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Abstract: The code-shift keying (CSK) modulation method can achieve higher information transmis-
sion rates without changing the spread spectrum signal bandwidth. In order to optimise the spread
spectrum modulation and demodulation of GNSS signals, in addition to the signal structure, binary
phase-shift keying (BPSK) and CSK signals using time-division multiplexing are proposed. A tracking
method based on the BPSK-CSK signals is also proposed, which generates the P-branch local codes
by fast Fourier transform to obtain the code-slice spacings for the E-branch and the L-branch local
codes. Then, the tracked BPSK signals and tracked CSK signals are compared and analysed. Finally,
the bit error rate (BER) and tracking error of each method are compared and analysed by comparing
with the tracking of conventional BPSK signals and tracking of CSK signals, in order to verify the
convergence process of the I-branch integral value. The BPSK-CSK signal tracking method proposed
in this paper combines the high information transmission rate of CSK-modulated signals and the low
BER of BPSK signals, and the results provide a solid foundation for high-precision GNSS services.

Keywords: CSK modulation; BPSK modulation; high transmission rates; GNSS; tracking

1. Introduction

With the development of modern GNSS signals, the future will see a surge in the
number of users, a diversification of user ranges, an increase in information content, and
a higher demand for real-time high accuracy. In order to achieve localisation in urban
building environments, a higher information transfer rate is required [1–4]. The advantages
of BPSK modulation are the simple modulation process and mature capture and tracking
algorithms. However, with the rapid development of GNSS, the limitations of BPSK
modulation are becoming more and more prominent. Firstly, the rapid increase in the
number of navigation satellites leads to more and more congestion in the frequency band
of navigation signals, and the problem of mutual interference of signals becomes more and
more serious. Secondly, BPSK signals have limited ranging accuracy and poor multipath
resistance, which cannot meet the demand for high-precision positioning. In order to
increase the bit rate, the traditional methods are to increase the Pseudo Random Noise
(PRN) code rate or reduce the PRN code length. However, the former increases the spectral
width and the latter affects the orthogonality of PRN codes [5–7]. The emergence of CSK
modulation can effectively solve the above problems and can effectively increase the bit
rate to make the information rate flexible and variable [8–10].

CSK modulation has the following advantages over traditional BPSK modulation:
firstly, it can realise non-coherent demodulation; secondly, there is no need to modify the
symbol rate of the reference signal, the code rate, or the length of the PRN code when the
original code bit rate is increased; thirdly, the flexibility of the code bit data rate is much
higher; fourthly, the CSK modulation is a shift of the pseudo code sequence, which does not
need to modify the information rate. The sequence is shifted without extensive hardware
modifications. However, there are also problems such as that the synchronisation process
is difficult to implement, the receiver complexity is high, and the number of correlators is
much larger than BPSK [11–13].

Electronics 2024, 13, 1517. https://doi.org/10.3390/electronics13081517 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081517
https://doi.org/10.3390/electronics13081517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0051-0417
https://doi.org/10.3390/electronics13081517
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081517?type=check_update&version=1


Electronics 2024, 13, 1517 2 of 15

CSK modulation can flexibly adjust the information transmission rate while keeping
the main code period unchanged, which can satisfy a variety of application scenarios [14,15].
The CSK modulation used in the L6 signal of Japan’s Quasi-Zenith Satellite System (QZSS)
achieves a symbol rate of 2000 bit/s, which is much higher than the 50 bit/s information
transmission rate of the L1C/A signal of the Global Positioning System (GPS) information
transmission rate [16]. In addition, scholars have investigated the use of CSK modulation
in optical communications [17,18] and underwater acoustic communications [19] to achieve
high-rate message transmission without carrier synchronization.

Compared with BPSK signals, CSK-modulated signals have a higher transmitted
information rate and even achieve demodulation gain within the same master code
period [20–22]. However, compared with BPSK, CSK consumes more resources and has
higher computational complexity. For CSK signals, scholars have mainly studied the im-
provement of CSK modulation and demodulation algorithms, as well as the combination
of coding techniques to improve the reliability of transmission [23–26]. The tracking al-
gorithms for BPSK signals are relatively mature, and the research on CSK signal tracking
is not sufficient, mainly focusing on reducing the number of correlators and the demod-
ulation complexity. Literature [27] extends the definition of CSK signals and proposes a
CSK capture tracking method, but this method is not applicable to standard CSK signals.
Literature [28] proposed an improved tracking method for CSK signals, which reduces
the implementation complexity at the expense of tracking accuracy. Literature [29] pro-
posed an efficient demodulation algorithm based on chunked FFT, which combines parity
chunked baseband data from the traditional time domain operation to the frequency do-
main operation, and effectively reduces the complexity of correlation value calculation.
Literature [30] proposed a frequency domain demodulation algorithm for CSK signals
based on partial-output FFTs, which reduces the computational complexity of demodula-
tion by optimising the butterfly structure of conventional FFTs and computing nodes to
eliminate irrelevant values.

In this paper, we propose to transmit BPSK signals and CSK signals using time-division
multiplexing. Subsequently, we detail the BPSK-CSK signal model, propose a BPSK-CSK
signal tracking method based on time-division multiplexing, compare and analyse the
BER and tracking error with other tracking methods, and complete the validation of the
method to compare, analyse, and reduce the computational complexity. The BPSK-CSK
signal tracking method proposed in this paper combines the high information transmission
rate of CSK-modulated signals and the low BER of BPSK signals, and the results provide a
solid foundation for high-precision GNSS services.

2. Materials and Methods
2.1. Fundamentals of BPSK-CSK Signaling Theory
CSK Modulation and Demodulation

The CSK modulation technique is essentially a spread spectrum modulation; only the
phase of the pseudo-code is cyclically shifted according to the different data sent to obtain
a new code, which overcomes the limitation of the spreading gain on the data rate and
improves the information transmission rate without changing the signal bandwidth, ampli-
tude, and other parameters. Therefore, each cyclically shifted pseudocode can represent
a CSK symbol. The receiving end identifies the pseudocode phase of a CSK symbol by
demodulation, which means that the data coming from the sending end can be obtained [1].

CSK uses M orthogonal signals to transmit U = log2(M) bits. The special feature
of CSK modulation is that the symbols of each set of input bits are obtained from dif-
ferent cyclic shifts of a single elementary PRN sequence. In addition, each cyclic shift
consists of an integer number of code slices and is assumed to be a full-cycle version of the
basic pseudocode.

Figure 1 shows the CSK modulation flow. The phase of the pseudo-code for direct
sequence spread spectrum modulation is always kept constant, i.e., only the pseudo-code
with phase 0 is used for the direct sequence spread spectrum, while in CSK modulation,
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the basic pseudo-code generates M cyclically shifted pseudo-codes through the code slice
delayer. In addition, the data stream with U bits in a group corresponds to one CSK
symbol, which is mapped to obtain the corresponding CSK cyclically shifted sequence,
thus generating one CSK symbol, which is finally transmitted through carrier modulation.
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Figure 1. CSK modulation process.

From the principle of CSK modulation, different pseudo-code phases represent differ-
ent data. At the receiver side, it is only necessary to demodulate the pseudo-code phases,
and then by searching the reflective table, you can know the modulated data in the pseudo-
code period. Commonly used CSK demodulation methods are matched filter demodulation
and FFT demodulation. Through demodulation, the correlation value between the received
signal and each CSK cyclic code word can be obtained, and the cyclic code word with the
largest correlation value is selected as the demodulated output.

The principle of matched filtering is to match correlate CSK symbols through a filter
bank and select the CSK cyclic code word corresponding to the maximum value of the
matched filter output as the demodulation of the transmitted symbols.

Matched filter demodulation is performed using two matched filter banks, in-phase
and quadrature, where the input IF signal is mixed with the locally generated in-phase
and quadrature carriers, respectively, and the mixed results are fed into the filter banks for
matched correlation. Each filter bank contains M filters, and the cyclic shift sequences used
by the filters are matched and correlated with the received signals. Finally, the correlation
output is obtained by integrating and summing. Due to the good autocorrelation of the
pseudocode, if the received CSK symbols are aligned with a certain cyclic shift sequence,
the correlation output of that filter will have a significant peak, and the outputs of the other
filters will be noise.

When the number M of CSK modulation is increased, the number of matched filter
banks is also increased, and the complexity of demodulation will be further increased.
In order to reduce the complexity of CSK demodulation, FFT-based demodulation can
be used, and its demodulation principle is consistent with the principle of parallel code
phase capture of satellite navigation signals. Figure 2 shows the principle diagram of CSK
demodulation based on FFT.
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Figure 2. FFT-based CSK demodulation schematic.

2.2. BPSK-CSK Signal Model

In terms of signal structure, the CSK-modulated part and the BPSK-modulated part
are inserted by synchronised time division multiplexing, i.e., both signals have the same
time period. In the BPSK cycle, the navigation information is multiplied with the spread
spectrum code and then transmitted to the carrier using BPSK modulation. In the CSK cycle,
the spread spectrum code is shifted by CSK and then transmitted by BPSK modulation
to the carrier. Figure 3 shows the schematic of time division multiplexing with BPSK
modulation and CSK modulation.
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The digital IF signal in the input tracking loop is:

r(t1) =
√

C · d(t1) · c(t1) sin[2π fit1 + θi] + nw(t1) (1)

r(t2) =
√

C · c(t2) sin[2π fit2 + θi] + nw(t2) (2)

where r(t1) is the received BPSK periodic signal at moment t1; r(t2) is the received CSK
periodic signal at moment t2; C is the total signal power; d(t1) is the navigational message
symbol; c(t1) is the periodic spreading code; c(t2) is the spreading code after modulation
by CSK; f1 is the received signal frequency in Hz; θi is the carrier phase of the signal; nw(t1)
and nw(t2) are additive Gaussian white noises; and the power spectral density is N0.

2.3. A BPSK-CSK Signal Tracking Method Based on Time-Division Multiplexing

The tracking method of this paper is shown in Figure 4, which consists of the carrier
loop and the code loop. The difference with the traditional tracking loop is that the carrier
loop updates the loop state intermittently, and the phase detector only updates the carrier
loop phase error and the code ring phase error during the BPSK cycle.
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In Figure 4, the whole tracking framework of the BPSK-CSK signal is represented. The
input digital IF signal is restricted to the carrier loop replicated by the carrier for mixing and
multiplying, which is multiplied by the sinusoidal replicated carrier in the I-branch, and
multiplied by the cosine replicated carrier in the Q-branch; the mixing results of the I and
Q-branch are, respectively, correlated to the E, P, and L codes after the code loop shifting,
and the six coherent integral values are obtained after integral clearing. The six coherent
integral values are obtained, and IP and QP are input into the carrier phase discriminator
and carrier loop filter to maintain the consistency of the local and received carrier phases; IE,
IL, QE, and QL are input into the code phase discriminator and code loop filter to maintain
the consistency of the local and received code phases.

2.3.1. Carrier-Tracking Loop

The carrier loop of the CSK signal is designed using Phase-Locked Loop (PLL). The
carrier-tracking loop used in the CSK-tracking algorithm is shown in Figure 5.
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When the coherent integration time is Tp, the cumulative values of Ik(Ip(k)) and
Qk(Qp(k)) in the kth segment are shown in Equation (3), where A is the amplitude, T is the
sampling interval, N is the number of samples, f is the tracking frequency deviation, and
NIk and NQk are the I-channel and Q-channel noise, respectively.

The PLL discriminator used in this paper is a two-quadrant arctangent discriminator.
Its discriminator equation is shown in Equation (4), where nk is the noise. The PLL
corresponding to the tracking frequency range is calculated as Equation (5).

Ik + jQk =
A
2

sin(π∆ f TN)

sin(π∆ f T)
exp(j(π∆ f T(N − 1) + 2π∆ f TNk)) + NI4 + jNQ4 (3)

ϕe = arctan
Qk
Ik

= ∆ f T(N − 1) + 2π∆ f TNk + nk (4)

| ϕk − ϕk−1 |= 2π | ∆ f | Tp <
π

2
(5)

In Figure 5, the carrier-tracking loop in this paper mainly adopts a phase-locked loop,
which mainly consists of a carrier phase discriminator, a carrier loop filter, and a carrier
NCO, and detects the phase difference between the carrier replicated by the carrier NCO
and the carrier of the input digital intermediate frequency (IF) signal, then adjusts the
phase of the replicated carrier accordingly according to the feedback loop. The phase of the
two is kept consistent in order to strip out the carrier in the received signal.

2.3.2. Code-Tracking Loop

The basic code-tracking loop for CSK is the Delay-Locked Loop (DLL). The spreading
codes of CSK signals have good autocorrelation and inter-correlation properties. The
correlation can be maximised when codes of the same sequence are aligned. To improve
accuracy, DLL will generate Early (E), Prompt (P), and Late (L) local codes.

The mixing results of the I and Q branches of the received signal after carrier separation
are correlated with the E, P, and L branch replicated spreading codes, respectively, and here
the E code is taken as an example, and the expression of the correlation operation result is:

IE(N1) =
√

Cd(N1)R(τE)sin c(feTcoh) cos ϕe + NI (6)

QE(N1) =
√

Cd(N1)R(τE)sin c(feTcoh) cos ϕe + NQ (7)

where τE is the phase difference between the over-replicated code and the received code;
R(·) is the code autocorrelation function; ϕe is the carrier phase difference. After the
coherent integration time Tcoh, the noise component NI , NQ ∼ (0, 1/Tcoh), and after the
ith update cycle, the overdrive autocorrelation amplitude is:

E(N1) =
√

CR(τE )|sin c(f eTcoh)|+ NE (8)
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The design of the CSK code ring is shown in Figure 6. In this paper, the Noncoherent
Early Minus Late Power (NELP) phase discriminator is used. Its calculation formula is
shown in Equation (9):

δcp =
1
2

E2 − L2

E2 + L2 (9)

where δcp is the code phase difference after the BPSK cycle.
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In Figure 6, the code-tracking loop in this paper adopts DLL, which is mainly com-
posed of the code NCO, code phase discriminator, and code loop filter, and generates
three local codes with different phases through the code NCO, which are E code, P code,
and L code, respectively, and respectively correlates these three local codes with the re-
ceived signal at the same time, compares them to derive the position of the main peak, and
determines the phase difference between the local P code and the received signal number,
so as to make the local code and the received code momentarily aligned.

When the correlation value of L code is maximum, the adjustment code generator
decreases the code phase; when the correlation value of P code is maximum, it represents
that the code-tracking loop tracks the signal correctly; and when the correlation value of
E code is maximum, the adjustment code generator increases the code phase. After that,
the pseudo-code phase difference is obtained by the code ring phase discriminator, and
the code generator completes the dynamic adjustment of the whole code-tracking loop
according to the code phase error to achieve the locking of the pseudo-code-tracking loop.

2.3.3. Carrier and Code Stripping

The I and Q signals can be obtained by stripping the carrier and mixing the IF signals.
The algorithm is executed as follows:

Step 1: Save the 4 ms input data (called in this paper) and the local code stripped from
the carrier.

Step 2: Accumulate the corresponding sampling points of each code slice using the
code NCO to obtain the named data, respectively. Then, an FFT operation is performed to
multiply with the local code by the FFT conjugate, followed by an IFFT operation to obtain
the index value of the peak.

Step 3: Generate the local code with the same length by code NCO. The branch
local code is obtained by cyclic shifting obtained from step 2. By shifting one code slice
obtained, the local code of branch P is shifted by one code slice to generate the E, P, and
L codes, respectively, and a correlation operation is performed with the E, P, and L codes,
respectively, so as to generate the integral values of I and Q with respect to the E, P, and L
codes, which are used as inputs to the carrier loop and the code loop.

3. Results
3.1. BER Comparison and Analysis

In order to verify the performance of the methods proposed in this paper, we compare
the BER under three methods.
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Method 1 uses the conventional BPSK-modulated signal for tracking [31]. Method 2
uses the BPSK-CSK-modulated signal for tracking in this paper, and Method 3 uses the
CSK-modulated signal for tracking [28].

Since CSK modulation is used for the L6 signal in QZSS, the L6 signal with tracking
CSK modulation is selected in Method 3. The code length of the L6 signal is 10,230 and the
code rate is 5.115 MHz. According to the frequency point, code length, and code rate, the
Galileo E6b signal with the same frequency point, code length, and code rate is selected in
Method 1. The BPSK-CSK-modulated signal in Method 2 also has the same code length
and code rate.

The rough values of the Doppler frequency and coded phase of BPSK-modulated
signals, BPSK-CSK-modulated signals, and CSK-modulated signals are estimated using
the FFT-based circular correlation method. The exact Doppler frequency and code phase
are continuously estimated every 1 ms during tracking using frequency-locked loop (FLL),
phase-locked loop (PLL), and demurrage-locked loop (DLL).

The carrier-tracking loop and coded-tracking loop parameters for the three methods
are shown in Tables 1 and 2 for a Doppler value of 1000 Hz and a sampling time of 10 s.
The parameters of the carrier-tracking loop and coded-tracking loop for the three methods
are shown in Tables 1 and 2.

Table 1. Carrier-tracking loop parameters.

Coherent Integration
Time/ms

Non-Coherent
Integration Time/ms

Traction
Range/Hz Loop Bandwidth/Hz

4 1 ±62.5 20

Table 2. Code-tracking loop parameters.

Coherent Integration
Time/ms

Non-Coherent
Integration Time/ms

Code Spacing
of E,L/Code-Chip Loop Bandwidth/Hz

4 1 1 2

Figure 7 shows the variation of BER with CNR when Doppler is kept constant
(35–50 dB-Hz) for constant Doppler. Table 3 shows the percentage BER of Method 2 and
Method 3 with respect to Method 1 when Doppler is kept constant. From Figure 7, it can be
seen that the BPSK-modulated signal (Method 1) has the lowest BER, the CSK (Method 3)
has the highest BER, and the proposed BPSK-CSK-modulated signal is in the middle of the
two. Therefore, the BPSK-CSK tracking method has a higher information transmission rate
and lower BER with constant Doppler and the same CNR. The specific percentage values of
BER for mode 2 and mode 3 with respect to mode 1 are given in Table 3, from which it can
be seen that the BER of CSK-modulated signals is much higher than that of conventional
BPSK-modulated signals, while the BER of BPSK-CSK-modulated signals is improved.

Table 3. BER proportion of Method 2 and 3 higher than Method 1 when Doppler is constant.

CNR/(dB-Hz) Method 3 Higher than
Method 1/%

Method 2 Higher than
Method 1/%

36 36.00 18.42
37 35.41 18.99
38 34.79 19.56
39 34.19 20.12
40 32.82 16.24
41 31.61 12.39
42 30.47 8.53
43 29.24 4.67
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Table 3. Cont.

CNR/(dB-Hz) Method 3 Higher than
Method 1/%

Method 2 Higher than
Method 1/%

44 25.43 3.85
45 21.12 3.11
46 17.56 2.31
47 13.31 1.52
48 10.54 1.15
49 7.27 0.78
50 4.15 0.41
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Figure 8 shows the variation of BER with CNR (35–50 dB-Hz) when aacce = 10 m/s2.
aacce is the relative acceleration between the satellite and the receiver. Table 4 shows the
percentage of BER of Method 2 and Method 3 that is higher than that of Method 1 when
aacce = 10 m/s2. From Figure 8, it can be seen that the BER of Method 2 and Method 3
is higher than that of Method 1 when aacce = 10 m/s2. The BER when aacce = 10 m/s2

is almost the same as when Doppler is kept constant. Therefore, the BPSK-CSK tracking
method has a higher message rate and lower BER when aacce = 10 m/s2 and CNR is the
same. Table 3 gives the specific ratio values of the BERs of Method 2 and Method 3 with
respect to Method 1, from which it can be seen that the BER of the CSK-modulated signal is
much higher than that of the conventional BPSK-modulated signal when a is 10, while the
BER of the BPSK-CSK-modulated signal is improved.
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Table 4. BER proportion of Method 2 and 3 higher than Method 1 when aacce = 10 m/s2.

CNR/(dB-Hz) Method 3 Higher than
Method 1/%

Method 2 Higher than
Method 1/%

36 27.72 16.38
37 28.67 15.44
38 29.59 14.49
39 30.63 13.54
40 28.49 11.88
41 26.27 10.23
42 24.09 8.57
43 21.92 6.91
44 19.55 5.53
45 17.28 4.16
46 14.92 2.79
47 12.59 1.42
48 10.12 1.12
49 7.65 0.81
50 5.18 0.51

3.2. Tracking Error Comparison and Analysis

The tracking accuracy of BPSK-CSK signals is quantitatively analysed, and the code-
tracking accuracy and carrier-tracking accuracy of the three tracking methods are simulated
under different carrier-to-noise ratios. The results are shown in Figures 9 and 10. From
the point of view of code-tracking error, the tracking accuracies of the three methods are
comparable when the carrier-to-noise ratio is higher than 44 dB-Hz. As the carrier-to-noise
ratio decreases, the code-tracking error of this paper’s method is between Method 1 and
Method 3. As far as the carrier-tracking error is concerned, the tracking accuracies of the
three methods are comparable when the carrier-to-noise ratio is higher than 40 dB-Hz.
As the carrier-to-noise ratio decreases, the carrier-tracking error of the methods in this
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paper is between Method 1 and Method 3. Therefore, the tracking method in this paper
outperforms the CSK-tracking algorithm (Method 3) but is lower than the BPSK-tracking
algorithm (Method 1), with a higher information transmission rate and lower tracking error,
especially under low SNR conditions.
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3.3. Verification Results

The architecture of the verification platform for the BPSK-CSK signal tracking method
is shown in Figure 11, which mainly consists of the 7Z100 SOC chip and two ADRV9009
RF chips and the corresponding peripheral devices. The 7Z100 SOC chip adopts the ARM
Cortex-A9 core and kintex 7 FPGA, and extends the interfaces of FMC, fibre optic, and IO
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through the FPGA at the PL side. The ARM at the PS side extends the interfaces of network,
USB, and RS232 etc. The 7Z100 SOC chip integrates various functional modules such as
high-speed data interface, digital signal processing module, memory control module etc.
The ARM on the PS side extends interfaces such as network, USB, RS232, etc. The 7Z100
SOC chip integrates a variety of functional modules, such as high-speed data interfaces,
digital signal processing modules, memory control modules, etc. The ADRV9009 is a
dual-channel RF transmitter and receiver with an observation receiver. Operating over
the frequency range of 75 MHz to 6 GHz, the device’s transmitter supports a synthesis
bandwidth of up to 450 MHz. The receiver portion of the device can operate either as a dual-
channel receiver supporting bandwidths up to 200 MHz or as a single-channel observation
receiver supporting bandwidths up to 450 MHz. Data transmission is accomplished
through eight JESD204B dedicated high-speed interface channels. There are four interface
channels, each for transmitter data and main receiver/observer data.
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Figure 11. BPSK-CSK signal tracking program verification platform.

The platform can be divided into the processor system part (PS) and programmable
logic part (Programmable Logic, PL). The PS side and PL side of the platform respectively
hang two pieces of the 1 GB high-speed DDR3 SDRAM chip, so that the ARM system and
the FPGA system can independently process and store the data function. PS side of the
FPGA expansion of the Ethernet RJ45 interface, SD card interface, UART serial interface,
256 Mb QSPI FLASH chip. PL side of the ARM expansion connected to the 10 G. The
ARM expansion on the PL side is connected with the 10 G SFP+ module, 40 GB QSFP
interface, 80-pin GPIO, and two ADRV9009 RF chips. A 256 Mb QSPI FLASH is used for the
static storage of ZYNQ’s operating system, file system, and user data. The clock generator
AD9528 accesses the SYSREF signal and connects to the TXCO/EXFREF interface, which is
used to synchronise multiple devices such as ADRV9009 and ADF5356.

In the experiments using the 7Z100 SOC chip and the ADRV9009 RF chip for signal
tracking, the Doppler value was 1000 Hz, the sampling time was 10 s, and the parameters
of the carrier- and code-tracking loops are shown in Tables 1 and 2 in the previous section.
We tested three different methods, the output data for the output tracking results, and
recorded their respective signal convergence processes using Origin. The curves of the
i-branch integral values over time for the three methods are shown in Figure 12, and
the experimental results demonstrate the differences in signal convergence among the
three methods.
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4. Discussion 
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By comparing the convergence processes of the three methods, we find that the
tracking method proposed in this paper performs well in terms of convergence time.
Compared with Methods 1 and 3, the method in this paper is able to converge to the steady
state more quickly, showing its superior convergence performance. This fast convergence
property makes this paper’s method have higher real-time and response speeds in practical
applications, which can better meet the demand for fast tracking.

Compared with Methods 1 and 3, the method in this paper exhibits good signal con-
vergence characteristics and demodulation performance in addition to a fast convergence
time. During the signal convergence process, the method in this paper is able to track signal
changes stably and maintain high demodulation accuracy. This means that in the case of
poor signal quality or interference, the method in this paper can still effectively extract
useful information and ensure the reliability and stability of communication.

4. Discussion

A high-precision service has gradually become the standard of GNSS, and high infor-
mation rate has also become the design requirement of future satellite navigation signals.
CSK-modulated signals, which have the advantage of a high information rate, have at-
tracted a lot of attention from scholars, but its BER is higher than that of BPSK-modulated
signals and the number of related signals required is more than that of BPSK, whereas
BPSK-modulated signals have a low BER, but their low information transmission rate is
not enough to meet the high-precision service of GNSS. In addition, in complex urban
environments, CSK modulation will also provide better performance than BPSK, which
is an orthogonal M-propagation modulation that allows for non-coherent demodulation.
Non-coherent modulation allows the demodulation of CSK signals in harsh environments
such as urban or indoor environments, whereas for BPSK signals, demodulation is not
possible unless the PLL is locked.

The BPSK-CSK signal tracking method proposed in this article combines the high
information transmission rate of the CSK modulation signal and the low BER of the BPSK
signal, and gives a compromise solution, which provides a solid foundation for a high-
precision GNSS service. CSK modulation has the advantages of a high transmission rate,
flexible bit rate, and non-coherent demodulation, but there are the advantages of the
difficult-to-achieve synchronisation process, and the complexity of the receiver is high.
The number of correlators is much larger than that of BPSK and so on. Considering the
above problems, this paper uses it in the design of GNSS signals. Considering the above
problems, it is not feasible to use CSK modulation to completely replace BPSK in a GNSS
system, but CSK modulation can be gradually introduced into GNSS systems to achieve
the purpose of improving the positioning accuracy and quality of service, and optimising
the system performance.
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