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Abstract: We have proposed an open-source holonomic mobile manipulator composed of the KUKA
youBot holonomic mobile platform with four Swedish wheels and a stationary aboard six-degrees-
of-freedom Kinova Jaco Gen 2H manipulator, and we have developed corresponding kinematic
problems. We have defined forward and inverse analytic Jacobians and designed Jacobian algorithms
of forward and inverse mobile manipulator kinematics. An experimental test conducted with the
designed laboratory prototype of the investigated mobile manipulator with the described kinematics
was used to verify the obtained theoretical results. The goal of the test was to keep constant the
position of the gripper in 3D space while the mobile platform is moving to some extend in the
2D workspace.

Keywords: forward kinematics; inverse kinematics; holonomic mobile manipulator; Denavit–Hartenberg;
Pieper’s algorithm; Jacobian algorithm; KUKA youBot; Kinova Jaco

1. Introduction

In the present day, robots with various configurations (mobile robots, robot manip-
ulators, mobile manipulators, etc.) are very rapidly advancing in performing different
application tasks in our everyday lives. There are also many companies that offer on the
market service robots dedicated to helping disabled people in their daily activities. Cur-
rently, various approaches for human–robot interactions are gaining popularity, including,
for example, manual guidance, among others. It should be noted that such machines,
especially in their recently investigated collaborative implementation, must correspond to
the safety standards developed in the EU [1–3]. The widespread use of robots also requires
a high level of understanding of the problems involved into this field of science [4–8]. In
the present work, we describe existing research into the mathematical modeling of the
kinematics of a holonomic mobile manipulator that has remarkable mobility and handling
capabilities. The combined machinery contains two devices: a mobile platform and a 6
DoF manipulator. The chosen mobile platform, KUKA youBot, has four omnidirectional
wheels, and it is widely used for scientific research tasks [9]. Installed on the top of the
mobile platform robot manipulator, Kinova Jaco Gen2 is often used to assist disabled people
by helping them with their daily activities, such as drinking water, holding a spoon, etc.
The manipulator has also been selected for the experiments because it is supported by
numerous software tools that make its control open to users and provide an opportunity to
explore different control approaches. Such a combination of mobile platforms and manipu-
lators widens the fields of application of the resulting mobile manipulators. Examples of
similar assemblies can be found in [10–12]. All those efforts aimed to extend the working
space of manipulators. However, the assembly of a mobile platform and a manipulator
requires relevant kinematic models. An interesting solution can be found in [13], where
authors present a configuration of a mobile manipulator based on Boston Dynamics Spot
that is additionally equipped with a robotic arm. Some of the mobile manipulators with
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open-chain kinematics have been studied and are presented in [14–20]. More recent studies
on the inverse kinematics frameworks of mobile manipulators are given in [21–24].

In the present work, we derive the forward kinematics, inverse kinematics, Jacobian
and inverse Jacobian of the investigated mobile manipulator. The obtained mathematical
models are then applied to control the movement of the laboratory prototype mobile manip-
ulator in the task of maintaining a constant position and orientation of the manipulator’s
end-effector in 3D space while the mobile platform is moving to some extent in the 2D
workspace. This is achieved by controlling the speed of each mobile manipulator link
and the speed of each mobile platform wheel. Afterwards, the efficacy of the proposed
approach is evaluated by running a real-world experiment.

The article is structured in the following way: In Section 2, we describe the components
of the mobile manipulator and derive their kinematic models. Then, the forward and
inverse kinematics of the mobile manipulator and Jacobian algorithms are derived. In
Section 3, the achieved results from the conducted experimental test carried out with the
constructed laboratory prototype are presented. Section 4 contains conclusions.

2. Devices and Mathematical Models
2.1. The Mobile Manipulator

The assembled structure consists of two essential devices: a holonomic mobile platform
and a six-degrees-of-freedom (6 DoF) robot manipulator (Figure 1). The mobile platform is
a KUKA youBot holonomic platform, and the implemented spherical wrist robot is a Jaco
Gen2 manipulator produced by the Canadian company Kinova.
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Figure 1. Mobile manipulator and velocities.

This paper discusses the mathematical derivation of many important aspects that
are related to the designed mobile manipulator: the forward and inverse kinematics
of the mobile platform, forward and inverse kinematics of the manipulator Jaco Gen2,
combined homogeneous transformation between the mobile platform and the end-effector,
manipulator’s Jacobian matrix, manipulator’s inverse Jacobian matrix, and synchronization
between the velocities of these two individual components. The obtained theoretical results
have been verified via the conducted experimental test using a laboratory prototype of the
above mobile manipulator. The implemented control software of the prototype uses ROS
Melodic (Robot Operating System)-implemented packages, which were either provided by
the manufacturers of the devices or are freely available from the web. The transfer of the
control signals and feedback values is provided by the ROS’s topics, the ROS’s actions, and
the ROS’s services. Each one of these types of communication is used depending on the
existing situation. The presented results show the velocities of the mobile platform Vmp



Electronics 2024, 13, 1534 3 of 24

and the robot manipulator Vman. These velocities allow for achieving a stable positioning of
the end-effector during a movement of the mobile platform. The resulting velocity is Vres.

Vres = ±Vmp ± Vman (1)

2.2. The Mobile Platform KUKA youBot

The KUKA youBot mobile platform gives us the opportunity to expand the working
space of the manipulator. Thus, the proposed structure of mobile manipulator enhances
its functionalities.

However, in the design, this combination also increases the complexity of the whole
robot system structure while increasing the mobile robot’s own weight and energy con-
sumption. In order to complete complex work, the manipulator and omnidirectional vehicle
must be in perfect harmony, and they also need to reduce energy loss. Therefore, the study
of omnidirectional mobile operating robot has important theoretical and practical value.

The next figure (Figure 2) shows the most significant dimensions of the KUKA youBot
mobile platform and its structure.
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Figure 2. Geometric dimensions (in [mm]) of the mobile platform KUKA youBot.

The mobile platform is controlled by an onboard computer with embedded Intel
Atom dual-core CPU and 2 GB RAM, 32 GB SSD, WLAN and a USB interface. Available
interfaces are USB and EtherCAT/Ethernet. The existing WiFi connection makes possible
the establishment of ROS communication.

The conventional approach for description of the motion of the mobile platform in
a 2D plane requires the definition of coordinate frames. To specify the position and the
orientation of the mobile platform onto the plane, we have to establish a relationship
between the reference frame of the plane and the local frame of the platform. The axes XI
and YI define an arbitrary inertial basis on the plane as the global reference frame from
some origin O : {XI, YI}. To indicate the position and orientation of the mobile platform,
we choose a geometric center of the platform chassis-point P, and, thus, it is the origin of
the platform’s local reference frame. The axes {XR, YR} define the mobile platform’s local
reference frame. The column vector (2) specifies the position and the orientation of the
platform local reference frame in the global reference frame [25,26]:

P =

x
y
µ

 (2)

where x and y are the displacements along the XI axis and YI axis, and the orientation is
defined by µ.

The KUKA youBot mobile robotic platform is controlled by varying the rotational
speed of each of its omnidirectional wheels (Figure 3b).
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The kinematic model describes the relationship between the rotational speeds of the
four wheels

.
φ1,

.
φ2,

.
φ3 and

.
φ4 and the speed of the mobile platform in the 2D plane. The

types of wheels and robot chassis geometry define this relationship. Each wheel introduces
a set of mathematical constraints on the movement of the platform.

According to [25], using the constraints, we can obtain the kinematic model of the
mobile robot. For a Swedish (mecanum) wheel, the following equations must be satis-
fied [25,26]:

V1R(µ)
.
P − r

.
φi cos(γi) = 0

V2R(µ)
.
P − r

.
φi cos(γi)− rsw

.
φsw = 0,

(3)

where V1 and V2 denote the following three-element vectors:

V1 = [sin(αi + βi + γi)− cos(αi + βi + γi)− lcos(βi + γi)]

V2 = [cos(αi + βi + γi) sin(αi + βi + γi)− lsin(βi + γi)]

the matrix R is the rotational matrix, and r denotes the radius of the wheels.

R =

 cos µ sin µ 0
− sin µ cos µ 0

0 0 1


The index i denotes the number of platform wheels.
Considering the construction parameters of the platform: the length lx = 235.5 mm,

ly = 150 mm and the angle γ = ±45◦, (the robot dimensions are shown in (Figure 2)
and the notations in (Figure 3a)), the angles αi and βi can be calculated according to the
following equations [26]:

α1 = arctg
(

ly
lx

)
,α2 = 180

◦ − arctg
(

ly
lx

)
α3 = 180

◦
+ arctg

(
ly
lx

)
,α4 = arctg

(−ly
lx

) (4)

where, for the considered platform, lx = 235.5mm and ly = 150mm.
According to the theory of kinematics of the Swedish wheel [25], and considering the

fact that the axes of the four wheels are perpendicular to PXR, then using the notations in
Figure 3a, it is possible to express the angle βi and the length l:

βi = 90 − αi; (5)

l =
√

l2x + l2y ≈ 0.279 m
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Table 1 contains the kinematic parameters of the mobile platform.

Table 1. Kinematic parameters of the mobile platform.

α [deg] β [deg] γ [deg] l[m] r[m]

Wheel (1) 32.5 57.5 −45 0.279 0.05
Wheel (2) 147.5 −57.5 45 0.279 0.05
Wheel (3) −147.5 −122.5 −45 0.279 0.05
Wheel (4) −32.5 122.5 45 0.279 0.05

The forward kinematics of the mobile platform is described by the following matrix
equation [26]:  .

x
.
y
.
µ

 =
r
4

 1 1 1 1
−1 1 −1 1
−1

(lx+ly)
−1

(lx+ly)
1

(lx+ly)
1

(lx+ly)




.
φ1.
φ2.
φ3.
φ4

 (6)

And the inverse kinematic model is
.
φ1.
φ2.

φ3.
φ4

 =
1
r


1 −1 −

(
lx + ly

)
1 1 −

(
lx + ly

)
1
1

−1
1

(
lx + ly

)(
lx + ly

)

 .

x
.
y
.
µ

 (7)

2.3. The Manipulator KINOVA Jaco Gen 2

An overview of the robot manipulator Jaco Gen2 and its dimensions are shown on
(Figure 4) [27].
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The geometric dimensions are shown in Table 2; these values are essential components
of forward kinematics and notations: D1, D2, D3, D4, D5, D6 ande2 are structural elements
of the homogeneous transformations.
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Table 2. Structural elements of the homogeneous transformations [27].

Parameters Descriptions Length (m)

D1 Base to shoulder 0.2755

D2
Upper Length (shoulder to

elbow) 0.41

D3
Forearm length (elbow to

wrist) 0.2073

D4 First wrist length 0.1038
D5 Second wrist length 0.1038
D6 Wrist to center of the hand 0.16
e2 Joint 3–4 lateral offset 0.0133

In Table 3, some physical characteristics of the manipulator Jaco Gen2 Spherical Wrist
are given.

Table 3. Physical characteristics of the manipulator Jaco Gen2 [27].

Characteristics Values

Total weight 4.4 kg
Reach 98.4 cm

Maximum payload 2.6 kg (mid-range)/2.2 kg (full-range)
Materials carbon fiber/aluminum

Maximum linear arm speed 20 cm/sec
Power supply voltage 18–29 VDC

Average power 25 W (15 W standby)
Peak power 100 W

Communication protocol RS485
Communication cables 20 pins flat flex cable

Water resistance IPX2
Operating temperature −10 to 40

Kinova Jaco Gen2 has specifically designed actuators mechanics and electronics. They
use DC brushless motors with harmonic drive technology and are equipped with encoders,
a torque sensor, a current sensor, a temperature sensor and accelerometers [23]. Kinova’s
actuators and parameters are presented in Figure 5 and Table 4, respectively.
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Figure 5. Kinova’s actuators: K-75+, K-75 and K-58.

Table 4. Kinova Jaco Gen 2’s actuator specifications.

Title K−75+ K−75 K−58

Nominal torque (Nm) 12 9.2 3.6
Peak torque (Nm) 30.5 18 6.8

No load speed (rpm) 12.2 9.8 20.3
Nominal speed (rpm) 9.4 7 15

Weight (g) 570 587 357
Reduction ratio 136 160 110

Angular ranges, software limited (turns) ±27.7
Communication protocol RS485
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Multiple functionalities are offered by the software provided by the company Kinova
(Boisbriand, QC, Canada). Using the Development Center and the Torque Console [27],
researchers can monitor the manipulator’s state, activate admittance, switch between
Cartesian and angular control and define trajectories. There is a C++ programming function
integrated that can be used to access the API, for example, the API function can deactivate
auto-avoidance behavior. Kinova Jaco 2 is an integrable device in ROS environment. The
kinova-ros stack (set of ROS packages) provides a ROS interface for Kinova Jaco2. The stack
is developed above the Kinova C++ API functions, which communicate with the DSP inside
the robot base [27]. Using our knowledge of the robot’s structure and measurements, we
define its forward kinematic table, using classical Denavit–Hartenberg convention (Table 5).

Table 5. Table formed using Denavit–Hartenberg parameters, classical approach [27].

i αi ai di θi

1 π
2 0 D1 θ1

2 π D2 0 θ2

3 π
2 0 −e2 θ3

4 π
2 0 −(D3 + D4) θ4

5 π
2 0 0 θ5

6 π 0 −(D5 + D6) θ6

The classical Denavit–Hartenberg convention is defined by the following matrix [28]:

i−1
i T =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (8)

The modified Denavit–Hartenberg convention is defined by the following matrix [29]:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (9)

We mark the trigonometric functions cθi and sθi with cos θi and sin θi, respectively. Addi-
tionally, cθij and sθij are equal to cos

(
θi + θj

)
and sin

(
θi + θj

)
, respectively.

The Manipulator Jaco Gen 2 Inverse Kinematics

All approaches to obtain the inverse kinematics of a robot manipulator proposed in
the scientific literature can be divided into two classes: (i) approaches using numerical
solutions and (ii) approaches based on closed-form solutions. Due to their iterative nature,
approaches based on the numerical solutions are much slower than those using closed-form
solution. So, in the most applications, especially for online implementations, the numerical
approach for solving inverse kinematics is not suitable.

“Closed form” denotes a solution method based on analytic expressions or the solution
of polynomials of degree 4 or less. Although, in the general case, the six-degrees-of-freedom
manipulator does not have a closed–form solution, for some particular manipulator struc-
tures characterized by either several intersecting joint axes or several angles αi equal to 0
or ±90 degrees, closed-form solutions exist.

Such an approach to obtain a closed-form solution is Pieper’s approach that studies
manipulators with six degrees of freedom where three of their consecutive axes intersect
at a point [29]. The inverse kinematic problem calculates the desired angular position
θ1, θ2, θ3, θ4, θ5, andθ6 of each rotational joint, according the predefined position and orien-
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tation in the final homogeneous transformation 0
6T. We have implemented Pieper’s method

for all six revolute joints of Jaco Gen 2, with the last three axes intersecting. The idea in
Pieper’s solution is to split the calculation into two separate problems—the first one, taking
into account the first three joints, and the second one, considering the last three joints. A
brief formulation of the algorithm can be presented as follows:

1. Locate the intersection point of the last three joint axes;
2. Calculate the position of this intersection point, given that we know the desired

position and orientation of the end-effector;
3. Solve inverse kinematics for first three joints;
4. Compute 0

3T and determine 3
6T;

5. Solve the inverse kinematics for the last three joints.

Using the modified Denavit–Hartenberg convention, given by (9) we can derive the
homogeneous transformation (Table 6):

Table 6. Table formed by Denavit–Hartenberg parameters, using a modified approach.

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 π
2 0 0 θ2

3 0 D2 e2 θ3

4 −π
2 0 D3 + D4 θ4

5 π
2 0 0 θ5

6 −π
2 0 0 θ6

Where θ1, θ2, θ3, θ4, θ5 andθ6 are the known angular displacements as follows:

0
1T =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

 (10)

1
2T =


cθ2 −sθ2 0 0
0 0 1 0

−sθ2 −cθ2 0 0
0 0 0 1

 (11)

2
3T =


cθ3 −sθ3 0 0.41
sθ3 cθ3 0 0
0 0 1 0.0133
0 0 0 1

 (12)

3
4T =


cθ4 −sθ4 0 0
0 0 1 0.3111

−sθ4 −cθ4 0 0
0 0 0 1

 (13)

4
5T =


cθ5 −sθ5 0 0
0 0 −1 0

sθ5 cθ5 0 0
0 0 0 1

 (14)

5
6T =


cθ6 −sθ6 0 0
0 0 1 0

−sθ6 −cθ6 0 0
0 0 0 1

 (15)
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The complete model of forward kinematics, using a modified Denavit–Hartenberg conven-
tion [29], taking into account the actual angular displacement of each rotational joint, is

0
6T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (16)

In order to solve the inverse kinematics, we have to calculate the angular position of each
rotational joint, knowing the desired orientation and position 0

6T:

0
6T =


r11 r12 r13 px
r21 r22 r23 py

r31
0

r32
0

r33 pz
0 1

 = 0
1T(θ1)

1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (17)

Values θ1, θ2, θ3, θ4, θ5 andθ6 in (17) are the desired angular positions, and 0
6T contents are the

predefined desired orientations and positions. Using (17), we put 0
1T(θ1) on the left-hand

side of the equation:[
0
1T(θ1)

]−10
6T = 1

2T(θ2)
2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (18)

Inverting the matrix 0
1T, we can write (18)
cθ1 sθ1 0 0
−sθ1 cθ1 0 0

0
0

0
0

1 0
0 1




r11 r12 r13 px
r21 r22 r23 py
r31
0

r32
0

r33 pz
0 1

 = 1
6T (19)

According to Pieper’s approach, we equate the element placed on row 2, column 4 in-
side the matric 1

6T with the element placed on row 2, column 4 from the matrix
[0

1T(θ1)
]−10

6T.
The unknown angular displacement θ1 can now be expressed by (20).

−sθ1px + cθ1py = 0.0133 (20)

To solve an equation of this form, we make the following trigonometric substitutions:

px = ρcϕ
py = ρsϕ

(21)

where ρ is the distance from the origin of the base coordinate system to the point defined
by the x and y coordinates of the end-effector:

ρ =
√

p2
x + p2

yϕ = Atan2
(

py, px

)
(22)

Substituting (21) into (20) [29],

cθ1sϕ − sθ1cϕ =
0.0133

ρ
(23)

From the difference-of-angles formula,

s(ϕ − θ1) =
0.0133

ρ
(24)

Hence,

c(ϕ − θ1) = ±

√
1 − 0.00017689

ρ2 (25)
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and so

ϕ − θ1 = Atan2

(
0.0133

ρ
,±

√
1 − 0.00017689

ρ2

)
(26)

The solution for θ1 can be written as

θ1 = Atan2
(

py, px

)
− Atan2

(
0.0133,±

√
p2

x + p2
y − 0.00017689

)
(27)

We have found two possible solutions for the desired value of θ1, corresponding to the
plus-or-minus sign in (27). Now that θ1 is known, the left-hand side of (19) is known. By
equating the elements on row 1, column 4 and row 3, column 4 from both sides of (19), we
can write Equation (28) as follows [29]:

cθ1px + sθ1py = 0.41cθ2 − 0.3111sθ23

−pz = 0.41sθ2 + 0.3111cθ23
(28)

After taking the squares of Equations (28) and (20) and adding them, the resulting equations
are obtained:

−(D3 + D4)sθ3 =
p2

x + p2
y + p2

z − D2
2 − e2

2 − (D3 + D4)
2

2D2
(29)

sθ3 =
0.265 − p2

x − p2
y − p2

z

0.2551
= K (30)

cθ3 = ±
√

1 − K2 (31)

θ3 = Atan2
(

K,±
√

1 − K2
)

(32)

The plus or minus sign in (32) leads to two different solutions for the angle θ3. We can
rewrite Equation (17) so that the entire left-hand side becomes a function of three parameters
θ1, θ2 andθ3. The only unknown parameter is θ2:

[
0
3T(θ2)

]−1


r11 r12 r13 px
r21 r22 r23 py

r31
0

r32
0

r33 pz
0 1

 = 3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (33)

or 
cθ1cθ23 sθ1cθ23 −sθ23 −0.41cθ3
−cθ1sθ23 −sθ1sθ23 −cθ23 0.41sθ3
−sθ1 cθ1 0 0.0133

0 0 0 1




r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 =

=


cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 −cθ4sθ5 0

cθ6sθ5 sθ5sθ6 cθ5 0.3111
−cθ4sθ6 − cθ5cθ6sθ4 cθ5sθ4sθ6 − cθ4cθ6 sθ4sθ5 0

0 0 1


(34)

If we equate the elements on row 1, column 4 and row 2, column 4 from both sides of (34),
we can write [29]

cθ1cθ23px + sθ1cθ23py − sθ23pz − 0.41cθ3 = 0
−cθ1sθ23px − sθ1sθ23py − cθ23pz + 0.41sθ3 = 0.3111

(35)



Electronics 2024, 13, 1534 11 of 24

These equations can be solved simultaneously for sθ23 and cθ23, resulting in

sθ23 =
0.41

(
cθ1sθ3px+sθ1sθ3py−cθ3pz

)
p2

z+
(

cθ1px+sθ1py

)2

cθ23 =
0.41

(
cθ1cθ3px+sθ1cθ3py+sθ3pz

)
−0.3111

p2
z+
(

cθ1px+sθ1py

)2

(36)

The denominators are equal and positive, so we solve for the sum of θ2 and θ3 as fol-
lows [29]:

θ23 = Atan2(arg1, arg2) (37)

where
arg1 =

[
cθ1cθ23px + sθ1cθ23py − 0.41cθ3

]
and arg2 =

[
0.41

(
cθ1cθ3px + sθ1cθ3py + sθ3pz

)
− 0.3111

]
.

Equation (37) computes four values of θ2θ3, according to the four possible combina-
tions of solutions for θ1 and θ3; then, four possible solutions for the desired angular position
θ2 are computed as follows:

θ2 = θ23 − θ3 (38)

The entire left side of (34) is known. If we equate the elements on row 1, column 3 and
row 3, column 3 from both sides of (34), we can write:

r13cθ1cθ23 + r23sθ1cθ23 − r33sθ23 = −cθ4sθ5
−r13sθ1 + r23cθ1 = sθ4sθ5

(39)

As long as sθ5 ̸= 0, the solution for θ4 is

θ4 = Atan2(−r13sθ1 + r23cθ1, r13cθ1cθ23 + r23sθ1cθ23 − r33sθ23) (40)

When θ5 = 0, the manipulator is in a configuration in which axes 6 and 4 line up and
cause the same motion of the last link of the robot. In this case, all that can be solved for
is the sum or difference of θ4 and θ6. This situation is detected by checking whether both
arguments of the Equation (40) are near to zero. If so, θ4 is chosen arbitrarily, and when θ6
is computed later, it will be computed accordingly.

If we consider (17), we can rewrite it so that the entire left-hand side is a function of
only knowns and θ4, rewriting it as follows [29]:

[
0
4T(θ4)

]−1


r11 r12 r13 px
r21 r22 r23 py

r31
0

r32
0

r33 pz
0 1

 = 4
5T(θ5)

5
6T(θ6) (41)

[0
4T(θ4)

]−1
=

=


cθ1cθ23cθ4 + sθ1sθ4 sθ1cθ23cθ4 − cθ1sθ4 −sθ23cθ4 0.0133sθ4 − 0.41cθ3cθ4
−cθ1cθ23sθ4 + sθ1cθ4 −sθ1cθ23sθ4 − cθ1cθ4 sθ23sθ4 0.0133cθ4 + 0.41cθ3sθ4

−cθ1sθ23 −sθ1sθ23 −cθ23 0.41sθ3 − D3 − D4
0 0 0 1

 (42)

4
5T(θ5)

5
6T(θ6) =


cθ5cθ6 −cθ5sθ6 −sθ5 0

sθ6 cθ6 0 0
cθ6sθ5 −sθ5sθ6 cθ5 0

0 0 0 1

 (43)
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If we equate the elements on row 1, column 3 and row 3, column 3 from the both sides of
(42), we obtain

r13(cθ1cθ23cθ4 + r23(sθ1cθ23 − cθ1sθ4)− r33sθ23cθ4 = −sθ5
−r13cθ1sθ23 − r23sθ1sθ23 − r33cθ23 = cθ5

(44)

We solve for the desired value of θ5 as follows:

θ5 = Atan2(sθ5, cθ5) (45)

Applying the same method one more time, we compute 0
5T−1 and write (17) in the

following form:

[
0
5T(θ5)

]−1


r11 r12 r13 px
r21 r22 r23 py
r31
0

r32
0

r33 pz
0 1

 = 5
6T(θ6) (46)

If we equate the elements on row 3, column 1 and row 1, column 1 from the both sides of
(42), we can write

−r11(cθ1cθ23sθ4 − sθ1cθ4)− r21(sθ1cθ23sθ4 + cθ1cθ4) + r31sθ23sθ4 = sθ6
r11[(cθ1cθ23cθ4 + sθ1sθ4)cθ5 − cθ1sθ23sθ5]+
+r21[(sθ1cθ23cθ4 − cθ1sθ4)cθ5 − sθ1sθ23sθ5]−

−r31(sθ23cθ4cθ5 + cθ23sθ5) = cθ6

(47)

θ6 = Atan2(sθ6, cθ6) (48)

Because of the plus or minus signs appearing in (27) and (32), these equations compute
four solutions. Additionally, there are four more solutions obtained by the wrist of the
manipulator. For each of the four solutions computed above, we obtain the flipped solution
by [29]

θ′4 = θ4 + 180o

θ′5 = −θ5
θ′6 = θ6 + 180o

(49)

2.4. The Designed Mobile Manipulator’s Common Chain of Frames

To achieve a successful combination between the KUKA youBot mobile platform and
the Kinova Jaco Gen 2 robot manipulator, we have to describe the position of the end-
effector according the local frame, attached to the center of the mobile chassis (platform). In
order to deploy the mathematical equations, we have to describe the connection between the
Kinova manipulator’s base frame and the KUKA mobile platform frame using the classical
Denavit–Hartenberg convention (18). The aim is to derive a homogeneous transformation
mobP
manipT between these two frames; the transformation will be sized as a 4 × 4 matrix, and

the matrix will include the rotations between frame RmobP
manip(t) and vector omobP

manip(t) that
describes the displacement between the origins of these two frames. The origin of the
Kinova manipulator base frame is in negative direction according the x axis of the mobile
platform, a fact that causes a negative sign to be attached to the Denavit–Hartenberg
parameter a. The distance between the origins is denoted as h2.

mobP
manipT =

[
RmobP

manip(t) omobP
manip(t)

0 1

]
=


0 0 −1 −l2
−1 0 0 0
0 1 0 0
0 0 0 1

 (50)
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To calculate the position and the orientation of the end-effector, we have to provide
the product of seven homogeneous transformations:

mobP
6 T = mobP

manipT0
1T(θ1)

1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (51)

The final result is shown in (Figure 6).
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2.5. Jacobian

Since the Kinova Jaco Gen 2 manipulator is mounted upon the mobile platform KUKA
youBot, in order to be able to maintain the stable position of the manipulator’s end-effector,
while the platform is moving within its 2D workspace, we have to calculate the Jacobian
matrix to determine the instantaneous velocity of the gripper along the Cartesian y axis (y
axis of the base coordinate system). The manipulator’s y axis coincides with the mobile
platform’s x axis. The goal that we imposed for our experiments is even simplified: to
keep the position of the gripper stable, according to the inertial coordinate system of
the environment, while the mobile platform is moving along a straight line, its x axis,
for example. To achieve the purpose, we set the velocity of the youBot mobile platform
according to the velocity of the gripper, using the opposite direction. The joint velocities
are accessible through the messages, provided by the ROS stack, a concatenated set of ROS
packages. The calculation of the Jacobi matrix is an essential mathematical element for the
successful conduct of the experiments.

2.5.1. Linear Velocity

Consider frame {B} to be attached to a rigid body. We must describe the motion
of point BQ relative to the frame {A}, where we consider {A} to be fixed. Frame {B} is
located relative to frame {A}, the position vector is APBORG, the rotation matrix is A

B R, and
we will assume that the orientation of A

B R is constant with time, that is, the motion of point
Q relative to {A} is due to APBORG [29]. Equation (52) solves the linear velocity of point Q
in terms of {A}. We have to express both components of the velocity in terms of {A} and
sum them, keeping the relative orientation between these two frames constant as follows:

AVQ = AVBORG + A
B RBVQ (52)

2.5.2. Rotational Velocity

If the orientation between two frames is changing in time, the point that is fixed in
frame {B} is indicated by vector BQ. The rotational velocity of the frame {B} relative to
frame {A} is expressed by a vector AΩB. We will consider that the linear velocity vector
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BVQ is constant equal to zero. Point Q will have only rotational velocity AΩB according
frame {A}. We can observe both the magnitude and the direction of the change in vector
BQ, as viewed from {A}. The differential change in AQ is perpendicular to AQ and AΩB.
Additionally, it is observable that the magnitude of the differential change is

|∆Q| = (
∣∣∣AQ

∣∣∣sin θ
(∣∣∣AΩB

∣∣∣∆t
)

(53)

The vector cross-product is suggested by a defined condition of magnitude and
direction. These conditions are satisfied by the following equation:

AVQ = AΩB × AQ (54)

Generally, the vector Q can also be changed according the frame {B}. This concept is
described by

AVQ =A
(

BVQ

)
+ AΩB × AQ = A

B RBVQ + AΩB × A
B RBQ =

= AVBORG + B
ARBVQ + AΩB × B

ARBQ
(55)

When the geometric approach is described, however, to investigate more precisely, we
must describe also the mathematical approach.

To derive the relationship between the derivative of an orthonormal matrix and a
certain skew-symmetric matrix, we will use n × n orthonormal matrix R:

RRT = In (56)

the matrix In is an n × n identity matrix. Differenting (56), we derive

.
RR

T
+ R

.
R

T
= 0n (57)

The matrix 0n is an n × n zero matrix; thus, (57) can be written as

.
RR

T
+

(
.
RR

T
)T

= S + ST = 0n, (58)

where S is a skew-symmetric matrix. The relationship between the derivative of orthonor-
mal matrices and skew-symmetric matrices is

S =
.
RR

−1
(59)

Let us consider a vector BP that is fixed in frame {B}. Its description in another frame
{A} is

AP = B
ARBP (60)

If frame {B} is rotating, it means that the derivative B
A

.
R is not a zero, so the resulting vector

AP will also be changing:
A

.
P = B

A

.
RBP (61)

Using the notation for velocity that it will give and (59), we have:

AVP = B
A

.
RBP = A

B

.
RA

B R−1
AP = A

B SAP (62)
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The skew-symmetric matrix in (59) is called the angular-velocity matrix. We assign the
elements in a skew-symmetric matrix S as follows:

S =

 0 −Ωx Ωy
Ωx 0 −Ωx
−Ωy Ωx 0

 (63)

The column vector Ω, which corresponds to the 3× 3 angular-velocity matrix, is an angular-
velocity vector:

Ω =

Ωx
Ωy
Ωz

 (64)

Applying vector cross-product gives

SP = Ω × P (65)

where P is any vector.
Hence, (59) can be written as follows:

AVP = AΩB × AP (66)

where the notation for Ω indicates that it is the angular-velocity vector specifying the
motion of the frame {B} with respect to frame {A} [29].

2.5.3. Motion of the Robot’s Links

Notations vi and ωi are the linear and angular velocities of the origin of link frame
{i}. The robot’s structure is a chain of connected links, where each one is capable of motion
relative to its neighbors. To calculate the velocities of each link, the starting point is the
robot’s base. The velocities of link i + 1 will be calculated according to the velocity of link i
plus new velocity components added by link i + 1. We have to divide the velocity into two
subparts: the linear velocity of the origin of the link frame and the rotational velocity of
the link.

Rotational velocities can be added when both ω vectors are written with respect to the
same frame. Therefore, the angular velocity of link i + 1 is the same as that of link i plus a
new component caused by rotational velocity at joint i + 1. This statement can be written
according to frame {i} as follows:

iωi+1 = iωi +
i
i+1R

.
θi+1

i+1Ẑi+1 (67)

Also

.
θi+1

i+1Ẑi+1 = i+1

 0
0

.
θi+1

 (68)

In order to represent the added rotational component due to motion at the joint in the
frame {i + 1}, we have made use of the rotational matrix related to frames {i} and {i + 1}.
The rotational matrix describes the rotation of joint i + 1 using its description in frame {i},
and we can add the two components of angular velocities [29]. We can find the description
of the angular velocity of link i + 1 according to frame {i + 1} using:

i+1ωi+1 = i+1
i Riωi +

.
θi+1

i+1Ẑi+1 (69)
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The linear velocity of the origin of the frame {i + 1} is equal to the velocity of frame
{i} plus a new component caused by the rotation of link i. It is described by the last part of
(55), in frame {i}. One term vanishes because iPi+1 is constant. We have

ivi+1 = ivi +
iωi × iPi+1 (70)

Premultiplying both sides by i+1
i R, we compute

i+1vi+1 = i+1
i R

(
ivi +

iωi × iPi+1

)
(71)

Equations (69) and (71) are important results related to revolute joints. The correspond-
ing relationships for the case when joint i + 1 is prismatic are

i+1vi+1 = i+1
i R

(ivi +
iωi × iPi+1

)
+

.
di+1

i+1Ẑi+1
i+1ωi+1 = i+1

i Riωi
(72)

Applying Equation (72) or (69) and (71) successively from link to link, we can compute
NωN and NvN.

The multidimensional form of the derivatives is known as Jacobian. If we have six
functions and the number of the independent parameters is also six, we have [29]

y1 = f1(x1, x2, x3, x4, x5, x6)
y2 = f2(x1, x2, x3, x4, x5, x6)

...
y6 = f6(x1, x2, x3, x4, x5, x6)

(73)

Using a vector notation (72) can be written as

Y = F(X) (74)

We can use the chain rule to calculate δyi as follows [29]:

δy1 = ∂f1
∂x1

δx1 +
∂f1
∂x2

δx2 + · · ·+ ∂f1
∂x6

δx6

δy2 = ∂f2
∂x1

δx1 +
∂f2
∂x2

δx2 + · · ·+ ∂f2
∂x6

δx6
...

δy6 = ∂f6
∂x1

δx1 +
∂f6
∂x2

δx2 + · · ·+ ∂f6
∂x6

δx6

(75)

In vector notation, (76) is

δY =
∂F
∂X

δX (76)

The Jacobian is a 6 × 6 matrix. It contains partial derivatives, and the notion of the
matrix is J. If the functions f1(X) through f6(X) are nonlinear, then the partial derivatives
are functions of xi, so we can use the following notation:

δY = J(X)δX (77)

The Jacobian can be presented as mapping velocities in X to Y

.
Y = J(X)

.
X (78)
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At each new instance, X has changed, which means that the linear transformation
J(X) has also changing. In robotics, the general purpose of Jacobian is that it relates joint
velocities to the Cartesian velocities of the tip of the arm [29]

0

Electronics 2024, 13, x FOR PEER REVIEW 16 of 24 
 

 

v 
i+1

i+1 = Ri
i+1 ( v 

i
i + ω 

i
i × P 

i
i+1)    (71) 

Equations (69) and (71) are important results related to revolute joints. The 

corresponding relationships for the case when joint i + 1 is prismatic are 

v 
i+1

i+1 = Ri
i+1 ( v 

i
i + ω 

i
i × P 

i
i+1) + ḋi+1 Ẑ 
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J(X) has also changing. In robotics, the general purpose of Jacobian is that it relates joint 
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𝓋 
0 = J 

0 (Θ)Θ̇ (79) 

where the vector of joint displacements is Θ, and the Cartesian velocities are represented 

by the vector 𝓋. The superscript in front of the vector notations indicates in which frame 

the resulting Cartesian velocities are expressed. The shape of the vector Θ̇ is 6 × 1 and 
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0  is split into two parts: 

= 0J(Θ)
.

Θ (79)

where the vector of joint displacements is Θ, and the Cartesian velocities are represented
by the vector
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the resulting Cartesian velocities are expressed. The shape of the vector
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Θ is 6 × 1 and the

vector 0
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[ 0v
0ω

]
(80)

The first three elements of 0
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0  has the shape 6 × 1. The vector 𝓋 

0  is split into two parts: 

represent linear velocity, and the second three elements
represent angular velocity. The Jacobian has a number of rows equal to the degrees of
freedom in the Cartesian space, with columns representing the number of joints of the
manipulator. The Jacobian can be found by directly differentiating the kinematic equations
of the manipulator. This approach is easily implemented for linear velocities, but there is
no 3 × 1 orientation vector whose derivative is ω. That is the reason why we introduced
Equations (69) and (71).

When the Jacobian is nonsingular, we can calculate joint velocities from the given
Cartesian velocities: .

Θ = J−1(Θ)0
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2.6. Maintaining the Constant Position of the Manipulator’s Gripper While the Mobile Platform
Is Moving

The position and orientation of the working tool of Kinova Jaco Gen2 are calculated
by multiplying homogeneous transformations from (82) to (87). These transformations are
derived using a classical Denavit–Hartenberg convention, as is presented in (18):

0
1T =


cθ1 0 sθ1 0
−sθ1 0 cθ1 0

0 −1 0 D1
0 0 0 1

 (82)

1
2T =


cθ2 sθ2 0 D2cθ2
sθ2 cθ2 0 D2cθ2
0 0 −1 0
0 0 0 1

 (83)

2
3T =


cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 −e2
0 0 0 1

 (84)

3
4T =


cθ4 0 sθ4 0
sθ4 0 −cθ4 0
0 1 0 −(D3 + D4)
0 0 0 1

 (85)

4
5T =


cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

 (86)
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5
6T =


cθ6 sθ6 0 0
sθ6 sθ6 0 0
0 1 −1 −(D5 + D6)
0 0 0 1

 (87)

The vector Θ contains all the angular positions of the joints:

Θ = [θ1, θ2, θ3, θ4, θ5, θ6]
T (88)

The values of Θ are instantaneous. Since the investigated mobile manipulator has only
rotational joints, we can use (69) and (71) to calculate the Jacobian. The output will be a
vector with velocities in the Cartesian space, while the input values are the velocities of the
manipulator’s joints

.
Θ. As the values of Θ and

.
Θ were previously saved, we will use them

to calculate 0
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δy1 =
∂f1
∂x1

δx1 +
∂f1
∂x2

δx2 + ⋯ +
∂f1
∂x6

δx6 

δy2 =
∂f2
∂x1

δx1 +
∂f2
∂x2

δx2 + ⋯+
∂f2
∂x6

δx6 

⋮ 

δy6 =
∂f6
∂x1

δx1 +
∂f6
∂x2

δx2 + ⋯+
∂f6
∂x6

δx6 

(75) 

In vector notation, (76) is 

δY =
∂F

∂X
δX (76) 

The Jacobian is a 6 × 6 matrix. It contains partial derivatives, and the notion of the 

matrix is J. If the functions f1(X) through f6(X) are nonlinear, then the partial derivatives 

are functions of xi, so we can use the following notation: 

δY = J(X)δX (77) 

The Jacobian can be presented as mapping velocities in X to Y 

Ẏ = J(X)Ẋ (78) 

At each new instance, X has changed, which means that the linear transformation 

J(X) has also changing. In robotics, the general purpose of Jacobian is that it relates joint 

velocities to the Cartesian velocities of the tip of the arm [29] 

𝓋 
0 = J 

0 (Θ)Θ̇ (79) 

where the vector of joint displacements is Θ, and the Cartesian velocities are represented 

by the vector 𝓋. The superscript in front of the vector notations indicates in which frame 

the resulting Cartesian velocities are expressed. The shape of the vector Θ̇ is 6 × 1 and 

the vector 𝓋 
0  has the shape 6 × 1. The vector 𝓋 

0  is split into two parts: 

for each instance. The calculation of the Jacobian is performed in steps; in
each step, the algorithm calculates a column of the matrix J.

0
2R = 0

2T(0 : 2, 0 : 2) =
[0

1T(θ1)
1
2T(θ2)

]
(0 : 2, 0 : 2)

0
3R = 0

3T(0 : 2, 0 : 2) =
[0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

]
(0 : 2, 0 : 2)

0
4R = 0

4T(0 : 2, 0 : 2) =
[0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

]
(0 : 2, 0 : 2)

0
5R = 0

5T(0 : 2, 0 : 2) =
[0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

]
(0 : 2, 0 : 2)

0
6R = 0

6T(0 : 2, 0 : 2) =
[0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6)

]
(0 : 2, 0 : 2)

(89)

Using (86), we can calculate

J(0 : 5, 0) =



1 0 0
0 1 0
0 0 1

0
0
1

×

0
6T(0 : 3, 3)−

0
0
0


1 0 0

0 1 0
0 0 1

0
0
1



 (90)

J(0 : 5, 1) =


0
1R

0
0
1

×
(0

6T(0 : 3, 3)− 0
1T(0 : 3, 3)

)
0
1R

0
0
1



 (91)

J(0 : 5, 2) =


0
2R

0
0
1

×
(0

6T(0 : 3, 3)− 0
2T(0 : 3, 3)

)
0
2R

0
0
1



 (92)

J(0 : 5, 3) =


0
3R

0
0
1

×
(0

6T(0 : 3, 3)− 0
3T(0 : 3, 3)

)
0
3R

0
0
1



 (93)
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J(0 : 5, 4) =


0
4R

0
0
1

×
(0

6T(0 : 3, 3)− 0
4T(0 : 3, 3)

)
0
4R

0
0
1



 (94)

J(0 : 5, 5) =


0
5R

0
0
1

×
(0

6T(0 : 3, 3)− 0
5T(0 : 3, 3)

)
0
5R

0
0
1



 (95)

The final Jacobian is derived by combining Equations (90) to (95).

J = [J(0 : 5, 0), J(0 : 5, 1), J(0 : 5, 2), J(0 : 5, 3), J(0 : 5, 4), J(0 : 5, 5)] (96)

The velocities of the joints are represented by

.
Θ =

[ .
θ1,

.
θ2,

.
θ3,

.
θ4,

.
θ5,

.
θ6

]T
(97)

The final Cartesian velocities are calculated using (96) and (97) by[ 0v
0ω

]
= J(Θ)

.
Θ (98)

If we have to calculate
.

Θ, we use the inverse Jacobian

J−1 =
1

det(J)
adj(J) (99)

.
Θ = J−1(Θ)

[ 0v
0ω

]
(100)

3. Experimental Results

The proposed approach is validated by conducting a real-world experiment with
the laboratory prototype of the proposed mobile manipulator. Both components of the
introduced manipulator are ROS-supported. This gives a universal point of view regard-
ing the implemented solutions, despite the differences in the architecture of the mobile
manipulator subsystems.

Using the message provided by the Kinova ROS stack:/’${kinova_robotType}_driver’/
out/joint_state, we are able to observe the velocities and angular positions for each robot
joint. The calculated movement speeds along the Kinova Jaco Gen 2′s Cartesian coordinate
system’s x, y and z axes and angular velocities of ωx,ωy, andωz are fed to KUKA youBot.
The data recorded during the experiments are used to display the results. The velocities
are measured in radians per second. Based on this, we structure a matrix that contains
the joint velocities during the experiment. Using these measurements, we are able to
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determine the end-effector’s velocities along the Cartesian coordinate system’s axis and its
angular velocities. 

.
x
.
y
.
z
ωx
ωy
ωz

 = J6×6



.
θ1.
θ2.
θ3.
θ4.
θ5.
θ6


6×1

(101)

where
.
θ1,

.
θ2,

.
θ3,

.
θ4,

.
θ5 and

.
θ6 are joint velocities. Figure 7 shows the velocity ramp for each

joint during the validation.
The values of the vector elements that represent the linear and angular velocities

during the experiment are shown in Figure 9. It visualizes the results of applying formula
(98). The velocities of the joints are applied to the earlier proposed algorithm. It calculates
the vector that is given in (98). The values inside the vector provide a stable position for
the end-effector in the 3D space, despite the movable base.
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Figure 7. Joint velocities: (a) velocity of the first joint; (b) velocity of the second joint; (c) velocity of
the third joint; (d) velocity of the fourth joint; (e) velocity of the fifth joint; (f) velocity of the sixth joint.

The positions along the axes and the orientations around them for the end-effector in
the Cartesian coordinate system are shown in Figure 8.
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Figure 8. Measured positions and orientations of the end-effector. There are 3 positions and 3
orientations according to the manipulator’s base (Cartesian) coordinate system: (a) position along the
x axis; (b) position along the y axis; (c) position along the z axis; (d) orientation around the x axis—α;
(e) orientation around the y axis—β; (f) orientation around the z axis—γ.
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Figure 9. Calculated velocities according to the manipulator’s base coordinate system, along each
axis and around each axis. These velocities applied to the base provide constant position of the
end-effector during its movement according to the adjusted joint velocities vector

.
Θ: (a) velocity

along the x axis; (b) velocity along the y axis; (c) velocity along the z axis; (d) velocity around the x
axis; (e) velocity around the y axis; (f) velocity around the z axis.
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The displacement between the positions of the end-effector of the Kinova Jaco Gen 2
manipulator and the KUKA youBot mobile platform during the experiment is presented in
Figure 10.
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Figure 10. Displacement between the position of the movable base coordinate system and the position
of the end-effector.

According to the proposed approach, we calculated the manipulator’s velocity along
the axes of its base frame to keep its end-effector ’s position constant during the movement
of the base. The base is attached to the mobile platform KUKA youBot. To validate
the proposed approach, we visualized manipulator’s position along its y axis during the
movement of the mobile robot. The manipulator’s home position along y axis is around
−0.25 m. The horizontality of the line shows that the velocities of the manipulator and
mobile robot are approximately the same, slightly observable slope may be caused by not
perfect environment conditions like the slippage of the mobile platform’s wheels.

Figure 11 shows the positions of the mobile platform and the manipulator gripper
during the experiment. Additionally, the starting and the final positions of their movements
are visible.
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4. Conclusions

We have proposed an affordable open-source mobile manipulator composed of the
KUKA youBot mobile platform and a Kinova Jaco manipulator, and we have developed
corresponding kinematic problems. The later have been verified by running experiments
with the designed laboratory prototype. The proposed open-source character of the mobile
manipulator and the initial software provided by the ROS community can help robot
researchers to concentrate directly on their research topics. The latter can more easily com-
plete challenging research and development tasks, which will accelerate the technology’s
transfer and application.
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