a service migration
index and a dynamic threshold mechanism, thereby ensuring uninterrupted migration
and significantly mitigating fluctuations in service quality. Moreover, leveraging Pareto
optimization and the simulated annealing algorithm, this strategy efficiently selects the
optimal node for migration within a feasible computational timeframe, optimizing resource
utilization and load balancing.

QD-RMS effectively mitigates the delayed response of conventional migration strate-
gies to potential service quality declines. Through the continuous monitoring of the Service
Migration Index (SMI), it facilitates the real-time assessment of service status, allowing
for the early activation of migration processes before significant degradation in service
quality, thus diminishing variability in service quality and minimizing service downtime.
Additionally, QD-RMS employs a multi-objective optimization model that amalgamates
node resources and task load, enhancing the load-balancing process and preventing service
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migration to nodes at the risk of resource overutilization, consequently reducing system
overload risks.

To ascertain QD-RMS’s efficacy, a series of experiments were conducted, simulating
varied service requests on a virtual machine platform to benchmark QD-RMS against
conventional resource migration strategies. The experimental results indicate that QD-RMS
not only maintains service quality but also reduces service fluctuation and increases the
maximum task capacity by approximately 20%, thereby validating its superior performance
and advanced load-balancing capabilities in real-world settings.

Beyond ensuring continuous network services, QD-RMS extends its utility to op-
timizing resource scheduling within networks. It dynamically reallocates resources by
harnessing service quality metrics and load data, thereby adapting to ever-evolving net-
work demands and traffic flows. Nevertheless, its centralized decision-making framework
is not without drawbacks. It can lead to transmission bottlenecks as the scale of resources
expands. To mitigate this, forthcoming enhancements will pivot toward a distributed
framework, aiming to distribute the responsibilities of resource management and migration
decisions across multiple units. This shift will alleviate the load on central management
nodes and enhance overall efficiency.
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