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Abstract: The emergence of integrated positioning, communication, and sensing technologies
has paved the way for a surge in connected and autonomous vehicles. The control system has
been successful in reliable and fast transmission. However, practical applications face security
risks, especially data tampering and spoofing attacks. To improve the resilience of the system
against potential attacks, we attempt to leverage a generative adversarial network learning-assisted
authentication framework (GAF). In addition to proposing a new method for validating vehicles,
we also introduce a new architectural innovation in the generator–discriminator pair to achieve
improved results. The generator sub-network is constructed using an advanced convolutional neural
network, whereas the discriminator is designed to leverage global and local information to determine
whether a signal is real or fake. On this basis, we propose a signal enhancement-based authentication
method, a deep convolutional generative adversarial network (DCGAN). Experimental results using
the National Institute of Standards and Technology (NIST) dataset show that the proposed method is
effective in denoising and improving the detection performance.

Keywords: connected and autonomous vehicles; wireless communication; artificial intelligence;
privacy security protection; generative adversarial networks

1. Introduction

Integrated positioning, communication, and sensing (IPCS) technologieshave garnered
significant interest from both academia and industry for various applications such as
connected and autonomous vehicles [1–3]. The communication methods in the control
systems of connected and autonomous vehicles are essential to fulfill the requirements of
these exciting applications, including high data rates, exceptional reliability, and intelligent
solutions [4–6]. The movement of target vehicles in a wireless transmission signal coverage
area leads to changes in signal reflection characteristics. These changes affect the properties
of the received signal like the channel impulse response (CIR), carrier frequency offset
(CFO), received signal strength index (RSSI), and angle of arrival (AoA). Then, 5G wireless
networks are advantageous for sensing tasks due to their widespread deployment [7,8].
The proposed IPCS solution analyzes and processes sensed information from the control
system. This extensive information needs access to the Vehicle-to-Everything (V2X) network
through collaboration with other vehicles. Artificial intelligence disciplines like deep
learning (DL) train models to provide intelligent applications by deriving insights from
data collected by autonomous driving devices [9,10].

1.1. Prior Art and Motivation

Figure 1 illustrates a connected automated driving scenario using the IPCS system,
where 5G signals provide positioning, communication, and sensing functions. The IPCS
system serves as an intelligent platform with numerous connected and autonomous
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vehicles [11]. However, these devices and terminals in autonomous driving are vulnerable
to malicious attacks exploiting security weaknesses in the wireless network [12–14]. Attack-
ers can send harmful data to the control system, jeopardizing legitimate operations and
vehicle communication. For instance, unauthorized devices can execute clone node attacks
in unsupervised autonomous driving networks. The attacker seizes control of a vehicle,
obtains its ID, key, and confidential data, and then deploys numerous cloned vehicles in the
communication environment, posing security risks by gathering sensitive information. As
the control center may struggle to differentiate these fraudulent vehicles, the compromised
IPCS network could lead to severe safety incidents and financial losses.

V2I link 5G BS

5G signals

V2V link
5G BS

Multi-base station
cooperative positioning

Wireless signals

Position 
information

Sensing
information

Connected and autonomous 
vehicles

Figure 1. A scenario for autonomous driving application.

Traditional cryptographic methods suffer from delays and computational complexity
unsuitable for connected and autonomous vehicles [15,16]. Given the dynamic wireless
communication environment, ensuring the security authentication of autonomous vehicles
is crucial. In [17,18], an identity authentication system using unique spatial and temporal
fingerprints was developed. Although these systems offer benefits like quick and efficient
authentication, models trained on real-world data may lack robustness. Furthermore, to
enhance the detection performance, an adaptive trust management strategy was proposed
in [18]. The adjustment algorithm is based on the difference between previous and new
estimates. In control systems for connected and autonomous vehicles, channel attributes can
change dynamically over time, making it challenging to predict time-varying characteristics.

Deep learning has proven to be effective in creating more precise models. Many
research studies have focused on identity authentication using learning models, such as the
Gaussian mixture model [19,20], long short-term memory [21], reinforcement learning [22],
transfer learning [23], and convolutional neural networks. Moreover, an extreme machine
learning-based method was proposed in [24], and a pseudo-adversary model was assumed
to generate training data. A group of classifiers is used for security authentication between
authorized and unauthorized devices in the IPCS network [25,26]. In [27,28], different
learning-assisted authentication algorithms based on multiple features were used to offer
various levels of authorization. The algorithms in [29] were designed to meet diverse
security needs by incorporating a set of appropriate features. However, many studies
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on model learning frameworks have concentrated on combining multi-dimensional fea-
tures [30]. Learning models for device certification offer improved security compared
to statistical methods, but the quality of training data impacts their performance [31,32].
Another motivation for using machine learning is to handle large volumes of intricate data.
The intricate IPCS network results in a high false alarm rate for security authentication [33].
Some research has utilized a linear first-order autoregression approach to model wireless
channels [34,35]. Although they have obvious advantages including low overhead and low
latency, most one-time authentication schemes are static in time [36]. Some efforts have
been made to predict estimates for selecting channel attributes. An authenticator is used to
monitor and save extracted features [37,38]. In previous research [39,40], a data-adaptive
matrix in a deep learning structure was suggested for tracking changing attributes over
time. This creates an adaptive authenticator that can choose smart devices automatically.
However, security schemes may suffer from errors in channel estimation and noise interfer-
ence, impacting their performance. Authentication accuracy may decrease significantly if
channel estimation errors and Gaussian noise are included during classifier training [41,42].
Enhancing immunity against environmental noise is crucial for security authentication in
connected and autonomous vehicle control systems. Signal enhancement technology is
essential in complex IPCS networks to enhance security effectiveness.

1.2. Novelty and Contribution

To overcome these challenges, using adversarial networks for signal enhancement is
helpful for improving communication security in IPCS networks. We aimed to leverage the
generative modeling capabilities of adversarial networks. Generative adversarial network
(GAN) algorithms have been successful in visual tasks such as image generation and image
super-resolution [43]. The generator acts as a mapping function to transform the input
channel estimation into an enhanced signal. However, traditional GAN approaches are
not stable to train, and doing so may introduce artifacts [44,45]. To address this issue,
we introduced a new generator–discriminator pair to assist the proposed network. The
generative adversarial network learning-assisted authentication framework (GAF) provides
a practical security approach without the use of any additional preprocessing. Incorporating
noisy wireless signals enhances the strength of the generator and discriminator, improving
the denoising effect of the GAF model. In summary, the GAF algorithm enhances signals
and authentication decisions in IPCS networks. The contributions of this paper are outlined
as follows:

• An authentication framework using generative adversarial networks is introduced for
IPCS systems, featuring a verification mechanism to identify potential pseudo-attack
devices.

• An improved signal enhancement network is constructed using an advanced convolu-
tional neural network, which is designed for denoising tasks.

• Extensive experiments were conducted on publicly available datasets to demonstrate
the effectiveness of the proposed method in terms of denoising quality and authenti-
cation performance.

• Lastly, the effectiveness of the proposed method was demonstrated on the National
Institute of Standards and Technology (NIST) dataset [46]. The superiority of the GAF
scheme over existing methods was demonstrated.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 elaborates on the system
model, with a focus on the attack model. We present the design of the GAF framework for
the IPCS system in Section 3. This is followed by presenting the experimental verification
in Section 4. Finally, Section 5 concludes this work.
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2. Attack Model

Figure 1 illustrates the IPCS system, comprising ND independent vehicle devices, 5G
base stations, and collaborative intelligent transportation infrastructures. Each IPCS device
includes a wireless intelligent sensor for transmitting and receiving radio signals, used
for positioning, sensing, and communication. In each IPCS network, there is a control
center, and autonomous vehicles handle local data collection and upload tasks. Each
vehicle device is linked to an authentication node, and the central system must identify
all connected devices to facilitate communication and data updates with local nodes. In
Figure 1, we consider a potential spoofing attack scenario. The security performance of the
control system depends on the trusted identity of the connected vehicle. However, several
factors affect the control system in real-world wireless environments, which may stem from
connected vehicles involved in authentication or external spoofing attack sources. These
factors, through eavesdropping and disguising legitimate vehicles, prevent the authenti-
cation model from correctly fulfilling the purpose of the classification and identification
tasks [24,40].

For connected and autonomous vehicles, the wireless signal is affected by the dynamic
activity of the vehicle, resulting in multipath signal superposition, and these dynamic
changes can be used for identity authentication. The dynamic wireless communication
link between the transmitter and control system can be described using channel state
information. However, in some cases, there may be malicious or damaged vehicles, espe-
cially when the number of participants increases, and potentially malicious and damaged
vehicles are more likely to be present. These connected and autonomous cars generate false
labels or insert false data, affecting the authentication model. In taking the neural network
algorithm [47] as a reference, its weight update can be expressed as

Wglobal =
I

∑
i=1

αiwi,local (1)

where αi is the proportion of the local training set of vehicle i to the total dataset, and
wi denotes the weight of the unattacked vehicle. The effect of the fake dataset on the
authentication model mainly depends on the number of malicious vehicles k involved in
the aggregation and the proportion of the respective amount of tampered data αi. According
to Equation (1), when the amount of tampered data αi is small, the spoofing attack has the
least impact on the authentication model, but with an increase in the number of pseudo-
attack vehicles, the pollution degree of the authentication model will be greatly increased.
Therefore, security authentication is essential for IPCS systems.

3. Materials and Methods
3.1. Overall Design

Figure 2 shows the structure of the GAF method. The proposed network consists of
two sub-networks serving different purposes. The generator sub-network is shown in the
top part in Figure 2. Its main goal is to synthesize a denoised signal. The discriminator
sub-network shown in the bottom part in Figure 2 serves to distinguish “fake” channel
information from the “real” channel information. The GAF algorithm involves inputting
NIST data samples into the generator, which produces pseudo signals resembling the
original signal. The discriminator then compares the generated signal with the real wireless
signal and provides feedback to the generator. Through this feedback loop, the generator
adjusts its network structure and parameters to enhance the signal. The GAF scheme
uses the model output to identify devices with different identities, completing identity
verification tasks and detecting potential attacks.
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Figure 2. The structure of proposed GAF algorithm.

3.2. Internal Structure of Neural Network Based on NRCT-4CRD

In current neural network structures, both the maximum pooling layer and the uni-
form pooling layer present distinct issues [37]. For instance, in enhancing wireless signal
denoising, the maximum pooling layer filters the signal to retain valuable features but may
lose most signal details irreversibly. On the other hand, the uniform pooling layer can lead
to the loss of signal differences during processing, potentially causing distortion in signal
restoration and reducing the quality of wireless signals [40,48].

To address these challenges, it is essential to preserve various features and key points
in wireless signals. The proposed deep convolutional structure reduces the number of
pooling layers in the neural network model and maintains performance through a new
hierarchical combination structure. We introduced two special constructions. A generator
sub-network consisting of a normalization module, ReLU activation, a convolutional
layer, and Tanh activation is defined as an NRCT. A discriminator sub-network consisting
of four convolutional layers, ReLU activation, and dropout layers is defined as 4CRD.
The functionality of the pooling layer is replaced by the convolutional layer, reducing
performance loss. This substitution is actually achieved through a convolutional pooling
operation, where each input signal in the receptive field of each unit in the convolutional
layer receives all the information from the previous neural unit, and the weight of each input
feature signal is trained through the learning process, resulting in a more effective feature
filtering scheme compared to the pooling layer. The difference between convolutional
pooling layers and general convolutional layers is that the dimensions of the output
features and input features are consistent. The internal structure of a neural network based
on the NRCT-4CRD structure alleviates the impact of pooling layers on wireless signals in
convolutional neural networks.
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3.3. Improved DCGAN-Based Signal Enhancement Process

The signal enhancement algorithm based on traditional generative adversarial net-
works has problems such as unstable training process and the easy collapse of generation
modes. In order to improve the security performance and stability of identity authentica-
tion schemes, a deep convolutional (DC) network based on the NRCT-4CRD structure is
introduced into the GAF algorithm. Compared with traditional networks, the NRCT-4CRD
structure has the advantage of higher information utilization and improves the denoising
effect of channel estimation values.

Figure 3 shows the process of signal enhancement technology based on an improved
DC-based generative adversarial network algorithm (DCGAN). The reconstructed NRCT-
4CRD structure can be used to enhance the feature dimension of channel estimation
collected in real wireless scenes, so as to ensure that the GAN can obtain the signal feature
information well. As shown in Figure 3, the improved DCGAN algorithm consists of two
stages: training and enhancement. G is the abbreviation for “Generator”, indicating a
signal generation network. D is the abbreviation for “Discriminator”, representing a signal
discriminator network. Note that the plus sign “+” is not a mathematical addition. In
the GAF scheme, the plus sign “+” indicates a connection. Consistent with traditional
adversarial generative networks, the training process of the improved DCGAN algorithm
greatly reduces the losses of the generator and discriminator, thereby achieving accurate
updates of model parameters. After the model training is completed, the improved DC-
GAN algorithm completes the signal enhancement process based on the generator (i.e.,
enhancement stage). For the discriminator network, the mathematical expression of the
objective function is as follows:

Figure 3. The process of improved CNN-GAN-based signal enhancement.
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minV(D) =
1
2

Ex,xc−Pdata(x,xc)[(D(x, xc)− 1)2] +
1
2

Ez−pz(z),xc−Pdata(xc)[D(G(z, xc), xc)
2] (2)

For the generator network, the mathematical expression of the objective function can
be denoted as

min V(G) =
1
2

Ez−pz(z),xc∼Pdata(xc)[(D(G(z, xc), xc)− 1)2] + λ∥G(z, xc)− x∥1 (3)

where x indicates the clean wireless signal, z represents noise, xc denotes a noisy wireless
signal, λ is a hyperparameter that controls the weight of the generated loss, E stands for
expectation, and ∥.∥1represents the 1-norm.

4. Numerical Results and Discussion
4.1. Experiment Setup

As shown in Figure 4, a typical multi-acre transmission assembly factory of the
automotive industry was selected for radio frequency propagation measurements. To
create a security authentication dataset and simulate malicious attack scenarios, we used
the channel information dataset provided by the NIST in the automotive factory [46]. The
floor size of the automotive factory is more than 167.4 m × 122.8 m. The ceiling is about
12 m high. In this scenario, we assume that the attacker captures and impersonates a
legitimate vehicle, deploying multiple cloned nodes in different locations. The receiver in
the automotive industry aims to identify malicious nodes. The parameter configuration of
the channel measurement system includes the center frequency, antenna, and power.

Figure 4. The layout of NIST data collection experimental scene.

4.2. Parameter Setting

To evaluate the performance of our proposed framework in enhancing authentication,
we applied it to the NIST dataset [46], which is constructed based on a real industrial wire-
less environment, including dynamic and static scenarios. The parameters for generating
the dataset that used in this work are presented in Table 1.
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Table 1. The details of the experimental dataset.

Parameters Assignment

Size of the automotive factory 400 m × 400 m
Frequency 5.4 GHz
Location aa plant day 2 at automotive assembly plant

Path loss exponent 3.6
Delay 644.4 ns

Delay spread 177.4 ns
K-factor 4.7 dB

TX antenna gain 3.6
RX antenna gain −3.5

PN oversample factor 4.0
Sample rate 80 MHz

We divided the experiment data into two parts: 30,000 samples for training and
3000 samples for testing. Since the dataset contains a large number of characteristic param-
eters, such as position, angle, gain, etc., we chose channel state information as the input
data of the security model in order to facilitate model training. In this section, Run1-r-one-
005.csv [46] was used as a training set, and Run1-r-one-006.csv [46] was used as a test set.
The main simulation parameters for training and testing of the proposed framework are
listed in Table 2.

Table 2. Parameters in the proposed approach for the training and testing.

Parameters Assignment

Dataset scenarios 6
Total number of training data samples 30,000

Total number of test data samples 3000
Epoch 1000

Batch size 16
Kernel size 1× 322

Learning rate 1.00 × 10−4

Optimizer Adam
Generator layers 3

Discriminator layers 6

To describe the enhanced performance of the GAF algorithm, we used several perfor-
mance metrics to describe the model. The R2-score represents the coefficient of determina-
tion, and the higher the R2-score, the higher the accuracy of the prediction. In addition,
the total sum of squares (TSS), explained as the sum of squares (ESS), and residual sum of
squares (RSS) were used, and were calculated as follows:

TSS =
n

∑
i=1

(yi − ȳ)2 (4)

ESS =
n

∑
i=1

(ŷi − ȳi)
2 (5)

RSS =
n

∑
i=1

(yi − ŷi)
2 (6)

where yi represents real value, ȳi denotes the average value, and ŷi is an estimate of the
network output.

In addition, a segmented signal-to-noise ratio (SNRseg) is a wireless signal enhance-
ment evaluation index based on the time domain, which is the average of all wireless
frame signal-to-noise ratios used to measure the early degree of the overall system. The
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Quality Perception Evaluation (PESQ) is a complex evaluation index, and is one of the most
common indicators in signal enhancement techniques, which has been standardized for
evaluating the difference between a reference signal and a measured signal. Short-term
objective comprehension (STOI) is an evaluation index for the correlation between the
reference signal and the measured signal in a wireless signal estimate.

4.3. Denoising Performance

We first evaluated the performance of the GAF under the background of output data
visualization, and the visualized images clearly displayed the estimated values of different
types of wireless channels. Figure 5 shows two different representations of three different
signals (i.e., original wireless channel estimation, original wireless channel estimation
with added noise, and denoised wireless channel estimation). The three wireless data line
graphs in the left image are very similar and difficult to classify directly with the naked eye.
However, the data for image conversion is easily distinguishable, and there are significant
differences in the details of the images. Figure 5 shows that the amplitude variation range
of noisy waveforms is larger than that of clean signals, with more blurs and redundant
details, which is not conducive to the later training of learning models and may lead to
overfitting problems. Therefore, the denoising enhancement of channel estimation datasets
is essential for the training of later models.

Figure 5. Signal denoising performance based on the proposed GAF algorithm.

Figure 5 is a schematic of the signal denoising performance based on the GAF algo-
rithm. Figure 5 shows that the GAF algorithm can effectively transform the input noisy
channel estimation into a denoised signal. Figure 5 shows the estimated signal sequence
in the real wireless industrial network environment, that is, the first frame signal. This
frame signal, after 256 samplings per frame, is observed in the formation of the signal
style diagram. In the experimental verification, the model input was 20 frames each time.
Figure 5 shows a schematic of the noisy signal. On the basis of the original wireless
channel information signal, the signal-to-noise ratio was changed to 10 dB by artificially
adding Gaussian white noise. It can be seen that the noisy signal reduces the received
signal strength value of the signal as a whole, and the amplitude of the wireless channel
information is reduced because of the cover of noise, which greatly increases the difficulty
of identity authentication. By introducing a DCGAN-based network, the GAF model
reduces the loss rate of useful wireless signals as much as possible, thus retaining more
high-frequency feature components, and further improving the perception quality and
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intelligibility of enhanced wireless. Therefore, the wireless signal denoising and identity
authentication joint optimization scheme can achieve a better signal enhancement effect.

Figure 6 shows the output result of the signal enhancement module of the GAF model.
Figure 6 shows the signal enhancement effect of the GAF network noise reduction model
after 10, 210, and 560 runs of model training, respectively. Figure 6 shows that as the
number of training iterations increases, the denoised image becomes closer and closer to
the original image. The GAF is used as a signal enhancer. The latent variables are input
into the GAF generator and mapped to the wireless signal according to certain rules, so
the latent variables are characteristics of the wireless signal. These rules can be mined
through GAF adversarial training. The results indicate that the CNN-GAN model can
effectively eliminate the noise interference in the wireless channel estimation samples. The
enhancement effect means that the generated signal is not a simple copy of the existing
data. In summary, the denoising algorithm based on the CNN-GAN model can reduce the
interference generated in the process of wireless channel information estimation, and it is
conducive to the training of the authentication model.

Figure 6. Denoising performance over epochs.



Electronics 2024, 13, 1577 11 of 16

4.4. Superiority Evaluation

Table 3 provides a performance comparison of the MMSE-SPZC [49], SEGAN [49], and
GAF algorithms. The main evaluation performance indicators include the average PESQ
value, average STOI value, and SNRseg value. Table 3 shows that compared with MMSE-
SPZC, the GAF model performs well in terms of the PESQ and STOI values under various
conditions. Compared with SEGAN, except under a −2 dB to −3 dB environment, the GAF
model performs slightly worse on STOI. Under other signal-to-noise ratio conditions, the
GAF algorithm performs better on the corresponding index values. Compared with directly
collected noisy wireless signal data, the GAF algorithm improved the PESQ value by an
average of about 20% and the STOI value by an average of nearly 10%. Further analysis
shows that compared with the traditional MMSE-SPZC scheme, the overall average PESQ
value of the GAF algorithm has increased by about 4%, and the average STOI value has
increased by about 8%. In summary, the GAF algorithm is superior to the MMSE-SPZC
algorithm and SEGAN algorithm in almost all aspects. In addition, in observing Table 3, the
GAF algorithm can effectively reduce the noise when the signal-to-noise ratio is −2.5 dB,
thus improving the quality of the wireless signal and the classification performance in the
later stage. This section further validates the signal enhancement problem through this
objective indicator.

Table 3. Performance comparison with different algorithms.

Algorithm Parameters −2.5 dB 2.5 dB 7.5 dB 12.5 dB 17.5 dB

MMSE-SPZC
PESQ 1.0 1.5 1.9 2.6 4.7
STOI 0.13 0.15 0.17 0.18 0.19

SNRseg −5.4 −4.4 0.5 4.6 7.8

SEGAN
PESQ 2.0 2.6 2.5 3.7 4.1
STOI 0.15 0.18 0.18 0.19 0.19

SNRseg 0.3 1.4 4.8 7.5 11.0

GAF
PESQ 2.0 2.1 2.8 4.1 4.3
STOI 0.14 0.18 0.19 0.19 0.22

SNRseg 1.3 1.5 1.7 1.9 2.7

4.5. Accuracy Evaluation

Figure 7 shows the convergence of the GAF algorithm. The results indicate that the
R2-score, TSS, RSS, and ESS functions of the GAF algorithm converge with increasing
iteration times. With the increase in training data, although the R2-score, TSS, RSS, and
ESS function values fluctuate, they remain stable after 520 iterations. For example, after
520 iterations, the RSS value is fixed at 1.9, the TSS value is 1.9, the R2-score is 0.99, and the
ESS value is 0. The results indicate that the generated GAF model can effectively achieve
the expected results. The proposed GAF system incorporates a DCGAN architecture,
augmented by convolutional pooling operations, to enhance the feature representation
of wireless channel estimates. By utilizing the NRCT-4CRD-based internal structure as
both the generator and discriminator in the adversarial generation network, we present an
effective data enhancement scheme through adversarial training using clean signals and
noisy signals to diminish noise in estimated values. Figure 7 shows that the GAF method
effectively improves the detection and recognition rates of the model, thus providing an
efficient approach for enhancing security capabilities.
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Figure 7. The convergence of the GAF algorithm.

To further evaluate the proposed GAF algorithm and provide an intuitive understand-
ing of its feasibility, we used RSS metrics. Figure 8 shows that after 500 epochs, the RSS
value is below 2, indicating that the GAF algorithm has achieved the correct accuracy.
Specifically, as the signal-to-noise ratio increases, the RSS value gradually decreases and
tends to stabilize. Meanwhile, as the number of iterations increases, the RSS value gradu-
ally decreases and tends to 2, remaining unchanged. We further discuss the GAF method,
especially the NRCT-4CRD-based internal structure, which indeed demonstrated potential
reasons for advanced results. As mentioned in Section 1, signal enhancement in wireless
estimation is an important factor. The performance of the GAF model depends on the
quality of channel estimation data. Adversarial learning models may perform better and
be more powerful in high-complexity situations. In addition, when the signal-to-noise ratio
is low, the GAF method may achieve better results than traditional authentication methods.
These results demonstrate the advantage of the GAF model in improving task security by
enhancing signals.

Figure 8. RSS Performance of the proposed GAF algorithm.
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As shown in Figure 9, the number of epochs and signal-to-noise ratio impact the
R2-score. The R2-score increases rapidly with an increasing number of iterations and signal-
to-noise ratio. In order to observe the accuracy of the GAF model in identifying legitimate
sending devices in the later stage, this experiment specially processed legitimate signals
and simulated the recognition process of devices in different noise environments, with a
signal-to-noise ratio between 0 dB and 10 dB. To compare the accuracy of the recognition
results, we calculated the R2-score for each step of prediction. As can be seen from Figure 9,
with the increase in the signal-to-noise ratio, the R2-score value reached above 0.9. This
means that the signals generated by the network are not simple copies of the existing
channel information data. The identity authentication scheme based on the GAF algorithm
can effectively eliminate redundant information in wireless signals, which is beneficial
for the GAF training process. From the results, the use of GAF can effectively reduce the
impact of signal noise on the authentication results and improve the quality of wireless
signals. The GAF network can effectively improve the accuracy of identity authentication.
Even under the condition of high artificial noise interference, it still has a high detection
and recognition rate.

Figure 9. R2-score performance of the proposed GAF algorithm.

We also analyzed the ESS performance of the GAF algorithm. As shown in Figure 10,
the lowest ESS value is close to 0. This means that the performance of signal enhancement
and recognition authentication remains stable under a high number of epochs and signal-
to-noise ratio, and this indicates that the GAF algorithm is robust in IPCS systems. In
summary, the performance of the GAF algorithm proposed in this paper was experimentally
verified. The proposed network model effectively reduces the interference noise in the
channel estimation and plays a supporting role in the construction of the later classification
model. To address the movement of connected and autonomous vehicles, utilizing 5G
location-aware communication could enhance security technology; 5G networks offer
precise location data, aiding in control system design and optimization. Distinguishing
transmitter positions can help reduce active attack risks by effectively identifying users
through location information. Moreover, 5G technology features like beamforming in
large-scale MIMO and high directionality in millimeter waves support position-aware
communication. Integrating 5G location data while preserving personal privacy and
developing efficient identity authentication solutions is a crucial research focus.
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Figure 10. ESS performance of the proposed GAF algorithm.

5. Conclusions and Future Work

In this paper, we propose a highly secure and robust certification framework de-
signed for connected and autonomous vehicles. In order to enhance the control system’s
resistance to phishing attacks, a GAF method for authenticating identities is proposed.
Additionally, we propose an improved convolutional neural network design to enhance
wireless channel estimation representation through convolutional pooling operations. By
employing enhanced NRCT-4CRD-based internal structures as generators and discrimi-
nators in adversarial generation networks, we propose an efficient DCGAN-based signal
enhancement approach to minimize noise interference during training. The experimental
results demonstrate that the GAF algorithm effectively reduces noise in channel estimation
data, enhances the model’s detection and recognition rates, and offers a reliable method for
authenticating device identities in connected and autonomous vehicles.
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