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Abstract: This study investigates the strategic decision-making abilities of large language models
(LLMs) via the game of Tic-Tac-Toe, renowned for its straightforward rules and definitive outcomes.
We developed a mobile application coupled with web services, facilitating gameplay among leading
LLMs, including Jurassic-2 Ultra by AI21, Claude 2.1 by Anthropic, Gemini-Pro by Google, GPT-3.5-
Turbo and GPT-4 by OpenAI, Llama2-70B by Meta, and Mistral Large by Mistral, to assess their rule
comprehension and strategic thinking. Using a consistent prompt structure in 10 sessions for each
LLM pair, we systematically collected data on wins, draws, and invalid moves across 980 games,
employing two distinct prompt types to vary the presentation of the game’s status. Our findings
reveal significant performance variations among the LLMs. Notably, GPT-4, GPT-3.5-Turbo, and
Llama2 secured the most wins with the list prompt, while GPT-4, Gemini-Pro, and Mistral Large
excelled using the illustration prompt. GPT-4 emerged as the top performer, achieving victory with
the minimum number of moves and the fewest errors for both prompt types. This research introduces
a novel methodology for assessing LLM capabilities using a game that can illuminate their strategic
thinking abilities. Beyond enhancing our comprehension of LLM performance, this study lays the
groundwork for future exploration into their utility in complex decision-making scenarios, offering
directions for further inquiry and the exploration of LLM limits within game-based frameworks.

Keywords: large language model; LLM; benchmark; evaluate; performance; test; Tic-Tac-Toe; AI; game;
strategic; decision-making; prompt engineering; analysis; leaderboard; AGI; competition; championship;
text-based game; challenge; AI21; Jurassic Ultra; Anthropic; Claude; Gemini; Gemini-Pro; GPT-3.5;
GPT-4; Meta; Llama2; Mistral

1. Introduction

In the 1983 movie “WarGames”, a fictional AI concludes that nuclear war has no
winner by simulating Tic-Tac-Toe games, leading it to refrain from launching missiles [1,2].
Although this scenario is far removed from current AI capabilities, recent advancements
in large language models (LLMs) have marked significant progress in the field. Large
language models (LLMs) are capable of generating text by replicating language patterns,
grammar, and facts after learning from a vast database of existing text. The term ‘large’
refers to the extensive number of parameters these models possess, which enables them
to understand and produce complex and nuanced text [3]. These developments prompt
questions about the potential for achieving Artificial General Intelligence (AGI) [4] and the
timeline for such advancements. Predictions on the timeline for AGI vary [5,6], with some
experts suggesting its inevitability [7]. A critical challenge in the journey towards AGI is
developing benchmarks to assess AI’s evolving intelligence.

In this study, we assess the capabilities of several leading large language models
(LLMs) by evaluating their performance in playing Tic-Tac-Toe. This evaluation aims to
gauge their understanding of the game’s rules and their strategic decision-making abilities.
To facilitate this, we developed a mobile application that enables LLMs to autonomously
engage in Tic-Tac-Toe games, either solo or against each other. The evaluation utilizes two
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types of prompts to determine the LLMs’ ability to comprehend and effectively participate
in this fundamental game.

2. Background and Related Research
2.1. History of Large Language Models

Beginning in the 2010s, the deep learning revolution significantly transformed the
landscape of natural language processing (NLP). This era witnessed the emergence of
advanced neural network architectures, notably Long Short-Term Memory (LSTM) net-
works [8], which marked a pivotal shift in enhancing models’ abilities to process sequential
data, such as text. Additionally, this period introduced innovative word embeddings
techniques, including Word2Vec [9] and GloVe [10], which represented words in vector
spaces to capture their semantic meanings more effectively.

The mid-2010s saw the groundbreaking introduction of Transformer architecture
in 2017 [11], which strongly influenced the evolution of language models. Transformer
architecture enabled the parallel processing of words, significantly improving efficiency and
enhancing the handling of long-range dependencies in text. This advancement paved the
way for the development of models such as BERT (Bidirectional Encoder Representations
from Transformers) [12] and OpenAI’s GPT (Generative Pre-trained Transformer) series [13].
BERT represented a leap forward in understanding context by analyzing the relationships of
words within sentences, while the GPT series became known for its generative capabilities,
demonstrating exceptional language generation and understanding [3].

As we entered the 2020s, the scale of large language models grew exponentially,
leading to the development of models characterized by their billions of parameters and
remarkable performance across a wide range of NLP tasks. Recently, models such as
ChatGPT [14], GPT-4 (Generative Pre-trained Transformer 4) by OpenAI [15], Gemini
by Google [16], Claude by Anthropic [17], and Jurassic by AI21 [18], including open-
source options like Llama2 by Meta [19,20] and Mistral by Mistral [21], have emerged.
These models have showcased significant advancements in the field, further pushing the
boundaries of what is possible with large language models.

Large language models (LLMs) are utilized in diverse tasks such as text summariza-
tion, language translation, content generation, and question-answering [22]. LLMs also
contribute to interdisciplinary areas, including drug discovery [23], financial modeling [24],
and educational technology [25,26], improving automation and efficiency in various fields
and enhancing human–computer interactions. Emerging software tools like LangChain
(open source software: https://github.com/langchain-ai/langchain, accessed on 8 March
2024) enhance the use of large language models by offering tools and frameworks that
simplify their integration into applications, thereby increasing their accessibility and effec-
tiveness across different fields [27].

2.2. Large Language Model’s Benchmarks

Large language models (LLMs) yield stochastic outputs, which means their responses
may differ even when presented with identical input [28]. Consequently, evaluating LLMs
requires a sophisticated strategy that goes beyond traditional metrics used in machine
learning and deep learning, such as accuracy, precision, F1 score, and mean squared error
(MSE). To thoroughly understand an LLM’s ability to produce contextually appropriate and
coherent text, it is crucial to employ well-established datasets and benchmarks specifically
crafted for LLM research [29]. Selecting the appropriate evaluation datasets and tools is
essential for accurately assessing an LLM’s performance and grasping its full potential. The
chosen datasets should challenge specific capabilities, such as reasoning or common sense
knowledge, and should also evaluate potential risks, such as the spread of disinformation
or copyright violations.

Benchmarks such as GLUE [30], SuperGLUE [31], HELM [32], MMLU [33], BIG-
bench [34], and ARC [35] provide a diverse set of tasks aimed at assessing various facets of
large language models’ (LLMs) capabilities. Introduced in 2018, GLUE (General Language
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Understanding Evaluation) is a suite of natural language understanding challenges that
includes tasks like sentiment analysis and question-answering, designed to foster the devel-
opment of models adept at a wide range of linguistic tasks. Following GLUE, SuperGLUE
was launched in 2019 to build upon and expand its scope by adding new, more demanding
tasks and enhancing existing ones, such as multi-sentence reasoning and complex reading
comprehension. These benchmarks feature leaderboards that allow for the comparison of
models and the tracking of advancements in LLMs, thereby serving as critical resources for
evaluating model performance in a competitive and clear manner [36].

As large language models (LLMs) have increased in size, their performance on bench-
marks such as SuperGLUE has started to meet and even exceed human capabilities in
certain domains. This significant milestone highlights the necessity for more rigorous
benchmarks that can further extend the capabilities of LLMs. In response, the Massive
Multitask Language Understanding (MMLU) benchmark was developed [33]. This bench-
mark tests LLMs in a broad and varied context, demanding that they exhibit extensive
world knowledge and problem-solving abilities across a diverse array of subjects, such as
elementary mathematics, US history, computer science, and law.

Another significant benchmark is BIG-bench [34], which comprises 204 varied tasks
encompassing linguistics, mathematics, common sense reasoning, biology, and software
development. BIG-bench is notable not only for its breadth but also for its scalability, being
available in three sizes to accommodate the practical constraints of running such extensive
benchmarks. This scalability is particularly important as the operational costs of testing
large models can be prohibitively expensive, making BIG-bench a crucial resource for
researchers seeking to comprehensively evaluate LLMs in a cost-effective manner.

Additionally, the Holistic Evaluation of Language Models (HELM) [32] focuses on
transparency and the performance of models in specific tasks. The HELM adopts a multi-
metric approach, applying seven distinct metrics across 16 key scenarios to demonstrate
the trade-offs among various models and metrics. Beyond measuring accuracy, the HELM
expands its assessment to encompass fairness, bias, and toxicity. These elements are in-
creasingly vital as LLMs enhance their ability to produce human-like text and, thus, their
potential to exhibit harmful behaviors. As a dynamic benchmark, the HELM is structured
to adapt continually, adding new scenarios, metrics, and models to stay current. The HELM
results page provides a crucial tool for examining evaluated LLMs and their scores, helping
in the selection of models that align best with specific project needs.

Furthermore, the AI2 Reasoning Challenge (ARC) established by the Allen Institute
for Artificial Intelligence represents a significant benchmark aimed at assessing AI systems’
capacity for complex reasoning [35]. This benchmark consists of multiple-choice questions
that, while straightforward for human children, present a considerable challenge for AI.
The questions necessitate a blend of reasoning, knowledge, and language understanding.
The ARC is divided into two sets of questions: an Easy Set, which can be addressed
through basic retrieval methods, and a Challenge Set, requiring advanced reasoning skills
beyond mere information retrieval. This division pushes AI capabilities towards a deeper
knowledge-based understanding.

In addition to these benchmarks, researchers have created several datasets specifically
designed to challenge LLMs, such as HellaSwag [37] and TruthfulQA [38]. HellaSwag
aims to test AI’s common sense reasoning capabilities within the realm of natural language
processing. As an evolution of the SWAG dataset, HellaSwag introduces more complex
scenarios with multiple-choice questions, compelling AI to select the most plausible contin-
uation from four options based on the given context. Its emphasis on adversarial examples
seeks to push language models beyond statistical pattern recognition, towards a better
grasp of common sense and causality [37]. Conversely, TruthfulQA is a dataset that focuses
on evaluating the factual accuracy and truthfulness of responses generated by AI language
models. It comprises questions that are designed to have clear, correct answers, challenging
the models to prioritize truth and accuracy in their outputs. This focus is instrumental in
enhancing the reliability of AI systems in delivering factually correct information [38].
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In the broader AI community, companies such as HuggingFace, StreamLit, and Tokala
have begun to provide leaderboards that facilitate the public comparison of LLMs using
the aforementioned evaluation metrics and datasets. These leaderboards serve as essential
tools for benchmarking and comparing the capabilities of various LLMs, providing insight
into their performance and areas of improvement [39–41].

2.3. Games as a Tool for Benchmarking Large Language Models

The benchmarks previously mentioned for evaluating large language models (LLMs),
such as GLUE, SuperGLUE [31], HELM [32], MMLU [34], and BIG-bench [35], primarily
focus on a diverse array of language understanding tasks. These tasks range from sentiment
analysis, question-answering, and reasoning to comprehension and assessments of subject-
specific knowledge. Notably, these benchmarks do not typically incorporate traditional
“games” into their evaluation frameworks, which contrasts with other methods of AI
assessment. However, we need to recognize that within benchmarks like BIG-bench, certain
tasks may incorporate elements reminiscent of games or necessitate problem-solving skills
akin to those utilized in gaming contexts. Such tasks could involve logical reasoning, an
understanding of rules, or puzzle-solving attributes that are inherently game-like. Despite
this, these benchmarks do not engage LLMs in conventional games, such as chess or go,
which might be beneficial in evaluating AI models’ strategic thinking and decision-making
ability. Rather, the focus of these benchmarks lies in gauging the linguistic and cognitive
capacity of LLMs across varied scenarios.

Employing games as a benchmarking tool for large language models offers a unique
lens through which to assess and understand their capabilities. In gaming scenarios, an
LLM’s proficiency in comprehending rules, formulating strategies, and executing decisions
is brought to the forefront. This is particularly evident in strategic games like chess or go,
where predicting an opponent’s moves is essential. Moreover, games requiring linguistic
interaction or dialogue further challenge an LLM’s mastery over language and tests its
ability to understand context. The dynamic and often unpredictable nature of many
games provides an excellent platform for observing LLMs’ adaptability and learning ability.
This environment allows for the examination of how these models adjust their strategies
in response to changing game states, showcasing their potential for real-time learning
and adaptation.

Furthermore, the utilization of LLMs within gaming contexts acts as a practical test
for their capacity to generalize knowledge and skills across domains, a principle known
as transfer learning [42]. Assessing an LLM’s ability to apply its learnings from general
datasets to specialized tasks, such as game playing, is essential for understanding the
breadth and depth of its applicability and intelligence.

Furthermore, engaging in game playing offers a standardized framework for bench-
marking, facilitating the direct comparison of various LLMs’ performances under the same
conditions. This approach not only provides a platform to evaluate the models’ strategic
and creative problem-solving abilities but also in scenarios that demand innovative solutions.

One pivotal advantage of using games as a benchmarking tool is the controlled
environment they provide. This controlled setting is instrumental for safely testing LLMs,
allowing researchers to observe their behaviors in a contained manner. Such observations
are valuable for predicting and mitigating potential risks or ethical concerns that might arise
in real-world applications. Furthermore, games that incorporate human–AI interaction
are particularly insightful, as they unveil how LLMs collaborate with or compete against
humans. This sheds light on the dynamics of human–AI relationships, offering a glimpse
into the potential for future applications where such interactions are central.

Therefore, the significance of testing LLMs within the gaming domain extends beyond
merely evaluating their ability to play games. It encompasses a broad examination of their
capabilities, including strategic thinking, language processing, creativity, and adaptability.
Gaining a comprehensive understanding of these aspects is vital for propelling AI research
forward and ensuring the responsible development and deployment of these technologies.



Electronics 2024, 13, 1532 5 of 21

2.4. Related Work on Utilizing Games for Evaluating LLMs

In the realm of benchmarking large language models (LLMs), text-based games emerge
as a distinctive and challenging domain. These games, which embody a unique blend
of interactive fiction, demand that models exhibit a nuanced understanding of natural
language, accurately interpret the evolving state of the game, and generate suitable com-
mands to navigate through narrative-driven environments. Such interactions require LLMs
to act as agents within complex settings where the narrative and state of the game are
both described and influenced through natural language inputs. This necessitates not
only a profound grasp of language and context but also the strategic application of this
understanding to progress within the game. This approach underscores the potential of
text-based games as a rigorous benchmark for evaluating the depth of LLMs’ language
comprehension, contextual awareness, and strategic thinking capabilities [15].

Recent studies that utilized games to evaluate large language models (LLMs) have
highlighted both the progress and limitations of current AI systems in complex interactive
environments. A pivotal study on the performance of models such as FLAN-T5, Turing,
and OPT in a text-based game titled “Detective” revealed that, despite their advanced
capabilities, these LLMs still do not achieve state-of-the-art or human performance levels in
text-based games [43]. This performance gap is attributed to several factors, including the
inherent challenges of adapting TBGs for LLMs, the models’ difficulties in learning from
past interactions, a lack of memory, and a tendency to rely on statistical prediction rather
than goal-oriented processing. These findings underscore the need for enhancing LLMs’
interactive and cognitive abilities, particularly in effectively integrating and applying
knowledge from past interactions toward achieving specific objectives [43].

The “GameEval-Evaluating LLMs on Conversational Games” paper introduces a novel
framework for evaluating LLMs using goal-driven conversational games. This method
assesses LLMs’ abilities in complex discussions, decision-making, and problem-solving
within various game contexts, demonstrating the effectiveness of GameEval in distinguish-
ing the capabilities of different LLMs. This approach represents a significant advancement
in evaluating LLMs, offering a nuanced understanding of their performance and setting
the stage for further development [44]. The SmartPlay benchmark, introduced by Wu,
Tang, Mitchell, and Li (2023), offers a comprehensive method for assessing LLMs beyond
traditional language tasks by incorporating a diverse array of games. This benchmark chal-
lenges LLMs to act as intelligent agents in varied and complex environments, emphasizing
the need for LLMs to evolve into more adept agents capable of real-world interaction [45].
Gong, Huang, Ma, Vo, Durante, Noda, and Gao’s (2023) work on the MindAgent infras-
tructure marks a significant advancement in evaluating LLMs for multi-agent collaboration
within gaming contexts. By leveraging existing gaming frameworks, MindAgent assesses
LLMs’ planning and coordination capabilities, demonstrating its effectiveness in enhancing
human–AI collaboration [46]. Research on LLMs’ behavior in social interaction games, such
as the iterated Prisoner’s Dilemma and the Battle of the Sexes, highlights the challenges
LLMs face in adapting to strategies requiring mutual understanding and flexibility [47].
Lorè and Heydari (2023) in their study on the “Strategic Behavior of Large Language Mod-
els” reveal how LLMs’ decisions are influenced by contextual framing and game structure.
This research highlights the significant role of context in strategic decision-making and
suggests the variability in LLMs’ effectiveness across different strategic environments [48].
Tsai, Zhou, Liu, Li, Yu, and Mei (2023) examine the ability of LLMs like ChatGPT and
GPT-4 to play text-based games, identifying significant limitations in constructing world
models and leveraging pre-existing knowledge. Their study suggests using text games as a
benchmark for assessing LLMs, highlighting the potential for future improvements in AI
through the development of targeted benchmarks [49].

Moreover, “Can Large Language Models Serve as Rational Players in Game Theory?”
critically evaluates the potential of LLMs in mimicking human rationality in game theory
contexts, identifying significant gaps in LLMs’ capabilities and underscoring the nascent
stage of integrating LLMs into game theory [50].
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Finally, a recent study explores how models like Claude 2, GPT-3.5, and GPT-4 process
game strategy and spatial information via the Tic-Tac-Toe game. Key findings include
Claude 2’s superior ability to identify winning moves, though this skill did not directly
correlate with overall game success. This suggests that recognizing strategic moves is
important but not the sole factor in winning. The study also highlights the significant
impact of prompt design on LLMs’ game performance, pointing to the intricate ways AI
models interact with spatial and strategic challenges [51].

These studies together enhance our grasp of LLMs’ abilities and shortcomings in
gaming and interactive contexts, laying the groundwork for further investigations aimed at
improving their performance and cognitive skills in intricate settings. They underline the
value of using games as benchmarks to reveal the capabilities and limits of present AI sys-
tems, setting the stage for the development of advanced models proficient in sophisticated
reasoning and strategic thinking.

2.5. Tic-Tac-Toe Game and Its Use for Benchmarking AI and Large Language Models

Tic-Tac-Toe, also familiar to many as Noughts and Crosses, is a classic two-player
game played on a simple 3 × 3 grid. In this game, players alternate turns to mark a space
in the grid with their assigned symbols: the first player with ‘X’ and the second with ‘O’. A
player wins by being the first to obtain three of their symbols aligned horizontally, vertically,
or diagonally. Should all nine squares be filled without any player achieving this alignment,
the game results in a draw [52]. The game can be adapted to larger grids of any size n,
with the winning condition adjusted to require a player to align n consecutive symbols
for victory.

Tic-Tac-Toe, classified as a “solved” game, demonstrates that optimal play from both
participants guarantees a predictable draw, due to its well-documented best moves for
any given situation. This predictability reflects the game’s limited complexity and finite
outcomes, making it a prime example for teaching strategic thinking and decision-making
in a clear, manageable framework.

There are algorithms, such as the minimax algorithm, specifically designed to execute
flawless Tic-Tac-Toe strategies, guaranteeing optimal play. The minimax algorithm is a
strategic tool employed in game theory, applicable in two-player zero-sum games including
chess and Tic-Tac-Toe [53]. This algorithm operates by evaluating potential moves in a
game tree to a certain depth, alternating between maximizing and minimizing the potential
outcomes. It assesses terminal nodes in the game tree using a heuristic function to score the
states of the game. These scores are then backpropagated to ascertain the best possible move
for the player, presuming that the opponent also plays optimally. While highly effective,
the minimax algorithm can be computationally demanding, and it is often enhanced with
techniques such as alpha–beta pruning to optimize performance.

Tic-Tac-Toe stands as an ideal model for introducing and investigating core AI concepts,
thanks to its simple rule set and the limited array of possible outcomes. There are several
implementations of Tic-Tac-Toe where a deep learning model was trained to play against a
human opponent [54–56].

Using the Tic-Tac-Toe game for testing large language models (LLMs) provides a
straightforward benchmark due to its simple rules and finite outcomes, which helps in
understanding how LLMs process rules and make decisions. Its simplicity aids in analyzing
and explaining AI’s decision-making process, thus contributing to the development of
more transparent and understandable AI systems. Despite its simplicity, Tic-Tac-Toe
allows for the evaluation of the basic strategic thinking and planning capabilities of LLMs,
including how they anticipate and react to an opponent’s moves. For example, analyzing
the moves made by an LLM can reveal whether it has strategically maneuvered to prevent
the opponent’s victory.

Benchmarking using the Tic-Tac-Toe game can also offer insights into the LLMs’ ability
to recognize patterns and sequences, which is crucial for more complex problem-solving
and learning tasks. The turn-based nature of the game can test the LLMs’ responsiveness
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to dynamic changes, simulating interaction with users or other AI agents. Testing with
Tic-Tac-Toe can reveal how effectively LLMs understand and follow specific directives,
highlighting an essential aspect of AI functionality.

Additionally, the controlled environment allows for observing how LLMs can detect
and correct errors, providing insights into their self-evaluation mechanisms. Overall, Tic-
Tac-Toe serves as a useful tool for assessing fundamental aspects of LLM capabilities, such
as rule adherence, decision-making, and basic strategic planning, within a simple and
controlled setting.

3. Methodology

In this study, we developed a mobile Android app in the Android Studio (version
Giraffe 2022.3.1) environment to facilitate Tic-Tac-Toe gameplay and data recording for
large language models (LLMs). This app allows LLMs to compete against each other or
play solo by simulating both players, and it records the details of each LLM’s moves for
further analysis. As illustrated in Figure 1, the app’s user interface lets the user select LLMs
for both Player 1 (X) and Player 2 (O) from a curated list. Users can also choose the type of
predefined prompts (i.e., list or draw) and specify the desired number of consecutive games.
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Figure 1. (Left) the screen to select the number of games, players, and the prompt type. (Right) the
screen displays how the game progresses.

The gameplay begins with the app sending the selected prompt to the web API of the
chosen LLM for Player 1, awaiting its move. Upon receiving a response, the app updates
the Tic-Tac-Toe grid displayed on the screen as shown in Figure 1 and proceeds to query
the next LLM for Player 2’s move. The query for the next move is sent via prompts that
include the current state of the game. The queries and responses are recorded for each
move. This loop continues until a player aligns three symbols and wins or the grid fills up,
indicating a draw. The methodology ensures a seamless interaction between the app and
LLMs via web API calls, facilitating an in-depth analysis of the LLMs’ strategic gaming
capabilities. The illustration of these interactions is depicted in Figure 2.
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There are numerous large language models (LLMs) available for evaluation through
games like Tic-Tac-Toe. To ensure a meaningful and comprehensive assessment, we have
carefully selected the LLMs for testing based on several criteria. Firstly, we prioritized well-
known, high-performing LLMs developed by industry leaders such as OpenAI, Google,
and Meta, given their significant contributions to advancements in AI. Additionally, we
included LLMs from emerging startup companies that have garnered attention in the AI
community, especially those founded by researchers with a history at OpenAI, Google, and
Meta such as Anthropic and Mistral AI. To further enrich our evaluation, we aimed to test
a good mixture of open-source and closed-source LLMs, recognizing the unique strengths
and contributions of each model to the AI field. This selection allows us to cover a broad
spectrum of innovative approaches, technological capabilities, and accessibility options.

We incorporated a diverse array of large language models (LLMs), including AI21’s
‘Jurassic2-Ultra’, Anthropic’s ‘Claude-V2.1’, Google’s ‘Gemini-Pro’, Mistral’s ‘Mistral-
Large’, Meta’s ‘Llama-2-70B-Chat’, and OpenAI’s ‘GPT-4’ and ‘GPT-3.5-Turbo’. To access
these models, we primarily utilized the web APIs provided by their creators. This includes
OpenAI’s API for ‘GPT-4’ and ‘GPT-3.5-Turbo’ [57], Google’s Gemini API for ‘Gemini-
Pro’ [58], and Mistral’s API for ‘Mistral-Large’ [59]. For accessing models such as Llama2,
Jurassic-2 Ultra, and Claude 2.1, Amazon Bedrock [60] services were employed, leveraging
serverless AWS Lambda functions and API Gateways as depicted in Figure 2. We also
attempted to include Amazon’s Titan model which is available at Amazon Bedrock in our
evaluation; however, we could not receive a response in JSON format while the response
seemed meaningful in its free text form. An example response received from Amazon Titan
would be “Based on the provided content, the next move for player X (first player) in the
Tic-tac-toe game would be to place their symbol in the cell at row 1, column 3”.

We utilized two types of prompts. Each prompt is divided into three main parts: an
introduction to the Tic-Tac-Toe game, a list of previous moves in a format explained in
the prompt, and asking the player for the next move along with the description of the
expected response format. The two types of prompts are the same except for the part
where the current state of the game (previous moves) is given. The first prompt lists the
previous moves for each player in “row, column” format. The second prompt illustrates
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the current state of the grid using X and O for the previous move and ‘.’ for empty cells.
This standardized format ensures the consistency of the prompt during the game while
allowing for dynamic updates of the game state. The two types of prompts are given in
Table 1.

Table 1. The ‘List’ and ‘Illustration’ types of prompts that are sent to the large language models to
request the next move.

Type Prompt Description

list

Tic-Tac-Toe, a classic two-player game, unfolds on a 3-by-3 grid where the
objective is to align three of one’s symbols, Xs for the first player and Os for
the second, either horizontally, vertically, or diagonally. Strategic
placement is crucial: besides aiming for three in a row, players must also
block their opponents’ potential alignments to avoid defeat. Players can
place their next move in an empty cell on the 3-by-3 grid.

Explain the rules of the game.

The game’s progress is noted by recording each move in a specific format:
moves are separated by a semicolon (‘;’), and within each move, the
position is specified by noting the row and column, separated by a comma
(‘,’). If a player has not made any moves, ‘None’ should be recorded
instead. The current state of the game as indicated by the previous moves
is as follows:
Player X (first player): 1,2; 1,3; 1,1.
Player O (second player): 2,2; 3,3.

Explain how the previous moves are
presented and then present the current

state of the game.

As an adept Tic-Tac-Toe strategist facing an opponent, what would be your
strategic next move given the current state of the game? Please suggest
your next move in a concise JSON format, such as {‘row’: 1, ‘column’: 3},
without any additional commentary. You are player O (second player).
What would be your next move?

Explain the response format and ask for
the next move.

illustrate

Tic-Tac-Toe, a classic two-player game, unfolds on a 3-by-3 grid where the
objective is to align three of one’s symbols, Xs for the first player and Os for
the second, either horizontally, vertically, or diagonally. Strategic
placement is crucial: besides aiming for three in a row, players must also
block their opponents’ potential alignments to avoid defeat. Players can
place their next move in an empty cell on the 3-by-3 grid.

Explain the rules of the game.

The previous moves are presented on a grid layout. ‘X’ and ‘O’ indicate
positions taken by the first and second players, respectively, while ‘.’
indicates an available position in the 3-by-3 grid. The current state of the
game is shown in a grid layout, indicating previously taken and available
positions, as follows:
.X.
..O
.O.

Explain how the previous moves are
presented and then present the current

state of the game.

As an adept Tic-Tac-Toe strategist facing an opponent, what would be your
strategic next move given the current state of the game? Please suggest
your next move in a concise JSON format, such as {‘row’: 1, ‘column’: 3},
without any additional commentary. You are player O (second player).
What would be your next move?

Explain the response format and ask for
the next move.

The same prompts were used for every LLM. However, specific formatting instructions
had to be provided via the ‘system prompt’ parameter for the Llama2 model to ensure
adherence to the desired output format. The system prompt was incorporated into the end
of the prompts listed in Table 1 by using the [INST] tag as follows: “[INST] Suggest your
next move in a concise JSON format, such as {‘row’: 1, ‘column’: 3}, without any additional
commentary [/INST]”.

Beyond the prompt, LLMs utilize parameters like max tokens, temperature, top p, and
frequency penalty to tailor outputs. Max tokens set the output’s length, managing its size
and relevance. Temperature adjusts response variability, with higher values increasing
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creativity and lower values ensuring predictability. Top p (or top-k sampling) limits choices
to the most probable words, ensuring a balance of creativity and coherence. Frequency
penalty reduces repetition, enhancing content diversity. These parameters collectively
enable the customization of LLM responses for various applications, from customer sup-
port to content creation. Except for the prompt parameter, we do not adjust the default
configuration of the LLMs trusting that they have been fine-tuned by the creators of the
LLMs for best performance.

Each large language model (LLM) was configured to play games not only against
other LLMs but also solo. To gather statistical information about the outcomes, each game
between opponents was repeated 10 times. During the Tic-Tac-Toe game sessions played
through the Android app, we collected data on the gameplay and stored it in JSON, CSV,
and TXT formats. Sample JSON, CSV, and TXT files are given in Appendix A.

The JSON file contains detailed information, including the date/time, players, game
result, duration, and all moves—encompassing both valid and invalid attempts. An invalid
move is defined as one that targets an already occupied cell in the 3 × 3 grid or when the
response text is uninterpretable in determining the next move. The JSON file also includes
the current status of the game sent to the LLM and the responses received from the LLM
for each move. Additionally, a more streamlined summary of the game is available in a
CSV file, which excludes the detailed move information. The TXT file provides a visual
representation of the game moves as demonstrated. The JSON, CSV, and TXT files that
were produced during this study are publicly available on GitHub [61].

4. Results

In this section, we discuss the outcomes of Tic-Tac-Toe games played among large
language models (LLMs), with Table 2 showing the results for games using the ‘list’ type
of prompt between each pair of LLMs. The first row names the LLM as Player 1 (X) and
the first column as Player 2 (O). ‘X’ signifies the wins by Player 1, ‘O’ by Player 2, ‘D’ for
draws, and ‘C’ for canceled games due to invalid moves, such as selecting an occupied cell,
choosing a cell outside the grid, or responding in a non-JSON format as specified in the
prompt. Each LLM pair played 10 games, with the sum of ‘X’, ‘O’, ‘D’, and ‘C’ totaling 10
for each pair.

Table 2. A game matrix indicating the results of 10 games between each LLM pair when the ‘list’
type of prompt is used. The LLMs are Jurassic-2 (ai21.j2-ultra-v1), Claude 2.1 (anthropic.claude-v2:1),
Gemini-Pro, GPT-3.5-Turbo, GPT-4, Llama2-70 (meta.llama2-70b-chat-v1), and Mistral-L (mistral-
large-latest). The first row lists Player 1, and the first column lists Player 2. X indicates Player 1 wins,
O indicates Player 2 wins, D indicates draws, and C indicates the number of canceled games due to
invalid moves.

Jurassic-2 Claude 2.1 Gemini-Pro GPT-3.5-Turbo GPT-4 Llama2-70 Mistral-L

X O D C X O D C X O D C X O D C X O D C X O D C X O D C

Jurassic-2 4 1 0 5 3 5 0 2 2 1 0 7 4 1 1 4 1 4 0 5 4 2 0 4 2 1 0 7

Claude 2.1 8 1 0 1 1 1 0 8 6 3 0 1 3 2 1 4 6 1 3 0 7 2 0 1 4 0 0 6

Gemini-Pro 8 1 0 1 6 4 0 0 4 3 3 0 3 5 2 0 5 3 2 0 5 4 0 1 4 4 1 1

GPT-3.5 9 0 0 1 8 2 0 0 10 0 0 0 8 2 0 0 4 3 1 2 8 0 0 2 0 5 2 3

GPT-4 10 0 0 0 10 0 0 0 10 0 0 0 9 0 0 1 2 0 0 8 10 0 0 0 7 2 1 0

Llama2-70 3 1 0 6 8 1 0 1 2 4 0 4 8 1 0 1 8 1 0 1 0 3 0 7 7 0 0 3

Mistral-L 7 2 0 1 2 7 1 0 8 2 0 0 7 1 2 0 8 0 2 0 0 10 0 0 2 2 4 2

Table 3 details the outcomes when the ‘illustration’ type of prompt is employed.
Notably, Player 1 generally secures more victories, with GPT-4 leading in wins. However,
Table 3 reveals a decline in LLM performance, evidenced by an increase in canceled games,
suggesting difficulties in interpreting the game’s current state through illustrated prompts.
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This is particularly evident for Claude 2.1 and Llama2-70, which exhibit a high number of
canceled games, indicating potential challenges in understanding previous moves, leading
to responses that disregard the current game status.

Table 3. A game matrix indicating the results of 10 games between each LLM pair when the ‘illustra-
tion’ type of prompt is used. The LLMs are Jurassic-2 (ai21.j2-ultra-v1), Claude 2.1 (anthropic.claude-
v2:1), Gemini-Pro, GPT-3.5-Turbo, GPT-4, Llama2-70 (meta.llama2-70b-chat-v1), and Mistral-L
(mistral-large-latest). The first row lists Player 1, and the first column lists Player 2. X indicates Player
1 wins, O indicates Player 2 wins, D indicates draws, and C indicates the number of canceled games.

Jurassic-2 Claude 2.1 Gemini-Pro GPT-3.5-Turbo GPT-4 Llama2-70 Mistral-L

X O D C X O D C X O D C X O D C X O D C X O D C X O D C

Jurassic-2 4 1 0 5 0 0 0 10 0 4 0 6 5 3 0 2 5 1 0 4 2 0 0 8 1 0 0 9

Claude 2.1 0 0 0 10 0 0 0 10 0 0 0 10 0 1 0 9 0 0 0 10 0 0 0 10 0 0 0 10

Gemini-Pro 2 1 0 7 0 0 0 10 5 3 1 1 6 2 0 2 5 2 0 3 3 0 0 7 4 0 0 6

GPT-3.5 5 2 0 3 0 0 0 10 2 0 0 8 3 2 0 5 2 4 1 3 0 0 0 10 1 0 0 9

GPT-4 8 1 0 1 1 0 0 9 4 4 0 2 4 1 0 5 3 3 0 4 0 0 0 10 6 0 0 4

Llama2-70 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

Mistral-L 3 0 1 6 0 0 0 10 2 3 1 4 5 1 0 4 7 1 0 2 0 0 0 10 10 0 0 0

The first prompt provided a list of previous moves, a format most LLMs handled
effectively, as shown in Table 2. The second prompt, however, presented the previous
moves visually. We observed that while most LLMs performed well with the list-based
prompt, only a few were able to effectively interpret and respond to the visual prompt, as
shown in Table 3. This suggests that while LLMs are generally adept at processing textual
information, their ability to interpret and act on visual data is less consistent and remains a
significant challenge.

Figure 3 displays the outcomes of Tic-Tac-Toe games using the ‘list’ type of prompt,
where each LLM competed against six others and itself, engaging in 10 matches per
opponent for a total of 70 games. The chart uses blue bars to represent the results of games
where the LLM was the first player (X) and orange bars for games where the LLM was
the second player (O). Among the 490 games played, 26 ended in a draw and 101 were
canceled; these are not depicted in Figure 3.

Figure 4 displays the outcomes of Tic-Tac-Toe games using the ‘illustration’ type of
prompt, where each LLM competed against six others and itself, engaging in 10 matches
per opponent for a total of 70 games. The chart uses blue bars to represent the results
of games where the LLM was the first player (X) and orange bars for games where the
LLM was the second player (O). Among the 490 games played, 4 ended in a draw and
332 were canceled; these are not depicted in Figure 4. Comparing Figures 3 and 4, there is
a noticeable decrease in total wins, with Claude 2.1 and Llama2-70 failing to secure any
victories when the prompt depicted the game’s current state through illustrations.
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Figure 4. This chart, based on the ‘illustration’ prompt, shows Tic-Tac-Toe game outcomes where
each LLM faced six others and itself, playing each opponent 10 times (70 games total). Blue bars
indicate the LLM playing as the first player (X) and orange bars for the second player (O).

A Tic-Tac-Toe game can end in a draw after nine moves or with a win in a minimum of
five moves by the first player (X) and six moves by the second player (O). Figure 5 shows the
number of moves each LLM took to win as Player 1 (X) (blue bar) and as Player 2 (O) (orange
bar), using a ‘list’ prompt. Winning in fewer moves indicates better decision-making by
the LLM. On average, GPT-4 required 5.9 moves to win as Player 1, the best performance
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observed, while Jurassic-2 needed 9.8 moves, the worst performance. As Player 2, Llama2-
70 averaged 7.5 moves for the best performance, and Jurassic-2 again averaged 9.7 moves,
marking the worst performance. Draws averaged 10.5 moves, indicating some moves were
canceled. A game is canceled after 21 moves due to excessive move cancellations. Figure 6
compares the number of moves to win under the ‘illustration’ prompt, showing longer
times to win. This might indicate that LLMs had difficulty understanding the previous
moves when they were presented as illustrations. Claude 2.1 and Llama2-70, with no wins,
are represented with 0 moves. Mistral Large averaged the fewest moves to win as Player 1
(7.2 moves) but won no games as Player 2, as shown in Figure 6. Draws averaged 16.5
moves for the ’illustration’ type prompt, suggesting that some moves were canceled during
the games.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

Player 2, Llama2-70 averaged 7.5 moves for the best performance, and Jurassic-2 again 
averaged 9.7 moves, marking the worst performance. Draws averaged 10.5 moves, indi-
cating some moves were canceled. A game is canceled after 21 moves due to excessive 
move cancellations. Figure 6 compares the number of moves to win under the ‘illustration’ 
prompt, showing longer times to win. This might indicate that LLMs had difficulty un-
derstanding the previous moves when they were presented as illustrations. Claude 2.1 
and Llama2-70, with no wins, are represented with 0 moves. Mistral Large averaged the 
fewest moves to win as Player 1 (7.2 moves) but won no games as Player 2, as shown in 
Figure 6. Draws averaged 16.5 moves for the ʹillustrationʹ type prompt, suggesting that 
some moves were canceled during the games. 

 
Figure 5. Moves per result when list type of prompt is used. 

 
Figure 6. Moves per result when illustration type of prompt is used. 

Tables 4 and 5 outline the invalid responses leading to canceled moves when using 
‘list’- and ‘illustration’-type prompts, respectively. Table 4 reveals that the Jurassic-2 
model recorded the highest number of invalid moves, predominantly due to suggesting 
moves to already occupied spaces. Claude 2.1’s invalid moves were primarily attributed 
to suggesting moves outside the permissible game area (beyond the range of 1 to 3). 

Figure 5. Moves per result when list type of prompt is used.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

Player 2, Llama2-70 averaged 7.5 moves for the best performance, and Jurassic-2 again 
averaged 9.7 moves, marking the worst performance. Draws averaged 10.5 moves, indi-
cating some moves were canceled. A game is canceled after 21 moves due to excessive 
move cancellations. Figure 6 compares the number of moves to win under the ‘illustration’ 
prompt, showing longer times to win. This might indicate that LLMs had difficulty un-
derstanding the previous moves when they were presented as illustrations. Claude 2.1 
and Llama2-70, with no wins, are represented with 0 moves. Mistral Large averaged the 
fewest moves to win as Player 1 (7.2 moves) but won no games as Player 2, as shown in 
Figure 6. Draws averaged 16.5 moves for the ʹillustrationʹ type prompt, suggesting that 
some moves were canceled during the games. 

 
Figure 5. Moves per result when list type of prompt is used. 

 
Figure 6. Moves per result when illustration type of prompt is used. 

Tables 4 and 5 outline the invalid responses leading to canceled moves when using 
‘list’- and ‘illustration’-type prompts, respectively. Table 4 reveals that the Jurassic-2 
model recorded the highest number of invalid moves, predominantly due to suggesting 
moves to already occupied spaces. Claude 2.1’s invalid moves were primarily attributed 
to suggesting moves outside the permissible game area (beyond the range of 1 to 3). 

Figure 6. Moves per result when illustration type of prompt is used.

Tables 4 and 5 outline the invalid responses leading to canceled moves when using
‘list’- and ‘illustration’-type prompts, respectively. Table 4 reveals that the Jurassic-2 model
recorded the highest number of invalid moves, predominantly due to suggesting moves
to already occupied spaces. Claude 2.1’s invalid moves were primarily attributed to
suggesting moves outside the permissible game area (beyond the range of 1 to 3). Gemini-
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Pro registered the fewest invalid moves, with only 14 instances of selecting occupied spaces.
Table 5 indicates an increase in invalid moves with the ‘illustration’ prompt. Here, Claude
2.1 and Llama2-70 had the highest number of invalid responses, with GPT-4 recording the
least. Similar to the ‘list’ prompt results, Claude 2.1’s main issue was suggesting moves
outside the valid range, while Llama2-70 often selected spaces that were already taken.
Across both prompt types, Jurassic-2 was unique in making invalid moves due to responses
not being in the JSON format.

Table 4. Number of invalid responses by LLMs using ‘List’ type prompt. This includes moves to
already occupied spaces, responses in invalid formats, and moves outside permissible game area.
LLMs are Jurassic-2 (ai21.j2-ultra-v1), Claude 2.1 (anthropic.claude-v2:1), Gemini-Pro, GPT-3.5-Turbo,
GPT-4, Llama2-70 (meta.llama2-70b-chat-v1), and Mistral-L (mistral-large-latest).

As Player 1 (X) As Player 2 (O) Total

Model Already
Taken

Invalid
Format

Out of
Bounds

Already
Taken

Invalid
Format

Out of
Bounds

Already
Taken

Invalid
Format

Out of
Bounds Total

Jurassic-2 472 2 36 173 4 14 645 6 50 701

Claude 2.1 0 0 448 2 0 51 2 0 499 501

Gemini-Pro 7 0 0 7 0 0 14 0 0 14

GPT-3.5 62 0 0 6 0 0 68 0 0 68

GPT-4 168 0 0 3 0 0 171 0 0 171

Llama2-70 178 0 0 182 0 0 360 0 0 360

Mistral-L 0 0 0 5 0 179 5 0 179 184

Table 5. Number of invalid responses by LLMs using ‘Illustration’ type prompt. This includes moves
to already occupied spaces, responses in invalid formats, and moves outside permissible game area.
LLMs are Jurassic-2 (ai21.j2-ultra-v1), Claude 2.1 (anthropic.claude-v2:1), Gemini-Pro, GPT-3.5-Turbo,
GPT-4, Llama2-70 (meta.llama2-70b-chat-v1), and Mistral-L (mistral-large-latest).

As Player 1 (X) As Player 2 (O) Total

Model Already
Taken

Invalid
Format

Out of
Bounds

Already
Taken

Invalid
Format

Out of
Bounds

Already
Taken

Invalid
Format

Out of
Bounds Total

Jurassic-2 356 3 33 313 2 19 669 5 52 726

Claude 2.1 207 0 682 171 0 1056 378 0 1738 2116

Gemini-Pro 176 0 1 222 0 2 398 0 3 401

GPT-3.5 140 0 0 228 0 0 368 0 0 368

GPT-4 70 0 0 137 0 0 207 0 0 207

Llama2-70 1076 0 0 867 0 0 1943 0 0 1943

Mistral-L 242 0 0 450 0 0 692 0 0 692

5. Discussion
5.1. An Overview of the Results

The results from Tic-Tac-Toe games involving various large language models (LLMs)
using different types of prompts reveal intriguing aspects of AI strategic gameplay and error
patterns. Using the ‘list’ prompt, a clear trend was observed with GPT-4 outperforming
other models, particularly when playing as the first player. However, when the ‘illustration’
prompt was introduced, there was a notable decline in LLM performance, with a significant
increase in canceled games due to invalid responses, highlighting potential issues with
interpreting illustrated game states.
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Claude 2.1 and Llama2-70, in particular, demonstrated a high frequency of invalid
moves, such as selecting occupied spaces or suggesting moves outside the game’s grid,
resulting in no wins under the ‘illustration’ prompt, as shown in Figures 1 and 2. This
contrast in performance between prompt types suggests that the manner in which game
status is conveyed plays a critical role in LLMs’ decision-making processes. Furthermore,
the average number of moves taken to achieve a win varied across models, with GPT-4
showing efficiency and Jurassic-2 showing less optimal move choices.

The data from Tables 4 and 5 support these findings, with invalid moves being more
prevalent with the ‘illustration’ prompt. This indicates a broader challenge that LLMs
face when processing and responding to visually complex inputs compared to more struc-
tured ‘list’ inputs. Overall, these outcomes not only benchmark current LLM capabilities
in strategic gameplay but also point to specific areas for improvement, particularly in
understanding and interpreting illustrated or less-structured data.

5.2. Limitations and Future Directions

Utilizing a 3 × 3 grid Tic-Tac-Toe game to test large language models (LLMs) has
highlighted several limitations that could impact the findings of our study and their wider
applicability. The dependence on predefined prompts for guiding the LLMs’ moves may
not adequately capture their potential for independent strategic thinking or their ability
to respond to changing game states. For instance, rather than repeating the same prompt
following an invalid move, a custom prompt could be generated to specifically highlight
the error, thereby aiding the LLM in correcting its response.

Furthermore, the two types of prompts we tested indicate that varying instructions
might influence the outcomes significantly. The emerging field of ‘Prompt Engineering’
focuses on optimizing textual inputs to elicit specific responses from LLMs [62,63]. Effec-
tive prompt engineering, which combines art with science through experimentation and
adaptation to the LLMs’ unique strengths and weaknesses, offers various techniques for
generating diverse prompts. The effectiveness of these prompts can be further explored
in future research. Future studies are suggested to delve deeper into how the structured
prompts influence the LLMs’ performance and explain how variations in prompt structure
might affect the LLMs’ understanding of the game state and their subsequent moves.

The simplicity of Tic-Tac-Toe, while facilitating the evaluation of LLMs on a basic level,
may not challenge their strategic capabilities as more complex games like chess or go might.
Despite this, the fact that current LLMs have not mastered even this simple game offers
valuable insights into their current capabilities and limitations. Expanding the evaluation
to larger grids, such as 4 × 4 or 5 × 5, could present additional challenges and provide a
clearer indicator of LLM performance for comparison.

Moreover, our methodology’s dependence on web APIs for LLM interaction introduces
challenges related to accessibility, rate limits, and latency, potentially impacting real-time
performance assessment. However, our aim was not to evaluate the performance metrics
of LLMs from this perspective.

The evaluation metrics utilized in this study primarily focused on win/loss/draw
outcomes and included an examination of the number and types of invalid moves, as well
as the count of moves required for each LLM to win. Although these metrics provide a
fundamental indication of the LLMs’ performance, they may not fully capture the entire
scope of the LLMs’ strategic complexity. To gain a more nuanced understanding of their
strategic depth, an analysis of each move—drawn from the JSON files—could enable a
more detailed assessment of their subtle strategic variations and developmental progress
over time.

Additionally, concentrating on a select group of LLMs might not capture the full
diversity of strategic approaches and abilities found across the wider range of available
models. This highlights the importance of including a broader array of LLMs in future
research. The landscape of LLMs is expanding swiftly, with new models and improved
versions emerging in rapid succession. For instance, during the course of this study, newer
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iterations like Claude 3 and Gemini Ultra were released. Yet, our study was limited
by the lack of access to these models through web APIs, preventing us from evaluating
their capabilities.

Building upon the methodology and findings of this study on testing large language
models (LLMs) using the Tic-Tac-Toe game, future work could explore several promising
directions to extend the research and deepen our understanding of LLMs’ capabilities in
strategic games and beyond. For example, multi-agent collaboration scenarios could be
tested where multiple LLMs work together against a common opponent or compete against
each other in teams, assessing their abilities in coordination, cooperation, and competitive
strategy. Future work could compare newer versions of LLMs against the ones tested in this
study to track progress and improvements in AI strategic gaming capabilities over time.

A critical area for future investigation would be to focus on the explainability of
LLM decisions in games, aiming to derive insights into their strategic thinking processes.
Developing methodologies to interpret and explain LLM strategies could enhance our
understanding of AI decision-making. Moreover, we would gain more insights with a
study that examines the ethical and social implications of deploying LLMs in strategic
games and interactive environments, considering aspects like fairness, bias, and the impact
of AI behaviors on human players and observers.

To benchmark LLMs, new custom, purpose-built games can be designed to test specific
aspects of LLM capabilities, such as memory, learning from past moves, or adapting to un-
usual rules. This could allow for more targeted assessments of AI strengths and weaknesses.

6. Conclusions

This study aimed to assess the capabilities of large language models (LLMs) through
the classic game of Tic-Tac-Toe. Our findings provide a nuanced understanding of the
current state of LLMs, highlighting both their potential and limitations within the realm of
strategic gameplay. Through the development and utilization of a mobile application and
web services from the creators of the LLMs and web services we created utilizing the LLMs
hosted at Amazon Bedrock, we enabled LLMs to engage in games of Tic-Tac-Toe, revealing
their abilities to comprehend game rules and execute strategic moves. We have evaluated a
diverse set of LLMs, including Jurassic-2 Ultra by AI21, Claude V2.1 by Anthropic, Gemini-
Pro by Google, Mistral Large by Mistral, Llama2-70B by Meta, and OpenAI’s GPT-4 and
GPT-3.5-Turbo.

The results from this study show that while LLMs can grasp the basic structure and
rules of Tic-Tac-Toe, their performance varies significantly based on the prompts provided.
The comparative analysis of results using prompts that provided the previous moves as a
‘list’ and ‘illustration’ uncovered the challenges faced by LLMs when interpreting game
states from illustrated inputs. This has been exemplified by the increase in canceled games
due to invalid responses under the ‘illustration’ prompt, indicating a need for the improved
processing of visually complex or less-structured data.

GPT-4, GPT-3.5-Turbo, and Llama2 achieved the most wins using the list type of
prompt, while GPT-4, Gemini-Pro, and Mistral Large secured the most wins with the
illustration type of prompt. GPT-4 consistently won with the fewest moves, demonstrating
superior performance in defeating its opponents. Upon analyzing invalid moves, it was
observed that Gemini-Pro and GPT-4 committed the fewest errors with the list prompt, and
GPT-4 along with GPT-3.5-Turbo made the fewest mistakes when the illustration prompt
was utilized.

Our work contributes valuable insights into the field by assessing the capabilities of
LLMs using a novel approach and serves as a stepping stone for future research. Future
directions for this research on benchmarking large language models (LLMs) in strategic
games could focus on the effects of a variety of prompts, exploring larger grid sizes of Tic-
Tac-Toe and more complex games to better challenge and assess LLM strategic capabilities.
Further investigation could delve into the nuanced interpretation of LLM decisions, seeking
to enhance the explainability of their strategic thought processes. Broadening the range
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of LLMs studied would help to capture a more diverse spectrum of strategic approaches.
Collaborative and competitive multi-agent scenarios could also be examined to evaluate
LLM coordination and adaptation skills. Moreover, custom games tailored to probe specific
AI abilities could be planned, enabling a more precise evaluation of LLMs’ strengths and
potential areas for development.
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Appendix A

Table A1. Sample JSON, CSV, and TXT file containing information about the same gameplay between
GPT-4 and Gemini-Pro.

Sample JSON File Content:

{
“datetime”: “240308-175045”,
“player1”: “gpt-4”,
“player2”: “gemini-pro”,
“totalMoves”: 5,
“player1MovesAlreadyTaken”: 0,
“player2MovesAlreadyTaken”: 0,
“player1MovesOutOfBounds”: 0,
“player2MovesOutOfBounds”: 0,
“player1MovesInvalidFormat”: 0,
“player2MovesInvalidFormat”: 0,
“result”: “gpt-4 X wins!”,
“gameDuration”: “00:05”,
“promptType”: “list”,
“moves”: [

{
“no”: 1,
“player”: 1,
“row”: 2,
“col”: 2,
“valid”: “Y”,
“promptType”: “list”,
“currentStatus”: “The moves by the first player (marked by X): None \nThe moves by the

second player (marked by O): None \n”,
“response”: “{‘row’: 2, ‘column’: 2}”

},
{

“no”: 2,
“player”: 2,
“row”: 1,
“col”: 1,

https://github.com/research-outcome/LLM-TicTacToe-Benchmark/


Electronics 2024, 13, 1532 18 of 21

Table A1. Cont.

“valid”: “Y”,
“promptType”: “list”,
“currentStatus”: “The moves by the first player (marked by X): 2,2 \nThe moves by the

second player (marked by O): None \n”,
“response”: “{‘row’: 1, ‘column’: 1}”

},
{

“no”: 3,
“player”: 1,
“row”: 1,
“col”: 2,
“valid”: “Y”,
“promptType”: “list”,
“currentStatus”: “The moves by the first player (marked by X): 2,2 \nThe moves by the

second player (marked by O): 1,1 \n”,
“response”: “{‘row’: 1, ‘column’: 2}”

},
{

“no”: 4,
“player”: 2,
“row”: 3,
“col”: 1,
“valid”: “Y”,
“promptType”: “list”,
“currentStatus”: “The moves by the first player (marked by X): 1,2; 2,2 \nThe moves by the

second player (marked by O): 1,1 \n”,
“response”: “{‘row’: 3, ‘column’: 1}”

},
{

“no”: 5,
“player”: 1,
“row”: 3,
“col”: 2,
“valid”: “Y”,
“promptType”: “list”,
“currentStatus”: “The moves by the first player (marked by X): 1,2; 2,2 \nThe moves by the

second player (marked by O): 1,1; 3,1 \n”,
“response”: “{‘row’: 3, ‘column’: 2}”

}
]

}

Sample CSV file content:

GameTime,PromptType,Player1,Player2,Result,TotalTime,TotalMoves,Player1InvalidAlreadyTaken,
Player2InvalidAlreadyTaken,Player1InvalidFormat, Player2InvalidFormat,
Player1OutOfBounds, Player2OutOfBounds
240308-163604,list,gemini-pro,meta.llama2-70b-chat-v1,gemini-pro X wins!,00:12,10,0,1,0,0,0,0\
Sample TXT file content:

Game #559
Prompt Type: list
Player 1: anthropic.claude-v2:1
Player 2: gpt-4
Date Time: 240307-202522
Game Duration: 00:16
Total Moves: 9
Player 1 Already Taken Moves: 0
Player 2 Already Taken Moves: 0
Player 1 Invalid Format Moves: 0
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Player 2 Invalid Format Moves: 0
Player 1 Out of Bounds Moves: 0
Player 2 Out of Bounds Moves: 0
Result: Draw
Game Progress:
X|.|.
.|.|.
.|.|.

X|O|.
.|.|.
.|.|.

X|O|.
.|X|.
.|.|.

X|O|.
.|X|.
.|.|O

X|O|X
.|X|.
.|.|O

X|O|X
.|X|.
O|.|O

X|O|X
.|X|.
O|X|O

X|O|X
.|X|O
O|X|O

X|O|X
X|X|O
O|X|O
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