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Abstract: This article presents a technique to carry out fault classification using an equal-angle integer-
period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working
roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure
the angle intervals between two adjacent data points stayed the same and the signal length was fixed
to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed
into a two-dimensional matrix, where the component of each row was the signal in one period, and
the ordinate value of each row represented the corresponding rotation period. Therefore, the row and
column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data.
Finally, the matrixes were utilized to train the CNN network and test the classification performance.
The results show that the classification rate using this technique reaches 95.6%, which is higher than
that of 2D CNNs without equal-angle integer-period arrays.

Keywords: uniform angle sampling; equal-angle integer-period array; roller bearing; CNN;
fault diagnosis

1. Introduction

As the key component used in rotational machinery for power transmission, roller
bearings support the rotation of shafts, gears, and drills to improve transmission efficiency.
Mostly, the bearings work continuously under heavy loads, high speed, and dusty envi-
ronments, which makes the bearings prone to damage and causes failure [1]. Statistics
show that bearing failure accounts for about 40% of rotating machinery and equipment
failure [2–4]. If the health condition of roller bearings cannot be detected in a timely man-
ner, further damage may occur and impact the normal operation of related equipment.
Therefore, it is of great significance to execute timely and accurate fault diagnosis for roller
bearings to avoid further deterioration and operation accidents.

At present, the fault diagnosis methods of roller bearings are mainly divided into
two categories: physical model-based methods and data-driven methods [5]. However,
model-based methods depend on the accuracy of physical modeling, which is very difficult
considering the complicated operating environment in the field and the deviations from
ideal simulation conditions. Thus, the application of these methods is limited. Now, data-
driven methods have caught researchers’ attention because they can make good use of
big data and avoid complicated computation and, probably, the existing errors of physical
models [6]. Data-driven methods adopt signal analysis, feature extraction, and dimension
reduction to process historical operating data, employ pattern recognition technology
to construct comprehensive classification models, and carry out pattern recognition on
real-time monitoring data [7,8]. Artificial neural networks (ANNs) [9], support vector
machines (SVMs) [10], and cluster analysis (CA) [11] are the commonly used data-driven
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fault diagnosis models, and are usually combined with adaptive signal processing and
effective feature extraction methods.

An ANN is a kind of machine learning model that simulates the brain’s neural struc-
ture and information transmission mode. Examples include back propagation (BP) neural
networks [12], wavelet neural networks [13], self-organizing feature mapping neural net-
works [14], and multilayer perception (MLP) neural networks. Satish B et al. [15] proposed
a fuzzy BP neural network structure which combines a neural network and fuzzy logic to
identify the working state of induction motor bearings and estimate the remaining life of a
motor. In [16], an adaptive neuro-fuzzy inference system was utilized as a pattern recogni-
tion tool to model multi-scale entropy feature samples extracted from bearing vibration
signals. De Almeida et al. [17] use an MLP neural network to train bearing monitoring data
from CWRU (Western Reserve University) and RANDALL databases. A recognition rate of
95% can be achieved with fewer input nodes, which verifies the effectiveness of the MLP
neural network in bearing fault diagnosis. Khajavi et al. [18] use the standard deviation of
the discrete wavelet coefficient as a feature and build a fault classification model based on
neural networks.

SVMs, as another commonly used pattern recognition tool, have special advantages
when dealing with small sample space, high dimensional features, and nonlinear conditions.
In [19], an improved support-vector-machine-based binary tree was proposed to construct
multiple classifiers for identifying the states of mild, moderate and severe bearing faults.
Soualhi et al. [20] propose heath indicators based on the Hilbert–Huang transform (HHT)
to show the degradation of the critical components of bearings, and use an SVM and
support vector regression to carry out the classification. Wang et al. [21] used Empirical
Mode Decomposition (EMD) combined with an auto-regressive model and singular value
decomposition to establish feature space. Then, a hyper-sphere-structured multi-class
support machine was constructed to classify bearings with different degradation degrees
and fault locations. Experimental results show that the improved SVM can achieve a fault
recognition rate of 96%. Kou et al. [22] used improved complete-ensemble EMD to extract
the energy entropy of different vibration signals and built an optimized fault diagnosis
model using an SVM.

Cluster analysis classifies samples by similarity criteria, has unique advantages in
the case of no-fault samples or a small number of fault samples, and is often used in
unsupervised fault diagnosis modeling. Considering the gradual change process of bearing
fault development and the fuzziness of fault characteristics, many scholars have applied
fuzzy logic and cluster analysis to bearing fault diagnosis and achieved good results.
Yiakopoulos et al. [23] used K-Means clustering to calculate the correlation distance be-
tween two measuring points to describe the strength of their linear relationship, which can
be used to classify several bearing states. Jing et al. [24] assume that the feature space of
normal bearings forms dense clusters while the feature space of the monitoring signals
of fault bearings forms coefficient clusters. On this basis, the density-based clustering
algorithm is used to successfully distinguish bearings in five states. Liu et al. [11] utilized
grey wolf optimization to achieve the most adequate fractional Gabor spectrum and imple-
mented fault diagnosis by matching the relative order of each cluster with the bearing fault
characteristic coefficients.

However, these abovementioned data-driven methods have certain defects. Firstly,
signal processing and feature extraction are needed, which are highly dependent on expert
knowledge, and different features will greatly affect the final result [25]. Secondly, the
shallow level of the network limits the learning ability so that it is difficult to make full
use of historical data in the current big data environment [26]. With the development of
deep learning algorithms, scholars began to pay attention to establishing an end-to-end
fault diagnosis model via deep learning that could directly use the original signal or simple
transformed data as the input of the model and build a deeper neural network to make use
of the huge monitoring data, thus avoiding the defects mentioned above.
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Convolutional neural networks (CNNs), originally designed to process image data,
have the characteristics of sparse links and weight sharing, and can establish accurate fault
models with fewer network parameters in the case of large input data dimensions [27,28].
Currently, the input of a CNN used for fault diagnosis mainly includes one-dimensional sig-
nals or two-dimensional arrays, and 2D-CNNs are more widely used for their flexibility in
regard to input formality [29–31]. However, there is the problem of how to construct a two-
dimensional array from a time-series signal [32]. Wen et al. [33] divided one-dimensional
vibration data with the length of M2 into M × M two-dimensional signals as the input
layer data of a CNN and verified its effectiveness using the fault dataset of a centrifugal
pump and hydraulic pump, respectively. Hoang et al. [34] converted one-dimensional
vibration monitoring data into matrix data with equal length and width as the data input of
a CNN, used two CNN models to classify the two signals, and fused them at the decision
level, so as to realize bearing fault diagnosis. In [35], vibration sensor signals in the X,
Y, and Z directions were directly superimposed to construct a matrix as the input of a
CNN. Chen et al. [36] extracted 251 features from the sub-band spectrum in the frequency
domain and 3 features in the time domain, adding 2 parameters of speed and load, thus
forming a total of 256 feature values. Then, these 256 feature values were converted into a
16 × 16 matrix as the CNN input. From the above process of converting one-dimensional
data into a two-dimensional matrix, it can be seen that the method of directly splitting and
rearranging one-dimensional data lacks longitudinal correlation between the adjacent data
segments, making the matrix lack physical meaning. Also, different signal interception
lengths will produce different experimental results, which introduces certain human in-
terference factors. Meanwhile, the construction methods above have not considered the
rotational properties of roller bearings.

Thus, considering the manual factors brought by the two-dimensional matrix construc-
tion methods above, this article proposes a CNN fault diagnosis method combined with
uniform angle sampling. Uniform angle sampling techniques are widely used in many
industries [37,38], and thus data for order analysis can be easily sourced. Firstly, uniform
angle sampling techniques are used to collect data with equal-angle intervals rather than
the commonly used sampling method with equal time intervals. Then, the sampled data
are divided into several segments, with each corresponding to a rotational cycle. The seg-
ments are re-arranged into two-dimensional matrix data, where the row index represents
the number of rotation cycles and the column index represents the angular position of
the rotation axis. Finally, the matrix with uniform angle and integral cycles is traded as
the input of the CNN to build a fault diagnosis mode for roller bearings. The proposed
method utilizes the rotational properties of roller bearings to construct a two-dimensional
matrix with a certain physical meaning, which can greatly reduce the influence of manual
operation. In our method, the input matrix is like a time–space array, where data along the
row vary with time and data along the column have the same angle relative to the rising
edge of the key signal. Thus, for the whole process of the CNN, the feature maps contain
time and space information.

The rest of this paper is organized as follows. Section 2 presents the introductions
about the basic theory of convolutional neural networks and the fault diagnosis method
based on the equal-angle integer-period array convolutional neural network (EAIP-CNN).
Section 3 describes the implementation of uniform angle sampling and the construction of
the equal-angle integer-period array and the electrostatic sensor. The fault classification
results and analysis are given in Section 4. Section 5 contains the conclusions.

2. Materials and Methods
2.1. Basic Theory of Convolutional Neural Networks

Due to the fact that subsequent processing mainly uses two-dimensional data as input
objects, the following explanation will use a 2D-CNN as an example. Convolutional neural
networks generally consist of an input layer, convolutional layers, pooling layers, and
fully connected layers, where convolutional and pooling layers usually appear in pairs.
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Additionally, in order to enhance model performance, batch normalization, and activation
function, operations are often incorporated in the intermediate processing.

2.1.1. Convolutional Layer

The convolutional layer is an essential component of CNNs. It uses multiple convo-
lutional kernels to perform convolutions on the data from the upper layer, resulting in
corresponding feature maps. It has two special advantages: (1) local connectivity, where
each convolutional kernel is only connected to a subset of nodes from the previous layer,
effectively reducing the number of parameters and accelerating training; and (2) weight
sharing, where each convolutional kernel maintains the same weight when moving across
the previous layer’s feature map, further reducing the number of parameters. These two
characteristics enable CNNs to effectively process high-dimensional data.

By using multiple convolutional kernels, various types of feature information can be
obtained. The convolution operation of a single kernel with a single channel is illustrated in
Figure 1, where the gray part represents the convolutional kernel. Within the corresponding
local receptive field, the specific convolution operation can be expressed as follows:

ai,j = xi,j ∗s w + b = ∑k1−1
p=0 ∑k2−1

q=0 wp,qxis+p,js+q + b (1)

where ai,j represents the value at the position of (i, j) in the corresponding output feature
map. xi,j represents the (i, j) receptive field in the previous layer’s feature map. ∗s indicates
a convolution operation with a stride of s. w represents the convolutional kernel of size
k1 × k2 for that layer, and wp,q corresponds to the elements within the convolutional
kernel. b stands for the bias term. It can be observed from Figure 1 that a convolution
operation with a stride of 1 also results in a reduction in the data dimension. In practical
applications, it is common to perform zero-padding around the original matrix to ensure
that the post-convolution structure maintains the same data dimensions.
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Figure 1. Illustration of convolution operation.

As for a multi-channel convolution scenario, assuming the previous layer contains C
feature maps of size d1 × d2, where the dimensions of the convolutional kernel are width k1,
height k2, and depth C, and the number of kernels is M with a stride of s, the convolution
generates M feature maps. The schematic diagram is illustrated in Figure 2, where C = 3,
k1 = k2 = 2, and M = 2 for this example. The computation of multi-channel convolution is
as follows:{

am,i,j = ∑C
c=1 ∑k1−1

p=0 ∑k2−1
q=0 wm,c,p,qxc,is+p,js+q + bm, m = 1, · · · , M

is + k1 − 1 ≤ d1, js + k2 − 1 ≤ d2
(2)

In order to introduce a certain level of nonlinearity into the system to better address
complex problems, it is necessary to apply a nonlinear activation function to the data after
the convolution operation in the network. The Sigmoid and Tanh functions are the often
utilized activation functions in fully connected layers. In comparison to the Sigmoid and
Tanh functions, Leaky ReLU and ReLU are more widely applied in CNNs due to their
ability to accelerate the learning process and prevent gradient explosion.
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2.1.2. Pooling Layer

The pooling layer, also known as the subsampling layer, is primarily responsible
for downsampling the feature maps obtained after the convolution operation, following
certain rules to reduce data dimensions. Common pooling methods include average
pooling, max pooling, and stochastic pooling. These pooling techniques operate on pooling
regions within the feature map to reduce redundancy, enhancing the robustness of the
post-convolution feature maps.

Typically, convolutional layers and pooling layers are combined within convolutional
neural networks (CNNs). In a deep convolutional neural network (DCNN), lower-level
convolutional layers extract generalized low-level abstract features from the data, such as
edges and contours. On the other hand, higher-level convolutional layers can capture highly
abstract features, automating feature extraction and achieving the final classification task.

2.1.3. Fully Connected Layer

After several convolutional and pooling layers, low-dimensional feature information
is obtained. This allows for the use of fully connected network nodes, similar to those
in a feedforward neural network, to map the feature information to classification labels.
The output expression of the fully connected layer is as follows:

zi = ∑n
j=1 ωi,j · aj + bi, i = 1, 2, · · · , l (3)

where zi corresponds to the one-dimensional output of the fully connected layer, l represents
the number of target classes in the network, aj denotes an element in the one-dimensional
vector obtained by flattening the final feature map, ωi,j signifies the weights connecting to
aj in a fully connected manner, and bi is the bias term.

2.1.4. Decision Layer

For classification tasks, the output values of each neuron in the fully connected layer
are passed to a classification decision layer that generates an output probability distribution.
Currently, the softmax logistic regression function is commonly used for classification, and
this layer also can be named as the softmax layer. The computation of the probability
output p(zi) is as follows:

p(zi) =
ezi

∑l
j=1 ezj

, i = 1, 2, · · · , l (4)

2.2. Fault Diagnosis Method Based on EAIP-CNN

Due to the fact that monitoring signals are predominantly one-dimensional in most
cases, a key issue of using a two-dimensional CNN for fault classification is transforming
one-dimensional data into a two-dimensional format. From the aforementioned process



Electronics 2024, 13, 1576 6 of 18

of converting one-dimensional data into two-dimensional data, it is evident that directly
splitting and rearranging one-dimensional data to generate a two-dimensional matrix lacks
vertical correlation between the adjacent data segments. Different signal segment lengths
can lead to varying experimental results, introducing artificial interference. It is more
practical if the elements used for the convolution operation all have the same attributes or
physical meaning. Thus, a CNN based on an equal-angle integer-period array method is
proposed, as shown in Figure 3.
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Figure 3. Program of fault diagnosis using CNN and uniform angle sampling.

In Figure 3, the raw signal should be sampled using uniform angle sampling and
the data length should be an integral multiple of the length within one cycle. Then, the
raw data are divided into several segments of signals with the length of a single cycle.
The segments are rearranged according to their sequences of cycles to form the equal-angle
integer-period array, which is the data input for the CNN classification model. Within the
training process, the loss function is built using the cross-entropy between the already-
known target distribution and the estimated softmax output probability from the model,
which can be calculated via Equation (5), where p(x) is the target distribution of the training
data and q(x) is the estimated distribution output during the training process. In this
method, stochastic gradient descent is applied to find the best loss function value and build
the final model structure.

H(p, q) = −∑
x

p(x) log q(x) (5)

2.2.1. Construction of Equal-Angle Integer-Period Array

This 2D matrix construction method requires data series sampled with uniform angles
and contains integer rotation cycles. The procedure of the construction method is shown
in Figure 4; the newly constructed matrix has the row index representing the number of
rotation cycles and the column index representing the angular position of the rotation
axis. Therefore, the horizontal coordinate is the angle index and the vertical coordinate
is the rotation period index. In Figure 4, matrix row index i represents the rotational
period, while column index j represents the angular position relative to the pulse square
wave. The relationship between the one-dimensional data and the elements in the two-
dimensional matrix is as follows:

f (i, j) = x(i−1)m+j, 1 ≤ i ≤ n, 1 ≤ j ≤ m (6)
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2.2.2. Properties of Angle Cycle Array in the Process of CNN

(1) Self-adaptive space filtering.

As shown in Equation (6), the convolution operations of the CNN are performed on
the data within the rectangular receptive field by a convolution kernel:

ai,j = ∑k−1
p=0 ∑k−1

q=0 wp,q f (is + p, js + q) + b (7)

Equation (7) is similar to the spatial filtering operation in digital image processing,
and the spatial filtering processing of the digital image is shown in the following equation:

g(i, j) =
a

∑
p=−a

b

∑
q=−b

wp,q f (i + p, j + q) (8)

By comparing Equations (7) and (8), it can be seen that the convolution operation of
the CNN introduces an additional bias term b and step size s, compared with the spatial
filtering operation in the image. The spatial filter w in digital image processing is often
manually selected; for example, a smooth linear filter is selected for fuzzy processing and
noise reduction, and first-order differential Sobel operators and second-order differential
Laplacian operators are selected for image sharpening. The convolution kernels in the CNN
are obtained by a training process, and the use of the activation function introduces nonlin-
earity into the system. Therefore, the convolution operation of the CNN can be regarded as
a process of adaptive spatial filtering of the original image and adding nonlinearity through
the activation function.

Therefore, it is more practical if the elements feeding into the convolution operation
have the same physical meaning. When an equal-angle integral-period matrix is used, the
convolution kernel of the CNN’s convolution operation covers elements in the receptive
field with similar properties; that is, the receptive field elements are signals collected from
several adjacent rotation periods within the same rotation angle range. Therefore, the
convolution operation of the CNN produces characteristic parameters with certain physical
significance.

(2) Feature dimension reduction.

The convolution matrix still retains the angle and period information. A pooling
operation is needed to facilitate subsequent processing and reduce network complexity.
Common pooling methods include maximum pooling and average pooling. Maximum
pooling corresponds to the maximum event in the retention feature, that is, the time
and amplitude of the maximum feature value in multiple periods. Average pooling can
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effectively retain the average information of the eigenvalues in the same angle range over
multiple rotation cycles. In this paper, maximum pooling is adopted to preserve the peak
information of the features.

(3) Properties of feature map.

Finally, our method will transform the original n · m input matrix into several n′ × m′
output matrixes, as shown in Figure 5. An individual feature in Figure 5 is processed by the
signals from several consecutive rotational cycles within the corresponding angle region.
Therefore, each element represents a feature adaptively extracted within the approximate
angular interval.
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Figure 5. Properties of CNN feature layer.

Seen from angular perspective: the row of the output matrix retains the distribution
of feature values along the angular direction. Seen from time perspective: features along
the column direction represent the distribution across multiple rotational periods within
the same angular interval. Seen from scale perspective: the original scale space with an
angular resolution of 2π/m and a time resolution of T is transformed to a space with an
angular resolution of 2π/m′ and a time resolution of nT/T′.

3. Implementation of Uniform Angle Sampling and Experiment Setup

In practical applications, the uniform angle sampling method is often selected accord-
ing to the actual situation. Commonly used techniques include encoder-based, computed
order tracking, and key-phase signal-based uniform angle sampling.

The encoder-based equal-angle sampling technique utilizes a photoelectric pulse
encoder to a specific number of pulse signals in each rotation cycle, which is used as
the input to the sampling frequency synthesizer. The frequency synthesizer adjusts the
sampling rate and the tracking filter cutoff frequency according to the system sampling
order ratio requirements.

Computed order tracking technology first obtains an asynchronous sampling signal by
sampling the pulse signal of the tachometer and the sensor signal with equal time intervals.
Then, the uniform-angle signals are obtained by interpolating and resampling on the MCU
or PC.

As with key-phase signal-based uniform angle sampling, the reference rotational
speed signal is synchronized with the rotation frequency, producing only one square wave
pulse within a single rotation cycle. The process is illustrated in Figure 6. Initially, a
high-frequency counter is used to count the number of high-frequency clocks between
two consecutive key-phase signals. This count is then used to calculate the rotational
speed of the shaft. Subsequently, based on the obtained rotational speed and required
angular resolution, the sampling frequency needed for subsequent sampling is calculated.
Finally, the sampling control signal is employed for signal acquisition at the rising edge of
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the successive key-phase signal, achieving equal-angle sampling synchronized with the
key-phase signal.
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Since the experimental section of this paper involves data collection under stable
rotational speed conditions, the aforementioned uniform angular sampling based on the
key-phase signal is highly suitable for this experiment. In our experiment, the key signal is
generated by an electrostatic sensor using the method introduced in reference [39]. In the
reference, a PTFE strip is stuck on the rotation shaft and an electrode strip is fixed nearby
the PTFE strip. When the shaft rotates, the PTFE strip accumulates charges on its surface
and rotates across the electrode with every cycle; thus, the electrode can transform the
periodical-induced charges into voltage waveform. Then, a hysteresis voltage comparator
circuit is used to transform the periodical voltage waveform into a square wave, which
provides the needed key signal. The sampling system used in this article is built based on
AD7746, which is the same as that of reference [40]. The system implements uniform angle
sampling, as referenced in Figure 6. Firstly, within the square wave 1⃝ of the key signal,
a counter which starts at the rising edge and stops at the adjacent rising edge is used in
the FPGA to count the number of high-frequency clock pulses. Thus, the periodic time of
rotation can be obtained and the sampling rate needed for the required angle resolution can
also be calculated within the square wave 2⃝. Then, the FPGA chip can generate a sample
controlling signal according to the needed sampling rate, which starts the first sampling at
the rising edge between square wave 2⃝ and 3⃝. The sample controlling signal is directly
connected to the SYNC_IN pin on the AD7746 chip, which collects and converts one point
of data after every pulse on the SYNC_IN pin.

Experiments are conducted at a rotational speed of 1800 rpm, and the electrostatic
monitoring signals are collected using four working conditions of bearings, including
normal, outer-race fault, inner-race fault, and rolling element fault. The fault bearings are
manually pre-damaged using electrical discharge machining, and the size of the fault area
is about 1 mm × 1 mm with a 0.5 mm depth. The detailed signal acquisition parameters
are listed in Table 1.

Table 1. Signal acquisition parameters of each bearing condition.

Parameter Rotational Speed/rpm Number of Sampling Points
within One Cycle

Number of Cycles for
Sampling Number of Datasets

value 1800 256 128 180

The two-dimensional array images rearranged according to the parameters in Table 1
are shown in Figure 7. It can be seen that the image of the damaged outer ring bearings has
obvious distributions of higher energy in the vertical direction. Moreover, the signal images
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of the inner ring faults and ball faults have obvious pinstripes, while the corresponding
image of normal bearings is relatively uniform.
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Figure 7. Equal-angle integer-period arrays of electrostatic signals under different conditions.

Subsequently, the experimental data are divided into training, validation, and testing
sets in certain proportions. The total number of samples is 720, with 480 samples for
training, 120 samples for validation, and the last 120 samples for testing, all randomly and
evenly extracted from the datasets of every condition. After partitioning the datasets, an
appropriate CNN network structure is constructed.

In this paper, a three-layer convolutional neural network (CNN) is employed, as
illustrated in Figure 8. The dimensions of the convolutional kernels and the feature maps
after pooling operations are displayed in the format [height width channel] in Figure 8.
Thus, “16@[9 9 1]” means that there are 16 convolution kernels and the height, width,
and channel of each kernel are equal to 9, 9, and 1, correspondingly. The annotation “#1”
means the stride of the convolution is equal to 1. “Padding” denotes the zero-padding
operation to maintain the dimensions of the resulting matrix consistent with the original
matrix. After each convolutional layer, batch normalization and LeakyReLU activation
functions are applied for rectification. Finally, the softmax layer is utilized to output the
fault diagnosis results.
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4. Experiment Results and Analysis

The initial learning rate is set to 0.01, the batch data processing size is set to 80 groups,
and the maximum number of training epochs is set to 30 epochs, with each epoch consisting
of 480/80 iterations. The maximum number of iterations is set to 180. During the training
process, cross-entropy is chosen as the loss function to train the model. Figure 9 displays
the accuracy of the training and validation data, as well as the model’s loss function during
the training process. The proposed method is implemented by C++ using the MS Visual
Studio 2013 in 64-bit.
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4.1. Fault Diagnosis Results

Table 2 presents the classification results of the test data with a recognition accuracy
of 97.5%. In Table 2, it can be observed that both the normal bearings and inner-race fault
bearings are correctly identified, and no other states are recognized as these two states.
Among the 30 sets of test data for inner-race fault bearings, 2 sets were identified as ball
faults, and among the 30 sets of test data for ball fault bearings, 1 set was identified as an
inner-race fault.

Table 2. Fault diagnosis results of CNN using equal-angle integer-period array.

Classification Results
Recall Rate/%

NR ORF IRF BF

30 sets of NR data 30 0 0 0 100
30 sets of ORF data 0 30 0 0 100
30 sets of IRF data 0 0 28 2 93.33
30 sets of BF data 0 0 1 29 96.67

Accuracy Pi% 100 100 96.55 93.55 A = 97.5%

In order to observe the adaptive feature extraction capability of the CNN model,
after the network training was completed, the distribution of intermediate-layer data was
observed using the T-SNE method. The results are shown in Figure 10. The trained CNN
architecture was fed with all data, encompassing training, validation, and testing sets, to
show the feature extraction process. This process involves computing the intermediate-
feature-layer data and subsequently applying t-SNE analysis to obtain a two-dimensional
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distribution of these feature-layer data. The observations gleaned from Figure 10 are as fol-
lows: After the initial convolutional pooling layer, the t-SNE two-dimensional distributions
of various states already exhibit noticeable clustering, albeit with a considerable overlap
among the four distinct conditions. Subsequent to the second convolutional pooling layer,
the demarcation boundaries between these distributions become more pronounced. In the
final phase, following the third convolutional pooling operation, the output features of
the normal bearings and outer-race faulty bearings are notably distant from the distribu-
tions of the other two fault types. Consequently, distinct boundaries emerge among the
distributions of the four fault conditions. By examining the t-SNE-based dimensionality
reduction and visualization within Figure 10, it can be broadly inferred that instances
of misclassification within the test data predominantly arise at the interface between the
outer-race faults and ball faults. The high clustering of the testing data in conjunction with
similar data types within Figure 10, despite the modeling process relying solely on training
and validation data, underscores the model’s commendable generalization capability.
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4.2. Process of Adaptive Feature Extraction

In order to see the self-adaptive feature extraction process and the priority of this
method, this part lists the feature maps after every convolutional and pooling layer.
Figure 11 gives an example of the pseudo-color image after passing through the first
convolutional and pooling layer, giving a set of raw data samples as an example. Given the
employment of color scaling to visualize the images, the intensity of colors corresponds
to the relative magnitudes of the amplitudes within each individual image, but does not
reflect the amplitude of the relationships between images. The first convolutional layer
comprises 16 convolutional filters, each generating 16 corresponding feature maps after
pooling. As discerned from the figure, the feature maps of samples with outer-race damage
exhibit notably distinctive dissimilarities when compared to other states.
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Figure 11. Feature data after the first convolution layer.

Based on the data presented in Figure 11, further progression involves subjecting
the data to the second convolutional pooling layer, resulting in the outcomes depicted in
Figure 12. At this stage, the individual image matrix dimensions are 16 × 32, with alter-
ations in angle and periodic scale, leading to a diminished image resolution in comparison
to Figure 11. The insights drawn from the eight feature maps in Figure 12 are as follows:

(1) In T1, T3, and T7, the feature distribution of normal samples appears relatively uni-
form, sporadically exhibiting substantial feature values, while the localized maxima
are notably pronounced in the damaged states.

(2) A quasi-complementary relationship between different states is apparent in images T2
and T5. Normal samples display a higher occurrence of maximal feature values in T2.

(3) The outer-race fault (ORF) feature map reveals prominent vertical stripes, indicating
that larger feature values are concentrated around corresponding angular positions.

(4) Ball fault (BF) samples exhibit localized maxima in regions near the left side in T1, T2,
T3, T7, and T8. T5 and T6 reveal distinct horizontal stripe patterns.
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Figure 12. Feature data after the second convolution layer.

Figure 13 illustrate the outcomes of the third convolutional pooling operation, as
exemplified in Figure 12. The reduction in dimensions is evident through the pronounced
mosaic effect within the images, representing the features adaptively extracted by the
CNN. As the number of convolutional layers deepens, these features become increasingly
abstract, making it challenging for human observation to extract meaningful information.
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Nevertheless, the t-SNE results depicted in Figure 10 reveal that the final features exhibit
high clustering after dimensionality reduction, indicating strong generalization capabilities.
This aspect is beneficial for the fully connected layers and decision-making layers of the
CNN to effectively discriminate and classify data.
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From the above analysis, it can be observed that the CNN’s adaptive feature extraction
process involves progressive convolutional pooling layers, leading to a gradual reduction
in dimensions and an increasing abstraction of features.

4.3. Comparison Analysis with Different Models

In order to highlight the advantages of equiangular periodic data arrangement, the
following comparative experiments were designed for two models.

Comparative CNN Model 1: This model uses equiangular periodic data arrangement.
The original 128 cycles are reduced by 8 cycles to obtain a 120 × 256 matrix, resulting in a
total of 30,720 data points. The model structure is outlined in Table 3. In the table, [t b l r]
signifies zero-padding on the [top bottom left right] positions of the corresponding matrix.
In the model, zero-padding is applied only to convolution layers.

Table 3. Network construction of Model 1 for comparison.

Layer Operation Zero Fill Step Length Output Data Dimension

Input / / / [120 256 1]
Convolution 1 16@[9 9 1] [4 4 4 4] 1 [120 256 16]

Pooling 1 Max pooling 4 × 4 [0 0 0 0] 4 [30 64 16]
Convolution 2 8@[5 5 16] [2 2 2 2] 1 [30 64 8]

Pooling 2 Max pooling 2 × 2 [0 0 0 0] 2 [15 32 8]
Convolution 3 4@[3 3 8] [1 1 1 1] 1 [15 32 4]

Pooling 3 Max pooling 2 × 2 [0 0 0 0] 2 [7 16 4]
Full connection / / / 448

Comparative CNN Model 2: This model utilizes the first 30,720 data points from the
original one-dimensional data. The total data points match those of Comparative Model 1.
These points are divided into 96 segments, and each segment has 320 points of data. Then,
concatenated sequentially to form a 96 × 320 matrix. The network parameters for this
model are specified as shown in Table 4.
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Table 4. Network construction of Model 2 for comparison.

Layer Operation Zero Fill Step Length Output Data Dimension

Input / / / [96 320 1]
Convolution 1 16@[9 9 1] [4 4 4 4] 1 [96 320 16]

Pooling 1 Max pooling 4 × 4 [0 0 0 0] 4 [24 80 16]
Convolution 2 8@[5 5 16] [2 2 2 2] 1 [24 80 8]

Pooling 2 Max pooling 2 × 2 [0 0 0 0] 2 [12 40 8]
Convolution 3 4@[3 3 8] [1 1 1 1] 1 [12 40 4]

Pooling 3 Max pooling 2 × 2 [0 0 0 0] 2 [6 20 4]
Full connection / / / 480

Table 5 presents the fault diagnosis results for the aforementioned models. From
the table, it can be observed that the Comparative Model 1, which employs equiangular
periodic matrix arrangement, maintains a recognition accuracy similar to the original
approach. However, the recognition accuracy of Comparative Model 2, which uses the first
30,720 data points from the original one-dimensional data, is noticeably lower than the
original model and Comparative Model 1.

Table 5. Classification accuracy of the three models.

Model Data Input Dimension Accuracy/%

ACA-CNN Equal-angle integer-period array 128 × 256 97.5
ACA-CNN for comparison Equal-angle integer-period array 120 × 256 95.0

CNN Normal permutation 96 × 320 87.5

Using t-SNE two-dimensional visualization, the observations of comparative Model 1
and Comparative Model 2 are displayed in Figures 14 and 15, respectively. The images re-
veal that in the feature layers, after each convolutional pooling, the t-SNE two-dimensional
distribution of data from non-equiangular periodic matrix inputs for Model 2 in Figure 15
demonstrates weaker intra-class clustering tendency compared to the results shown in
Figure 14. Particularly, following the final convolutional pooling operation, the t-SNE
two-dimensional distribution of Comparative Model 2 portrays a distinct intermingling
of scatter points for the normal, inner-race damage, and ball damage states, indicating
significant overlap, as well as poor overall clustering of the four states. As a result, the fault
classification outcomes of Comparative Model 2 are comparatively suboptimal.

From the recognition outcomes and t-SNE visualizations, it is evident that the ACA-
CNN based on equiangular periodic arrangement demonstrates a commendable perfor-
mance in fault classification. As for Model 1, discarding several rotational cycles has an
almost negligible impact on classification accuracy, showcasing the model’s robust gen-
eralization ability. On the other hand, despite utilizing equiangular sampling for data
acquisition, employing a non-equiangular periodic arrangement similar to Comparative
Model 2 results in a layout that lacks direct vertical data correlations. The inconsistent
angular intervals within the convolution operation lead to a lack of representativeness in
the final outcome, thereby causing a notable decline in recognition accuracy. The t-SNE
visualization process of Comparative Model 2 underscores the poor intra-class data clus-
tering and substantial feature distribution overlap among different states, suggesting a
weaker generalization capacity for this model.
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5. Conclusions

This article presented a technique to carry out fault classification using an equal-angle
integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic
signal of working roller bearings. The proposed method utilized the rotational properties of
roller bearings to construct a two-dimensional matrix with certain physical meaning, which
can greatly reduce the influence of manual operation. The proposed method reserves the
physical properties when the CNN processes data with convolution or pooling. The results
show that the classification rate using this technique reaches 95.6%, which is higher than
that of 2D CNNs without equal-angle integer-period arrays. This work did not make use
of the time–space information carried by the feature maps in the convolutional and fully
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connected layers, which may contain information on fault area. Future work will be under-
taken to employ this proposed method in the fault diagnosis of roller bearings working
at variable rotational speeds with different fault sizes to try to find out the relationship
between the data of all connected layers and the fault area.
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