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Abstract: Meta-few-shot learning algorithms, such as Model-Agnostic Meta-Learning (MAML) and
Almost No Inner Loop (ANIL), enable machines to learn complex tasks quickly with limited data
and based on previous experience. By maintaining the inner loop head of the neural network,
ANIL leads to simpler computations and reduces the complexity of MAML. Despite its benefits,
ANIL suffers from issues like accuracy variance, slow initial learning, and overfitting, hardening its
adaptation and generalization. This work proposes “Look-Ahead ANIL” (LaANIL), an enhancement
to ANIL for better learning. LaANIL reorganizes ANIL’s internal architecture, integrating parallel
computing techniques (to process multiple training examples simultaneously across computing units)
and incorporating Nesterov momentum (which accelerates convergence by adjusting the learning
rate based on past gradient information and extracting informative features for look-ahead gradient
computation). These additional features make our model more state-of-the-art capable and better
edge-compatible and thus improve few-short learning by enabling models to quickly adapt to new
information and tasks. LaANIL’s effectiveness is validated on established meta-few-shot learning
datasets, including FC100, CIFAR-FS, Mini-ImageNet, CUBirds-200-2011, and Tiered-ImageNet. The
proposed model achieved an increased validation accuracy by 7 ± 0.7% and a variance reduction
by 44 ± 4% in two-way two-shot classification as well as increased validation by 5 ± 0.4% and a
variance reduction by 18 ± 2% in five-way five-shot classification on the FC100 dataset and similarly
performed well on other datasets.

Keywords: meta-learning; MAML (Model-Agnostic Meta-Learning); ANIL (Almost No Inner Loop);
artificial neural networks; edge computing; meta-few-shot learning; Nesterov’s momentum; data
parallelism

1. Introduction

Meta-learning, or the process of learning how to learn, involves systematically observ-
ing the performance of various machine learning approaches across a range of learning
tasks and subsequently using this experience or “meta-data” to rapidly learn new tasks [1].
When acquiring new competencies, it is unusual to begin from scratch; instead, we build
upon our existing knowledge, drawing from previously acquired skills, reusing successful
strategies, and prioritizing potentially valuable techniques based on experience. Thus,
acquiring a new skill becomes simpler, requiring fewer examples and less trial and error.
Essentially, we learn how to learn across a range of tasks [1].

Meta-few-shot image classification is a specific technique in the field of machine
learning that combines the principles of few-shot learning and meta-learning. Few-shot
learning focuses on training models to identify new objects with a limited number of
examples, while meta-learning involves teaching models to quickly learn new skills or
knowledge. Meta-few-shot image classification combines these two techniques, allowing
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models to quickly adapt to new objects with minimal data [2]. Moreover, this approach
enables machines to rapidly comprehend complex concepts, which is facilitated by modern
meta-learning algorithms such as Model-Agnostic Meta-learning (MAML) [3] and its
derivative, Almost No Inner Loop (ANIL) [4]. The main innovation of ANIL is its simplified
method that only retains the classification head of the inner loop while keeping frozen the
other layers of the inner loop from the MAML design. While ANIL offers a streamlined
architecture and inherent computational advantages, it faces significant challenges that
hinder its flexibility and generalizability in the context of meta-learning. These obstacles
may include limitations in handling diverse and complex data types, difficulties in adapting
to new and unseen scenarios with fewer data, and challenges in effectively transferring
knowledge across different domains [5].

This work proposes an updated algorithmic approach aimed at overcoming deficien-
cies and increasing the effectiveness of ANIL in real-world scenarios. By reorganizing
ANIL’s internal architecture, integrating parallel computing techniques [6], and incor-
porating Nesterov momentum [7] for optimized look-ahead gradient calculations, this
stabilization technique amplifies the model’s ability to adapt quickly in dynamic envi-
ronments. In sum, these modifications aid in honing task-specific adaptation, resulting
in faster responsiveness and more widespread generalization. Integrating data paral-
lelism with Nesterov’s momentum can significantly improve the speed and accuracy of
model convergence [8,9]. The former splits data across multiple processors and uses multi-
ple model instances to efficiently estimate gradients [10]. Nesterov’s momentum, which
predicts gradient direction for better update adjustments, benefits from this improved
estimation. During the training and adaptation phases, they work together synergistically
to enhance the model’s responsiveness and accelerate convergence [11]. Our proposed
model was thoroughly validated on well-known public meta-few-shot learning datasets,
including the benchmark datasets FC100 CIFAR-FS, Mini-ImageNet, CUBirds-200-2011,
and Tiered-ImageNet, demonstrating notable results.

The choice of few-shot image classification as the evaluation benchmark is supported
by the following reasons [12]:

• Real-world relevance: We chose few-shot image classification to demonstrate LaANIL’s
ability to learn from a limited number of examples, which mimics real-world scenarios
where acquiring extensive labeled data is often unfeasible.

• Generalization and adaptability: Few-shot image classification tasks require models
to quickly adapt to new classes with only a small number of examples per class. This
demonstrates the model’s ability to generalize from limited information, a crucial
attribute for incremental learning algorithms like LaANIL, which are designed to
assimilate and accommodate new knowledge iteratively.

• Robustness and flexibility: The use of few-shot image classification as the evaluation
metric highlights the importance of models being able to learn from minimal data,
which is in line with the fundamental goals of incremental learning frameworks.

• Benchmarking against state-of-the-art: Few-shot image classification tasks are used as
a standardized benchmark to evaluate the performance of new algorithms. LaANIL
was subjected to this benchmark to effectively compare its performance against state-of-
the-art few-shot learning methods and assess its effectiveness in handling limited-data
scenarios.

• Addressing model bias and overfitting: Few-shot image classification requires models
to effectively combat overfitting and bias due to the limited training samples, which
may lead to skewed representations.

The rest of the paper is organized as follows: Section 2 presents an introduction
to meta-learning, MAML, and ANIL, along with their advantages and disadvantages.
Section 3 describes our proposal. Section 4 presents the experiments we have performed
and Section 5 discusses the results. The manuscript ends with some conclusions and further
lines of research.
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2. Background
2.1. Meta-Learning

Meta-learning [8] is a technique where a model learns how to learn, enabling it to
adapt quickly to new tasks or datasets with minimal data [1]. The term meta-learning
covers any type of learning based on prior experience with other tasks. The more similar
those previous tasks are, the more types of meta-data we can leverage, and defining task
similarity will be a key overarching challenge [13].

Meta-learning is, however, not a recent idea, and it has had many names in the past,
such as meta-modeling, learning to learn, continuous learning, ensemble learning, and
transfer learning. This large and growing body of work has demonstrated that meta-
learning can drastically make machine learning more efficient, accessible, and trustworthy.
Recent meta-learning techniques, such as meta-descent in optimization, meta-reinforcement
learning in reinforcement learning, and meta-few-shot learning, have been developed when
labeled data are scarce. Metric-based, model-based, and optimization-based meta-learning
are the three major categories of meta-learning [14].

Meta-learning improves deep learning models by enabling them to learn from a variety
of tasks, enhancing their ability to quickly adapt to new and unseen tasks with minimal
additional data. In contrast, conventional deep learning has many limitations, including
the inability to learn new tasks as quickly as humans do when drawing on prior experience,
and many classifiers require massive amounts of training data [15]. Furthermore, deep
learning algorithm performance depends heavily on labeled data with predefined attributes,
which sometimes restricts generalization. Researchers have proposed remedies for this
problem (e.g., transfer learning) through the use of trained models. However, inadequate
pre-training data, test data that vary from the pre-training data, samples of particular
classes that are too small, and other issues lead to poor model performance throughout the
learning process, which is addressed by meta-learning [14].

Meta-few-shot image classification (a particularly challenging meta-learning problem
that requires training an accurate deep learning model using only a few training exam-
ples [13]), a recent state-of-the-art meta-learning technique, employs the learn-to-learn
approach for high adaptability to new tasks and reliability across different hardware con-
figurations [4]. It has achieved exceptional performance in computer vision, robotics, and
language processing due to its innate multitasking ability and rapid adaptability. This
method, which involves training an accurate deep learning model with only a few train-
ing examples, is critical in diverse fields. These include computer vision applications
for image classification, advanced driver assistant systems (ADAS) for object identifica-
tion [16], agriculture for plant classification [17], as well as natural language processing
and healthcare sectors.

2.2. Model-Agnostic Meta-Learning (MAML)

MAML [3] is a leading method in optimization-based meta-learning. It employs
second-order computations (see Figure 1a) to learn across tasks taken from the same
distribution. The system utilizes a blend of two nested cycles to optimize (i.e., bi-level
optimization), and it aims to enhance overall proficiency [18].

θ∗ = argmin
1
M

M

∑
i=1

L(in(θ, Dtr
i )Dtest

i ) (1)

The individual terms in Equation (1) are as follows: M denotes the number of tasks in
the group and Dtr

i and Dtest
i denote the ith task in the training and test sets, respectively.

The function L denotes the task loss, and the function in Dtr
i denotes the inner loop training

data. The neural network is started with θ for each job in a batch. This value is optimized
in the inner loop for one or a few gradient descent training steps on the training set Dtr

i to
acquire fine-tuned task parameters Θi. Considering only one training phase in the inner
loop, the assignment parameters equate to
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Θi ≃ in(θ, Dtr
i = θ − α∇θ L(θ, Dtr

i )) (2)

This leads to the meta-parameters θ from Equation (1) being updated in relation to
the average loss of each task’s fine-tuned parameters Θi in Equation (2) on the test set
Dtest

i . Thus, after fine-tuning, MAML optimizes regarding the loss, outperforming simple
pre-training, as described in [3,19]. Many distinct MAML adaptations increase learning
speed and learning efficiency, as well as handling novel tasks and task distributions. A
more detailed explanation and interactive analysis of some variations can be found in [19].

Model-Agnostic Meta-Learning (MAML) is a highly effective technique for meta-
learning, but it is computationally expensive due to the external loop adaptation [20].
MAML specifies two steps for the learning process, namely, (1) task adaptation and (2) up-
date of meta-weights. This approach is computationally demanding because Hessian com-
putation (see Figure 1a) is required during the entire training process [20]. The network will
typically be applied for task adaptation and subsequent task prediction following training.
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Figure 3: Inner loop updates have little effect on learned representations from early on in learning. Left
pane: we freeze contiguous blocks of layers (no adaptation at test time), on MiniImageNet-5way-5shot and
see almost identical performance. Right pane: representations of all layers except the head are highly similar
pre/post adaptation – i.e. features are being reused. This is true from early (iteration 10000) in training.

Figure 4: Schematic of MAML and ANIL algorithms. The difference between the MAML and ANIL
algorithms: in MAML (left), the inner loop (task-specific) gradient updates are applied to all parameters θ,
which are initialized with the meta-initialization from the outer loop. In ANIL (right), only the parameters
corresponding to the network head θhead are updated by the inner loop, during training and testing.

as is on new tasks. Inner loop adaptation does not significantly change the representations of these
layers, even from early on in training. This suggests a natural simplification of the MAML algorithm:
the ANIL (Almost No Inner Loop) algorithm.

In ANIL, during training and testing, we remove the inner loop updates for the network body, and
apply inner loop adaptation only to the head. The head requires the inner loop to allow it to align to
the different classes in each task. In Section 5.1 we consider another variant, the NIL (No Inner Loop)
algorithm, that removes the head entirely at test time, and uses learned features and cosine similarity
to perform effective classification, thus avoiding inner loop updates altogether.

For the ANIL algorithm, mathematically, let θ = (θ1, ..., θl) be the (meta-initialization) parameters
for the l layers of the network. Following the notation of Section 3.1, let θ(b)m be the parameters after
m inner gradient updates for task Tb. In ANIL, we have that:

θ(b)m =
(
θ1, . . . , (θl)

(b)
m−1 − α∇(θl)

(b)
m−1
LSb

(f
θ
(b)
m−1

)
)

i.e. only the final layer gets the inner loop updates. As before, we then define the meta-loss, and
compute the outer loop gradient update. The intuition for ANIL arises from Figure 3, where we
observe that inner loop updates have little effect on the network body even early in training, suggesting
the possibility of removing them entirely. Note that this is distinct to the freezing experiments, where
we only removed the inner loop at inference time. Figure 4 presents the difference between MAML
and ANIL, and Appendix C.1 considers a simple example of the gradient update in ANIL, showing
how the ANIL update differs from MAML.

Computational benefit of ANIL: As ANIL almost has no inner loop, it significantly speeds up
both training and inference. We found an average speedup of 1.7x per training iteration over MAML
and an average speedup of 4.1x per inference iteration. In Appendix C.5 we provide the full results.

6

(a) (b)

Figure 1. Illustration of the computations of the ANIL (b) and MAML (a) algorithms. The crucial
difference between MAML (a) and ANIL (b) lies in the fact that in MAML (a), all parameters initialized
with the meta-initialization from the outer loop are subject to task-specific gradient updates from
the inner loop. Conversely, when training and testing ANIL (b), the inner loop solely modifies the
parameters corresponding to the network head.

2.3. MAML Using Head of the Inner Loop (ANIL)

MAML aims to solve the large data dependency problem of deep learning. However,
it demands significant computations to ensure better learning, while also facing overfitting
and high variance problems. Instead of simplifying the MAML fine-tuning procedure, an
alternative concept was proposed [4]. Since MAML does not alter the representations in the
network’s first part (outer loop), why not unfreeze the last layer (inner loop) and compel
the network to update the first part appropriately to complete the meta-few-shot learning
task? This change leads to the so-called ANIL (Almost No Inner Loop) algorithm [21], with
a focus on minimizing network learning time through optimization. Efficient parameter
selection for the optimization steps can further accelerate model convergence compared to
the base MAML [4].

In that study [4], Raghu and colleagues hypothesized that the exclusive utilization of
feature reuse could yield outcomes comparable to the fast learning capabilities of MAML.
In previous research, the authors extended their study to investigate whether the inner
loop affects early training representations and features. They observed that the inner loop
did not considerably modify the learned representations of a fully trained model, but
did increase the parameter updating duration and hence, the overall computation time
(including both inner and outer loop computation time) [4,22].

Figure 1 section (b) displays the mathematical model of ANIL. Second-order computa-
tions are solely utilized at the beginning of the task-specific loop (inner loop) [23]. In order
to streamline MAML, the inner loop was removed for all except the head of the underlying
neural network for the given task, yielding the ANIL (Almost No Inner Loop) methodol-
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ogy [4,24]. On the meta-few-shot image classification benchmarks, ANIL performs at the
same level as MAML while surpassing MAML in terms of computational performance [4].

As said, the objective of a meta-learning model is to quickly master various tasks and
adapt efficiently to specific actions without extensive examples [22]. MAML implements
both inner and outer loops to update the parameters, each with distinct features. In the
outer loop, the meta-initialization parameters of the neural network are updated, resulting
in an enhanced ability to adapt swiftly to novel tasks [4]. Over specific labelled samples,
task-specific adjustments are implemented by the internal iteration, starting from the
external iteration.

The differentiation between quick learning and feature reuse is key to attain accurate
ANIL characterization [25] (Figure 2). The outer loop’s meta-initialization creates a parame-
ter setting that supports quick learning, thus making it possible for the inner loop to rapidly
adapt to novel tasks. Moreover, since meta-initialization already has significant features
that can be utilized in feature reuse, the inner loop needs to make minor adjustments
to the parameters [22]. ANIL is more computationally effective than MAML. However,
our observations in the results of ANIL showed high variance and poor generalization.
Moreover, ANIL utilizes gradient-based optimization on a meta-objective and involves
performing gradient steps on multiple tasks simultaneously. This may lead to a range of
challenges, including vanishing or exploding gradients and undesired oscillations at local
minima [26], hindering model convergence during meta-training and resulting in the need
for re-similarity training, which directly impacts the training time and iteration count.

Published as a conference paper at ICLR 2020

Figure 1: Rapid learning and feature reuse paradigms. In Rapid Learning, outer loop training leads to a
parameter setting that is well-conditioned for fast learning, and inner loop updates result in significant task
specialization. In Feature Reuse, the outer loop leads to parameter values corresponding to reusable features,
from which the parameters do not move significantly in the inner loop.

adaptation to each new task as a result of favorable weight conditioning from the meta-initialization.
In feature reuse, the meta-initialization already contains highly useful features that can mostly be
reused as is for new tasks, so little task-specific adaptation occurs. Figure 1 shows a schematic of
these two hypotheses.

We start off by overviewing the details of the MAML algorithm, and then we study the rapid learning
vs feature reuse question via layer freezing experiments and analyzing latent representations of
models trained with MAML. The results strongly support feature reuse as the predominant factor
behind MAML’s success. In Section 4, we explore the consequences of this, providing a significant
simplification of MAML, the ANIL algorithm, and in Section 6, we outline the connections to
meta-learning more broadly.

3.1 OVERVIEW OF MAML

The MAML algorithm finds an initialization for a neural network so that new tasks can be learnt with
very few examples (k examples from each class for k-shot learning) via two optimization loops:

• Outer Loop: Updates the initialization of the neural network parameters (often called the
meta-initialization) to a setting that enables fast adaptation to new tasks.
• Inner Loop: Performs adaptation: takes the outer loop initialization, and, separately for

each task, performs a few gradient updates over the k labelled examples (the support set)
provided for adaptation.

More formally, we first define our base model to be a neural network with meta-initialization
parameters θ; let this be represented by fθ. We have have a distribution D over tasks, and draw a
batch {T1, ..., TB} of B tasks from D. For each task Tb, we have a support set of examples STb

,
which are used for inner loop updates, and a target set of examples ZTb

, which are used for outer
loop updates. Let θ(b)i signify θ after i gradient updates for task Tb, and let θ(b)0 = θ. In the inner
loop, during each update, we compute

θ(b)m = θ
(b)
m−1 − α∇θ(b)m−1

LSTb
(f
θ
(b)
m−1(θ)

) (1)

for m fixed across all tasks, where LSTb
(f
θ
(b)
m−1(θ)

) is the loss on the support set of Tb after m− 1

inner loop updates.

We then define the meta-loss as

Lmeta(θ) =
B∑

b=1

LZTb
(f
θ
(b)
m (θ)

)

where LZTb
(f
θ
(b)
m (θ)

) is the loss on the target set of Tb after m inner loop updates, making clear the
dependence of f

θ
(b)
m

on θ. The outer optimization loop then updates θ as

θ = θ − η∇θLmeta(θ)

3

(a) (b) (a)

Figure 2. Paradigms of rapid learning (a) and feature reuse (b). In rapid learning, training in the outer
loop produces parameter settings that facilitate fast learning, while updates in the inner loop result
in significant task specialization. In feature reuse, the outer loop generates reusable feature-specific
parameter values that do not significantly change in the inner loop.

During the optimization process of the inner loop head, the model adjusts to each task
using the minimum amount of training data necessary. The model has the capability of
memorizing the training instances swiftly, but it struggles to generalize well to unfamiliar
data [27]. This could lead to overfitting, which is when the model performs well on training
tasks but poorly on new tasks [28]. Finally, ANIL offers numerous advantages compared to
MAML but faces challenges such as accuracy variance, slow initial learning, and overfitting,
which can hinder its adaptation and generalization as mentioned earlier. In response to
these issues, we propose “Look-Ahead ANIL” (LaANIL) as an improvement to ANIL,
aiming to enhance the learning process with the help of a new gradient updating method
and data parallelism for better outcomes.



Electronics 2024, 13, 1585 6 of 20

3. Our Proposal: LaANIL

In order to tackle the prevalent problems of variance and overfitting inherent to ANIL [29],
we developed LaANIL, a novel meta-few-shot learning algorithm on top of ANIL. Look-Ahead
ANIL (LaANIL) enhances ANIL by using Nesterov’s momentum optimization, modified
embed structure, data parallelism, and internal layer freezing. This results in better few-shot
image classification, improved model adaptability, and faster convergence for training. This
contributes to the advancement of effective learning by enabling models to quickly adapt to
new information and tasks. Data parallelism—a distributed machine learning technique that
can effectively allocate resources and accelerate training—is further explained in Section 3.1,
and the look-ahead gradient optimization procedure—for efficient and fast computation of
input image feature gradients—in Section 3.2.

3.1. Data Parallelism in LaANIL

Data parallelism is a technique in distributed computing for parallel training or
inference processes across numerous devices or machines by dividing the data among them.
During the meta-training process with data parallelism, multiple copies of the model are
generated and updated on distinct subsets of the training data [30]. Each replica of LaANIL
is exposed to a separate subset, resulting in variances in the model parameters [8].

By introducing diversity into the updates generated by each duplicate, these variations
serve as a form of regularization. Our model’s data parallelism improves generalization
and diminishes the risk of overfitting by adding diversity between model copies that are
trained on distinct subsets of the data. Chunking in the batch dimension distributes the
input among computing units (GPUs or CPU cores) for better performance. Each device in
the forward pass duplicates the model and processes a portion of the batch (see Figure 3).
The master computing units update the model weights by applying the look-ahead gradient
resulting from adding the gradients from each model replica during the backward pass
(see Figure 4). The modified model on the master computing units is then replicated on all
other computing units for the next iteration.

GPU‐1/CPU 
core1 

1. Mini‐baches of support set, data disribtion  
[mb1, mb2....mb3] for GPU s or CPU cores 

GPU‐2/CPU 
     core2 

GPU‐1/CPU 
core1 

GPU‐3/CPU 
core3 

mb1 mb2 mb3 

core1 

2. Replicate ANIL classification Head (ACH) 
on  GPUs or CPU cores 

GPU‐2/CPU 
core2 

GPU‐1/CPU 
core1 

GPU‐3/CPU 
core3 

GPU‐1/CPU   
 

ACH ACH 
mb1 

ACH 
mb2 mb3 

GPU‐1/CPU 
core1 

4. Gathering outputs on initial GPU/CPU 

GPU‐2/CPU 
core2 

GPU‐1/CPU 
core1 

GPU‐3/CPU 
core3 

Op1  
Op2 
Op3 

Op1 Op2 Op3 

GPU‐1/CPU 
core1 

3. Parallel forward passes 

GPU‐2/CPU GPU‐1/CPU 
core1 

GPU‐3/CPU 
core3 

Cached 
Op1 

ACH 
mb1 

ACH 
mb2 

ACH 
mb3 

GPU‐1/CPU 
core1 

GPU‐1/CPU 
core1 

core2 

Cached 
Op2 

Cached 
Op3 

ACH

Figure 3. Forward pass of data using parallel computing and calculating Nesterov’s gradient. For
simplicity, only three computing units are depicted.
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GPU‐1/CPU 
core1 

1. Compute loss of Look Ahead gradients 
of  ACH  On GPUs /CPU cores 
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Grad_L1    Grad_L2     Grad_L3 

GPU‐1/CPU 
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GPU‐2/CPU 
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GPU‐1/CPU 
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GPU‐3/CPU 
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Grad_L1 

GPU‐1/CPU 
core1 

GPU‐1/CPU 
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Cached
Grad_L2 

Cached 
Grad_L3 
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Grad_L3m 
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Figure 4. Backward pass of data using parallel computing and calculating Nesterov’s gradient.

3.2. Gradient Calculation in LaANIL

LaANIL also incorporates Nesterov’s momentum [31,32]. This technique is beneficial
for optimizing gradient-based algorithms, accelerating convergence, and improving model
performance during training. Incorporating this new momentum into ADAM (the ADAM
optimizer is a popular stochastic gradient descent technique in machine learning that
combines the benefits of RMSProp and AdaGrad to efficiently handle sparse gradients and
noisy problems) can improve ANIL training, as it also uses a gradient descent approach
with momentum. The objective of LaANIL’s training is to efficiently learn across diverse
tasks or domains quickly and effectively. This is typically achieved by developing a model
for task distribution and fine-tuning it for new, unfamiliar tasks. One can use Nesterov’s
momentum to improve the optimization techniques, and the new momentum modifies
the classical ADAM optimization process. Nesterov’s momentum method integrates a
“look-ahead” update rather than solely applying momentum to the current position, which
evaluates the gradient not at the current position but at the position modified by the
momentum term. We utilized the gradient analysis at this look-ahead position for LaANIL.
The idea behind this modification is that the optimizer can use the look-ahead momentum
to “peek ahead” and get a sense of where the weights are likely to move next. This can help
the optimizer to make a more informed decision about how to update the weights and can
lead to faster convergence and better performance for the given input [33]. The base model
can be optimized and adapted more efficiently with fewer iterations using this method.

The new momentum optimization method, combined with ADAM’s optimization,
can expedite convergence. Through the “look-ahead” technique in Nesterov’s ADAM
(NADAM) [34], overshoots during gradient updates in each replica of the original model
can be minimized. This technique is implemented in combination with data parallelism
(see Figures 3 and 4), adjusting the model parameters while taking into account the present
gradient. The resultant momentum can reduce unnecessary oscillations and achieve faster
global minima by skipping the local minima problem in comparison to the base model
using regular ADAM (refer to Figure 5a,b) by utilizing the current momentum to calculate
an intermediate “look-ahead” update; Nesterov’s momentum update modifies our model
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parameters based on the intermediate update [32]. Initially, ADAM’s parameter update
rule ignores the initial bias correction terms and can be represented in terms of the prior
momentum norm vectors and the current gradient update [32,35].

θt =θt−1 − η
µmt−1√

νnt−1 + (1− ν)g2
t + ε

−

η
(1− µ)gt√

νnt−1 + (1− ν)g2
t + ε

(3)

• Decay constant µ
• Momentum vector m
• Learning rate η
• Parameter set of LaANIL θ
• Velocity term ν
• Norm vector n

In modified NAG (Nesterov accelerated gradient), the cost function gradient f is
first taken before obtaining the gradient with the first part of the step (see Equation (3)).
However, the equation is not usable in conjunction with the NAG technique due to the
denominator’s dependence on gt. The difference between nt−1 and nt is typically very
small because ν is typically set to a high value [32,35]. To avoid a substantial loss of accuracy,
nt−1 can be substituted for nt.

θt = θt−1 − η
µmt−1√
nt−1 + ε

− η
(1− µ)gt√

νnt−1 + (1− ν)g2
t + ε

(4)

The Nesterov method can be used here because the first term in Equation (4) no
longer depends on gt. This leads to the following expressions for mt (Equation (5)) and θt
(Equation (6)).

mt = (1− µt)gt + µt+1mt (5)

θt = θ(t− 1)− η
mt√
νt + ε

(6)

The final task is to incorporate the initialization bias correction terms, with the un-
derstanding that gt derives from the current time-step and mt derives from the following
time-step. Consequently, the Nesterov accelerated adaptive moment estimation (NADAM)
algorithm takes the following form while updating the model weights throughout the
training process, as described in the vector diagram (refer to Figure 5b) for a more straight-
forward comprehension of the NADAM parameter update [32].

Nesterov momentum update (b) Momentum update (a) 

θt θt

Look ahead gradient step

g(θt)  

g (θt+ µvt)  θt+1 
θt+1 

Gradient step

Figure 5. In section (a), standard gradient update; in (b), Nesterov’s momentum achieves stronger
convergence by applying the velocity (νt) to the parameters to compute interim parameters (θ =

θt + µνt), where µ is the decay rate. These interim parameters are then used to compute the gradient,
called a “look-ahead” gradient step or a Nesterov accelerated gradient.
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The Nesterov accelerated gradient can act as a corrective factor for the momentum
method. If velocity is added to the parameters, it can lead to undesired results like an
abrupt and high loss [36], for instance, in an inflating gradient example. In this case,
the momentum approach may be quite slow since the optimization path chosen displays
significant oscillations [32]. When utilizing the Nesterov accelerated gradient, it is akin to
previewing the parameters ahead of time to gauge where the additional velocity will lead
them. If the velocity update leads to a subpar loss, the gradients will compel the update
to revert to θt. This prevents oscillations through the Nesterov accelerated gradient [35].
When the learning rate η is sufficiently large, Nesterov accelerated gradients enable a
greater decay rate µ than the momentum method, all while preventing oscillations [37].

4. Experiment Setup

Typical meta-few-shot classification problems are divided into two parts: meta-
training [17] and meta-testing (see Figure 6). During the meta-training stage, a large
enough annotated data set is provided, which is used to train a prediction model. And,
during meta-testing, novel categories and a few annotated instances evaluate the prediction
model’s ability to retrain (or adapt) and then generalize on these new classes. Meta-learning
algorithms often take a meta-few-shot learning classification job from the meta-training
dataset and train a model to generalize a new task left out (Algorithms 1 and 2). For
example, in a good network initialization, a modest number of gradient steps on a new
problem is sufficient to produce a satisfactory solution [19,38].

Algorithm 1 LaANIL ANIL with Look-Ahead Meta-Optimization and Data Parallelism [3]

Require: p(τ): distribution over tasks
Require: α, β: step-size hyperparameters
Require: ν, η velocity parameter and learning rate

1: Randomly initialize model parameters θ on all workers
2: Initialize velocity parameters ν on all workers
3: while not done do
4: Sample batch of tasks τi ∼ p(τ) (i = 0, 1, 2 · · · n)
5: for all τi do
6: for each epoch do
7: for each worker j ∈ {1, 2, · · · , N} in parallel do
8: Input: Learning rate η, momentum parameter µ, batch size τi, number

of workers N, training data from K sample points is D={(x(ij), y(ij))}N
i=1 from τi where

(i = 0, 1, 2 · · · n)
9: Sample a mini-batch of size D: = {(x(ij), y(ij))}N

j=1 from τi where (i = 0, 1,
2 · · · n)

10: Compute ∇θ Lτi ( fθ) corresponding to mini-batches from K examples
(batches are made by data parallelism and the loss (L is from Equations (1) and (2)).

11: Synchronize model parameters across all workers
12: Update velocity: νj ← µνj − η∇θ L(θ, τij)
13: end for
14: Compute adapted parameters with look-ahead gradient descent with respect

to each mini-batch and overall updated parameters: θ
′
ij = θ − α∇θ Lτij( fθ)

15: Sample another mini-batch of samples for meta update D
′
: = {(x(ij), y(ij))}N

j=1
from τi where (i = 0, 1, 2 · · · n)

16: end for
17: end for
18: Update θ← θ− β∇θ ∑τi∼p(τ) Lτi( f

θi
′ ) using each D

′
and L from Equations (1) and (2)

19: end while
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Algorithm 2 MAML with almost no inner loop (ANIL) [3]

Require: p(τ): distribution over tasks
Require: α, β: step-size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks τi ∼ p(τ)
4: for all τi do
5: Sample from K datapoints D = {x(j), y(j)} from τi
6: Evaluate ∇θ Lτi ( fθ) using D and Lτi in Equations (1) and (2)
7: Compute adapted parameters with gradient descent:
8: θi

′
= θ − α∇θ Lτi ( fθ)

9: Sample data points Di
′

= {x(j), y(j)} from τi for the meta-update
10: end for
11: Update θ ← θ − β∇θ ∑τi∼p(τ) Lτi ( f

θi
′ ) using each Di

′
, Lτi and (L in Equations (1)

and (2))
12: end while

Figure 6. An example of 4-shot 2-way classification data split (images are from GitHub—https://uv
adlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial16/Meta_Learning.html, ac-
cessed on 1 July 2023). For each class, we have 4 images, and we have to classify 2 types of images
each time.

4.1. Datasets and Pre-Processing

In terms of data preparation and processing for commonly used meta-few-shot learn-
ing experiment datasets, namely, FC100 —https://learn2learn.net/docs/learn2learn.visio
n/#learn2learn.vision.datasets.fc100.FC100 (accessed on 15 March 2023), CIFAR-FS—https:
//learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.cifarfs.CIFARFS
(accessed on 15 May 2023), Mini-ImageNet—https://learn2learn.net/docs/learn2learn
.vision/#learn2learn.vision.datasets.mini_imagenet.MiniImagenet (accessed on 15 May
2023), CUBirds-200-2011—https://learn2learn.net/docs/learn2learn.vision/#learn2lea
rn.vision.datasets.cu_birds200.CUBirds200 (accessed on 10 August 2023), and Tiered-
ImageNet—https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets
.tiered_imagenet.TieredImagenet (accessed on 10 August 2023), these datasets are com-
monly used in computer vision for few-shot learning to evaluate and compare the perfor-
mance of different machine learning algorithms. Each dataset has unique characteristics
and challenges, allowing researchers to assess the generalization of their models across
different domains and tasks. The datasets were selected based on their varying levels
of complexity and diversity in the represented tasks. For instance, Mini-ImageNet is a
frequently used dataset for few-shot image classification, while CUBirds-200-2011 presents
a more challenging task with fine-grained categorization. Tiered-ImageNet presents a
hierarchical classification challenge. After acquiring the mentioned datasets, they are sepa-

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial16/Meta_Learning.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial16/Meta_Learning.html
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.fc100.FC100
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.fc100.FC100
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.cifarfs.CIFARFS
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.cifarfs.CIFARFS
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.mini_imagenet.MiniImagenet
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.mini_imagenet.MiniImagenet
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.cu_birds200.CUBirds200
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.cu_birds200.CUBirds200
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.tiered_imagenet.TieredImagenet
https://learn2learn.net/docs/learn2learn.vision/#learn2learn.vision.datasets.tiered_imagenet.TieredImagenet
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rated into meta-train, meta-validation, and meta-test sets. Typically, the dataset creators
pre-define these splits.

Concerning image transformations, we resized the images to a fixed size and converted
them into a tensor format that suits the model input. Furthermore, we augmented the
images by randomly transforming them through rotation, scaling, and flipping. This
process aids the model in generalizing to new tasks. The images were normalized by
subtracting the mean and dividing by the standard deviation of the pixel values to attain
faster convergence. During training, the impact of skewness on data is crucial for precise
analysis and interpretation. Moreover, skewed data can distort the mean and correlation
strength, affecting the reliability of statistical analyses and data modeling. It can also
undermine the validity of statistical tests that assume a normal distribution, leading to
biased results. In machine learning, skewed data may bias the model towards the majority
class, affecting its predictive effectiveness for the minority class. Hence, it is essential
to evaluate the distribution shape and implement accurate measures of central tendency
relevant to the data’s skewness with respect to mean, mode, and median (see Figure 7). A
normal data distribution is essential for reliable data analysis because it validates statistical
tests and facilitates probability calculations and predictions. A normal distribution enables
precise calculation of central tendency indicators and identification of outliers. After
cleaning, the data were structured into episodes, as outlined in the experimental procedure.

We can see an example of the generation of meta-learning tasks in Figure 6, which
shows short examples of different learning domains [19,38].
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Figure 7. Mean, mode and median distribution and skewness. (a) Left-skewed, (b) Normal distribu-
tion, (c) Right-Skewed.

4.2. Model Configuration

We employed the CNN4 [39] architecture as the fundamental network for extracting
features, with its filter sizes ranging from 32 to 64 depending on the dataset being analyzed.
We utilized embedding sizes of 64 × 4 and 128 × 4, taking into account the input image
sizes. The CNN4 backbone network is a deep learning architecture that performs fewer
computations while extracting data from images compared to other backbone networks.
It is designed for processing visual data, specifically for tasks such as image recognition,
object detection, and image classification. It extracts intricate features from images through
multiple layers of convolutional operations. This backbone network has been widely used
in various computer vision applications due to its efficiency in analyzing complex visual
patterns. The architecture of CNN4 enables it to learn hierarchical representations of visual
data, making it well-suited for tasks that require understanding and interpreting images.
CNN4’s specialty lies in its ability to extract and understand visual features, making it an
important component in many state-of-the-art visual recognition systems.

To optimize LaANIL, it is necessary to adjust the meta-learning rate and adaptation
learning rate, and thus, we used a meta-learning rate of 0.009 and an adaptation learning
rate of 0.108. These values were obtained through a fine-tuning procedure that we per-
formed with Ray Tune (an effective hyperparameter tuning library). The updated model
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incorporated data parallelism into the data pipeline and applied Nesterov’s momentum for
efficient gradient calculations in ADAM.

The experimental procedure we followed for meta-few-shot learning using LaANIL—
https://github.com/VasuTammisetti/LaANIL_Experimentation (accessed on 1 January
2024)—can be summarized as follows:

• Install the required libraries, including torch, numpy, random, and l2l, among others.
• Set up the datasets: FC100 CIFAR-FS, Mini-ImageNet, CUBirds-200-2011, and Tiered-

ImageNet are downloaded and separated into train, validation, and test datasets using
l2l.vision.datasets module.

• Define the model: Create LaANIL by using l2l.vision.models.CNN4 from the l2l
library. Set the output size to the number of ways and hidden size, embedding size,
and number of layers to the desired values.

• Define the head of the model using l2l.algorithms.MAML and define the learning
rate to fast-lr.

• Define the optimization using torch.optim.NAdam. Set the parameters in the model
and the learning rate to meta-lr.

• Train the model by iterating over the number of tasks in meta-bsz (batch size) and
computing the meta-training, meta-validation, and meta-testing loss and accuracy.
Use the fast-adapt function to adapt the model to the current task.

• Compute the gradients and optimize the model by averaging the accumulated gradi-
ents and calling optimizer.step().

• Evaluate the model by printing the metrics for each iteration in the outer loop.
• Finally, assess LaANIL with different back bones on the meta-test set by randomly

selecting tasks and calculating the average and validation accuracy for all mentioned
datasets [40].

Experiments are available in a Github repository—https://github.com/VasuTammi
setti/LaANIL_Experimentation (accessed on 1 January 2024).

5. Results and Discussion

LaANIL is our novel method for meta-few-shot learning that uses cognitive concepts
(by including Nesterov’s momentum and using data parallelism) with the aim of improving
ANIL’s performance. In this section, we studied its variance, generalization, and adaptation
on several datasets. The main findings are that LaANIL achieves lower variance, better
generalization, and quicker adaption in meta-few-shot learning than ANIL.

5.1. Rapid Adaptation

The rapid adaptability of LaANIL, as shown in Figures 8a,c,e and 9a,c, is an advanta-
geous aspect of our model compared to other models (see Tables 1, 5 and 6). The limited
availability of labeled data often impedes meta-few-shot learning, yet LaANIL’s ability
to adapt effectively is evident from the test accuracy results in Figures 8a,c,e and 9c and
Tables 1–4). The model’s adapting capability to new tasks compared to the base and
other models mentioned in Tables 1, 5 and 6 can enhance its effectiveness in dynamic
environments with frequent task changes.

This rapid adaptation is due to the parallel input processing and Nesterov’s mo-
mentum with adaptable learning rate capability. These methods allow the model to
effectively utilize the information provided in the support set, thus diminishing the
need for extensive data and computation. Nesterov’s momentum expedites the model’s
convergence during training, further accelerating the adaptation process. In practical
terms, LaANIL proves useful in rapidly developing and evolving scenarios, such as
autonomous driving and computer vision endeavors for classification tasks. LaANIL’s
ability to adapt quickly to new circumstances is a valuable asset for real-time decision-
making compared to other models.

https://github.com/VasuTammisetti/LaANIL_Experimentation
https://github.com/VasuTammisetti/LaANIL_Experimentation
https://github.com/VasuTammisetti/LaANIL_Experimentation
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Table 1. Meta-few-shot image classification of ANIL vs. LaANIL for 1-way 1-shot (no variance
observed in results for 1-way 1-shot classification).

Sno Dataset Base Model Validation
Accuracy (ANIL)

Our Model Validation
Accuracy (LaANIL)

1 FC-100% 95% 98%

2 CIFAR-FS 93% 95%

3 Mini-ImageNet 96% 99%

4 CUBirds-200-2011 95% 99%

5 Tiered-ImageNet 98% 99%

Table 2. Meta-few-shot image classification of ANIL vs. LaANIL for 2-way 2-shot.

Sno Dataset
Base Model
Validation

Accuracy (ANIL)

Our Model
LaANIL

Validation
Accuracy

Varience
ANIL

Varience
LaANIL

1 FC-100 71% 78% 21 ± 3% 6 ± 1%

2 CIFAR-FS 63% 68% 21.6 ± 3% 5 ± 1%

3 Mini-ImageNet 65% 72% 20 ± 2% 5 ± 1%

4 CUBirds-200-2011 66% 74% 23 ± 2% 7 ± 1%

5 Tiered-ImageNet 64% 73% 25 ± 4% 8 ± 1%

Table 3. Meta-few-shot image classification of ANIL vs. LaANIL for 5-way 5-shot.

Sno Dataset
Base Model
Validation

Accuracy (ANIL)

Our Model
LaANIL

Validation
Accuracy

Varience
ANIL

Varience
LaANIL

1 FC-100 47% 52% 15 ± 1% 4 ± 0.7%

2 CIFAR-FS 58% 62% 13 ± 1.5% 4 ± 0.8%

3 Mini-ImageNet 59% 63% 14 ± 1% 3 ± 0.5%

4 CUBirds-200-2011 58% 63% 13 ± 1% 5 ± 0.9%

5 Tiered-ImageNet 63% 66% 15 ± 1.5% 6 ± 1%

Table 4. Meta-few-shot image classification of ANIL vs. LaANIL for 2-way 10-shot.

Sno Dataset
Base Model
Validation

Accuracy (ANIL)

Our Model
LaANIL

Validation
Accuracy

Varience
ANIL

Varience
LaANIL

1 FC-100 68% 72% 6 ± 0.5% 2 ± 0.4%

2 CIFAR-FS 64% 70% 4.6 ± 3% 2 ± 0.5%

3 Mini-ImageNet 63% 69% 7 ± 0.8% 3 ± 0.5%

4 CUBirds-200-2011 66% 73% 8 ± 1% 2 ± 0.6%

5 Tiered-ImageNet 68% 72% 8 ± 1% 2.5 ± 0.7%
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Table 5. Meta-few-shot image classification of different models and backbones on 5-way 5-shot.

Dataset Model Back Bone Test
Accuracy

Validation
Accuracy

Varience
(Validation)

mini
ImageNet

(5W5S)

ANIL

VGG 61.7 ± 1.77% 59.3 ± 2.27% ±17.5%

CNN4 62.7 ± 1.87% 59.0 ± 1.97% ±14.5

ResNet12 62.7 ± 0.87% 59.3 ± 1.57% ±15.7%

MAML

VGG 61.2 ± 1.1% 58.3 ± 2.17% ±17.5%

CNN4 62.8 ± 1.87% 60.0 ± 1.35% ±13.3%

ResNet12 63.16 ± 0.47% 60.5 ± 1.27% ±15.2%

ProtoNet

VGG 61.5 ± 1.1% 59.3 ± 2.17% ±14.5%

CNN4 62.0 ± 2.57% 60.0 ± 1.37% ±13.8%

ResNet12 63.5 ± 0.77% 61.3 ± 1.57% ±18.1%

LaANIL

VGG 62.5 ± 1.27% 62.3 ± 1.77% ±6.5%

CNN4 65.2 ± 0.57% 64.3 ± .67% ±3.8%

ResNet12 64.8 ± 0.87% 63.3 ± 1.17% ±5.5%

Table 6. Meta-few-shot image classification of different models and backbones for 2-way 2-shot.

Dataset Model Back Bone Test
Accuracy

Validation
Accuracy

Varience
(Validation)

Tiered
ImageNet

(2W2S)

ANIL

VGG 73.7 ± 1.77% 68.3 ± 1.2% ±22.1

CNN4 77.7 ± 1.87% 71.0 ± 1.37% ±21.5%

ResNet12 78.7 ± 0.87% 70.3 ± 1.27% ±21.7%

MAML

VGG 80.2 ± 1.1% 70.3 ± 2.17% ±30.5%

CNN4 82.8 ± 1.87% 73.0 ± 1.25% ±28.3%

ResNet12 83 ± 1.47% 74.5 ± 1.27% ±33.2%

ProtoNet

VGG 79.5 ± 1.13% 72 ± 2.17% ±28.5%

CNN4 82.0 ± 1.57% 71.0 ± 1.37% ±23.8

ResNet12 82.5 ± 0.77% 70.5 ± 1.57% ±21.1%

LaANIL

VGG 80.5 ± 0.87% 74.3 ± 1.16% ±7.5%

CNN4 84.2 ± 0.57% 78.3 ±0.67% ±6.1%

ResNet12 84.8 ± 1.27% 73.6 ± 1.17% ±7.7%
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Figure 8. Some results of LaANIL vs. ANIL on FC100 data set. Parts (a,c,e) of the image show the
results of the new model, and Parts (b,d,f) of the image show the results of the base model.
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Figure 9. Some results of LaANIL vs. ANIL on CIFASFS data. Parts (a,c) of the image show the
results of the new model, and Parts (b,d) of the image show the results of the base model set.
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5.2. Better Generalization

These experiments yield improved model generalization, a crucial aspect of ma-
chine learning, whereby our model demonstrates proficiency in performing well on unob-
served data relative to the other models like MAML, ProtoNet, and base-model ANIL (see
Tables 5 and 6).

The enhanced generalization observed in LaANIL (see the validation accuracy re-
sults in Figures 8a,c,e and 9c) is a product of incorporating new methods into the base
model. These methods allow the model to focus on relevant information in the support set,
leading to improved generalization for new tasks. Additionally, incorporating Nesterov
momentum and L2 regularization improves loss calculation. It helps refine the model’s
weights through Nesterov’s momentum gradient descent while training and makes training
more challenging for the model rather than just memorizing the data to avoid overfitting,
resulting in enhanced generalization of the proposed model compared to different models
with varying backbones (see Tables 5 and 6). These findings are significant because they
suggest that LaANIL has great potential to excel in scenarios where adaptation to unfa-
miliar categories is necessary. This is a critical aspect across various fields, such as image
recognition and natural language processing, where the capacity to learn from a limited
number of examples is important.

5.3. Low Variance

One notable result of LaANIL was the model’s minimal observed variance in perfor-
mance in relation to MAML, ProtoNet, and base-model ANIL, as reported in the validation
and test accuracy results of LaANIL vs. ANIL and other models in Figures 8 and 9 and
Tables 2–6.

In machine learning, variance refers to the fluctuations in prediction accuracy across
multiple training runs or data splits. In the context of meta-few-shot learning, low vari-
ance is a crucial indicator of model stability. When a model exhibits low variance, it
performs consistently well across various meta-few-shot tasks and data distributions. The
implementation of Nesterov’s momentum and data parallelism in LaANIL has resulted in
reduced variance and a more stable training process, providing significant advantages in
real-world applications where consistent performance is essential. We can rely on LaANIL
to consistently achieve high accuracy in meta-few-shot learning tasks. This is particularly
advantageous in scenarios with constrained or rapidly changing data.

The differences in performance between our LaANIL model and the earlier model are
illustrated in the graphs and tables presented. Notably, our model delivers exceptionally
precise predictions with minimal variance [41], a vital characteristic in the field of meta-
learning. These findings demonstrate the effectiveness of our methodology in overcoming
obstacles associated with meta-few-shot learning in comparison to other models mentioned
in this work and demonstrate its potential for broader application in the field. Our method
enables models to learn from a small number of examples by optimizing their initial pa-
rameters for faster adaptation. The overall efficiency of the model is established against the
base-model ANIL and others through validation on major meta-few-shot learning datasets,
including FC100 CIFAR-FS, Mini-ImageNet, CUBirds-200-2011, and Tiered-ImageNet. Our
approach empowers models to quickly adapt to new tasks with limited data, enhancing
their ability to apply knowledge gained from prior experiences to novel scenarios, a crucial
objective in modern machine learning research.

Overall, data parallelism and Nesterov’s momentum lead to improved regularization,
generalization, and faster convergence of our model compared to the ANIL base model.
Data parallelism increases diversity by training model copies on various data subsets, while
Nesterov’s momentum modifies the momentum term for optimal gradient updates and
optimization.
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5.4. Edge Compatibility of New Model

Our model performed effectively on edge devices with restricted resources, such as
Jetson Nano and Raspberry Pi, during training and testing on the mentioned datasets.
As far as we know, ours is the first LaANIL and ANIL implementation on edge devices
(see Figure 10). Data parallelism in LaANIL allows edge devices to divide training data
proficiently, improving the pace of training and generalization ability (refer to Section 3 and
Figures 3 and 4) of the new model compared to MAML, ProtoNet, and base-model ANIL
tested in this work. Our model worked well on edge devices with a minimum of 2GB RAM
with or without GPU support. Moreover, Nesterov’s momentum enhances robustness,
generalization, and convergence speed, all of which are imperative for the attainment of
successful meta-few-shot learning on restrained edge devices [42]. The combination of
these techniques can immensely benefit edge devices in overcoming meta-few-shot learning
obstacles.
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Figure 10. LaANIL’s performance on Jetson Nano (2w2s).

5.5. Ablation Studies

The model’s ability was studied using different combinations of new optimizer and
data parallelism with two different backbones: CNN4 (our choice) and ResNet12. The re-
sults are shown in Figure 11. We primarily verified the model on its variance and validation
accuracy, which are indications of rapid adaptability of the model essential in meta-few-
shot learning. From the ablation studies (Figure 11), we observed low accuracy and high
variance in all cases when Nesterov’s momentum and data parallelism were excluded.
However, when we gradually introduced new methods, there was an improvement in vali-
dation accuracy and a reduction in variance. High variance can lead to low confidence in
predictions. Based on Figure 11, it can be concluded that our proposal effectively addresses
the issues of the base model. Furthermore, our new methods have been shown to work
effectively on different models with varying backbone feature extractors.
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Figure 11. Ablation studies of LaANIL with divergent combinations of different modules and
backbones (a,b) with CNN4 as a backbone on FC100 data and (c,d) with ResNet12 as a backbone on
Mini-imageNet.

6. Conclusions

Meta-few-shot image classification, a task within the field of meta-learning, holds signifi-
cant promise in enabling machines to quickly master complex tasks with minimal data. This
approach reduces the need for the laborious data gathering necessary for model development.
ANIL is a meta-learning algorithm that features a streamlined architecture and inherent com-
putational advantages over MAML, yet it encounters substantial challenges in flexibility and
generalization, including the handling of diverse data types, the adaptation to new scenarios
with limited data, and the transfer of knowledge across domains.

In this work, we introduced LaANIL, an updated algorithmic approach aimed at
overcoming deficiencies and increasing the effectiveness of ANIL in real-world scenar-
ios. By reorganizing ANIL’s internal architecture, integrating parallel computing tech-
niques, and incorporating Nesterov’s momentum for optimized look-ahead gradient cal-
culations, this stabilization technique amplifies the model’s ability to adapt quickly in
dynamic environments.

LaANIL has been evaluated on a variety of meta-few-shot learning benchmark datasets,
including FC100 CIFAR-FS, Mini-ImageNet, CUBirds-200-2011, and Tiered-ImageNet.

More generally, this study presented recent meta-learning advancements as a means of
reducing the vast disparity between human and machine learning speeds while addressing
conventional deep learning limitations. Notably, the results show positive performance
in meta-few-shot classification utilizing just one to ten examples per category. However,
as the number of categories increases, the model experiences issues such as high loss and
low accuracy. Additionally, the training effectiveness of LaANIL heavily relies on the
selection of meta-features and hyperparameters, which can be challenging to determine
within a limited time frame. Utilizing inventive and efficient approaches for selecting
and optimizing hyperparameters could improve LaANIL’s learning efficiency, making
it more appropriate for real-world applications such as object detection. Additionally,
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enhancing the efficiency of loss functions and hybrid optimization algorithms with an
ensemble strategy has the potential to enhance classification accuracy and decrease the
computational requirements during LaANIL’s training.
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