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Abstract: To facilitate the integration of autonomous unmanned air vehicles (UAVs) in day-to-day
life, it is imperative that safe navigation can be demonstrated in all relevant scenarios. For UAVs
using a navigational protocol driven by artificial neural networks, training and testing data from
multiple environmental contexts are needed to ensure that bias is minimised. The reduction in
predictive capacity when faced with unfamiliar data is a common weak point in trained networks,
which worsens the further the input data deviates from the training data. However, training for
multiple environmental variables dramatically increases the man-hours required for data collection
and validation. In this work, a potential solution to this data availability issue is presented through
the generation and evaluation of photo-realistic image datasets from a simulation of 3D-scanned
physical spaces which are theoretically linked in a digital twin (DT) configuration. This simulation is
then used to generate environmentally varied iterations of the target object in that physical space by
two contextual variables (weather and daylight). This results in an expanded dataset of bicycles that
contains weather and time-varied components of the same images which are then evaluated using
a generic build of the YoloV3 object detection network; the response is then compared to two real
image (night and day) datasets as a baseline. The results reveal that the network response remained
consistent across the temporal axis, maintaining a measured domain shift of approximately 23%
between the two baselines.

Keywords: autonomous aerial vehicles; deep learning; digital twin; drones; image sampling; simulation

1. Introduction

Over the years, activity within the UAV autonomy research space has led to a steady in-
crease in published research on novel solutions for autonomous navigation features. Many
of these projects use trained models to infer a solution to autonomous UAV tasks [1–4].
Previous reviews of state-of-the-art solutions in the autonomous navigation research space
revealed that, of the classified autonomous features, collision avoidance, obstacle detection,
and object distinction (including object detection) were the most popular research topics.
Only approximately 7.7% of the projects examined over the 5 years prior to this review
considered operation in more than one environment [5]. A suspected reason for this is
the lack of training datasets that are of appropriate size and quality (e.g., varied and with
key elements present) to achieve good generalisation in multiple environments [6,7]. One
of the biggest challenges for autonomous UAV navigation training is the availability of
training data; even common environments such as urban, suburban, forested, or rural
areas have so much variation in terms of environmental contexts that it is not feasible
to manually gather a dataset on all variations. Additionally, environments do not have
binary transitions, but shift from one to the other over a gradient, such as a suburban
area shifting into a rural area as one travels from one environment to the other. This
issue is compounded when considering other environmental factors such as daylight level,
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weather variation, or outdoor/indoor contexts (e.g., artificial light, reflective surfaces, and
types of obstacles). The results of these issues are that autonomous systems perform well
inside a specific environment, but the performance (e.g. precision, recall) drops off as
the parameters of the environment deviate further from the average used for the training
set. While it is possible to use augmentation methods to make up for a lack of samples,
and doing so is known to prevent overfitting [8,9], the issue with these methods is that
samples are created by mostly recycling old information. If a dataset of colour images
contains N samples and a theoretical amount of unique information, defined as M, then
the average unique information per sample is defined as L = M/N. This implies that if
augmentation is used to inflate a dataset through the injection of noise, image skewing, or
other common transformative methods, the number of samples in the dataset increases but
the amount of unique information in the dataset remains the same, unless new information
is injected during the process. This results in more samples, but less unique information
per sample, which is a problem that is solvable through simulation. By using a simulated
area, a researcher is capable of creating new samples while maintaining the amount of
unique information per sample up to a theoretical limit L = M/N; 0 < M ≤ Mmax, where
Mmax is the maximum unique information contained within the simulation. Using this
project as an example, Mmax can be considered as the information from the 3D scan data
and textures, all the possible environmental contexts the simulation can create, and all the
possible object and camera positions and configurations, with no repeating information.
The proposed solution intended to utilise simulation and 3D scanning, with the potential
use of the spatial elements of the physical object to maintain a DT link (a method where
a simulation of a subject is used in tandem with a physical subject in order to model in
ways that are more informative than traditional experimentation [10]) in the simulation.
The simulator shown in Figure 1 demonstrates how the Unity game engine can be used to
rapidly create a simulator that uses a combination of 3D scanning techniques to reconstruct
an area. The method outlined in Section 3 details the construction of this simulation and
the generation of an entirely artificial dataset that could be analogous to a real-life coun-
terpart. This artificial dataset is then tested on a publicly available, pretrained version of
the YoloV3 object detection model with no retraining in order to gauge the response of
a dataset that is trained on realistic data [11]. The benefit of this approach is that it can
generate not just realistic image samples with unique content, but samples with the same
content under unique environmental conditions, notably weather and daylight variations,
which this work demonstrates in Section 4. The full process for this approach can be found
in Figure 2.

Figure 1. Screenshot of the simulator constructed for photo-realistic data synthesis.
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Figure 2. A sequential block diagram summarising the project approach, from the simulator construc-
tion to data analysis phases.

Testing synthetic data via a popular object detection model provides an accurate gauge
of the domain shift present in the simulation, given the environmental variance introduced
in the simulation; this allows for the measurement of the domain shift across each dimen-
sion, as long as it is compared to a valid baseline. To summarise, the contributions of this
paper are as follows:

• It outlines a novel method for the generation of synthetic samples for image-based
training by using 3D scanning and a photo-realistic game engine.

• It simulates weather and light changes to create a contextually varied image dataset
for the potential training and testing of image-based autonomous navigators.

• It tests the environmentally varied dataset against a commonly used generic YoloV3
object detection model and compares it to a realistic baseline to demonstrate the
consistency in simulation performance against real image data.

1.1. Autonomous Navigation

Autonomous navigation tasks tend to be complex, requiring physics calculations [12],
state estimations [13–15], perception [16–18], and decision making [19,20]. However, the
problem of autonomous UAV navigation is partially solvable through the implementation
of rule-based solutions. For example, collision avoidance can be achieved through the use
of lidar-based sensors and an autonomous navigator programmed to maintain a certain
distance from nearby detected obstacles. The downside of this is that it must be developed,
tested, and maintained manually, usually on a per drone basis. These solutions are typi-
cally reliant on onboard hardware which increases the cost of implementation alongside
potential patent and licensing costs. With this in mind, using a trained network to read the
input from a monocular camera as a navigator is an attractive option, despite the scala-
bility issues discussed in the following section. These issues may not hinder autonomous
UAV implementations mechanically, but could hinder them in terms of legislation. As an
example, the European Union Aviation Safety Agency Special Condition guidelines [21]
state that: “Certification of light Unmanned Aerial Systems with highly integrated sys-
tems will be fundamentally based on a safety assessment that includes thrust/lift/power
systems and also interaction with structures”, which implies investigation into specific
navigational features.

1.2. Specificity

Image-based neural networks will typically have issues maintaining accuracy in
environments which the autonomous navigator is not trained for [22]; in certain cases,
these issues are considered to be the trade-off for performance (i.e., network response
time) in a solution based on how specific the task is [23,24]. By restricting the scope
down to a single environment, the requirements in terms of data acquisition, training,
and optimisation can be reduced in both time and complexity. However, it should be
expected that this also impacts the robustness of the solution, a problem which is referred
to as “specificity”. A network that is trained on data that are too specific will inevitably
be unable to perform well near or beyond the edge cases of that scope. Specificity is often
considered to be a subset issue when a network is overfit to its given task. The reduction
in task-specific performance in generalised models is especially important to be aware of
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with perception-based UAV navigation [25] given that the task carries inherent risk to the
hardware and surroundings.

1.3. Areas as Digital Twins

The DT concept originates from the manufacturing industry [26–28], and states that
insights, i.e., previously unknown information regarding a specific topic, can be extracted
through the use of a simulated replica of a product [10,29]. The most valuable component
of this concept is that the transference of data between the physical and simulated model is
bi-directional, meaning that as the simulated object can provide insights into the physical
object, so to can the physical object provide insights into the simulated object. As an
example, if one were to simulate a box of specific weight and dimensions in digital space
as a DT by tracking the box using a camera, the physical box provides insight into the
position of the box in digital space, and the DT provides insight into the velocity and
predicted position of the box in the physical space. Additionally, effects applied to the DT
will inform the researcher as to how the physical product will respond without having to
risk damage to the physical product, which is of specific value to UAV research. The DT
concept can be expanded to include multiple simulated components, referred to as a digital
twin domain, with the benefit of this being that insights can be gleaned not just from the
simulated components but from the interactions between them [30]. More recently, in the
referenced paper, the author highlights the recent expansion of the DT concept as it enters
into new areas beyond manufacturing, and specifically how the term has branched into
various contextual types based on what is wanted or designed from a given DT, whether
that is physical accuracy, low response times, or a high level of parameter control [31]. In
terms of implementing DT concepts in autonomous UAV navigation, one could consider
the drone components, including the rotors, PWM controllers, FMU, Telemetry Radio,
GPS, and frame, as elements of this simulated domain. However, this research focuses on
considering the spatial region around the drone as a component of the DT for simulation,
which could allow for a digital twin domain that is spatially linked to a physical one in
which a researcher could generate training samples with any environmental variation for
use in a navigational network. Furthermore, the parameters of the environment would
be controllable, allowing for quantitative implementation of non-ideal situations such as
low light levels, poor weather, or obstacles while maintaining the link to the physical
space. Without this physical link, results from any of the above approaches would not
be quantifiable to reality, which is the key advantage a DT approach has over standard
simulations [32–34].

2. Background

Historical debate argues that simulation is inherently unfeasible due to the inability
to model all possible aspects of a natural scenario [35]. While this statement is mostly
true, it forms the basis of a false equivalence that simulation is not accurate for realistic
tasks because the simulation will not be a perfect model of that realistic scenario, and
any visible domain shift seen in academic results is too easily attributed to this and less
so to the approach of the researcher. As rendering technology improves, the task of data
simulation and the concept of using simulated data as training data for neural networks
needs to be re-evaluated. Current tools utilised in modern academic simulations for
autonomous navigation are often built from retrofit rendering engines that are decades
old [36,37]. There is little investigation as to the benefit of modern simulation features or
the growing availability of 3D-scanned assets, which could have a considerable impact on
the success of trained-on-simulation networks [27,38]. Prior research demonstrated the
potential for bespoke simulations constructed from the shell of cutting-edge game engines
and integrated development environments for the purposes of synthetic data generation
that are analogous to reality [10,39].
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2.1. Trained Autonomous Features

Previous work compiled the literature from several academic sources on the advances
in autonomous UAV navigation with the purposes of aligning autonomous UAV navi-
gation with the “Levels of Autonomy” typically used for autonomous driving terrestrial
vehicles [5]. From this review, a taxonomy was developed to assist with the definition of a
viable research space in order to determine what areas are actively being researched and
which, if any, are open for further investigation. Of these features, the most popular as
research topics were found to be autonomous movement (57.14%), collision avoidance
(53.85%), and object distinction (34.07%). Conversely the least popular by a wide margin
was environmental distinction (7.69%). Of these papers, Deep-Learning-based solutions to
tasks related to autonomous UAV navigation are more common than those of any other
approach. The specific approaches that these projects took differed in task but were re-
lated to common Deep Learning techniques applied in other fields; for example, papers
related to object distinction typically utilised classification or object detection models to
achieve this [40–42]. Unsupervised or reinforcement learning was largely unseen in the
aforementioned papers on autonomous UAV navigation [43]. Surprisingly, no projects
with the environmental distinction feature considered environmental contexts (such as
specific weather events or climate) beyond those of specific region types such as urban or
suburban. This is likely due to a lack of quality training samples for multiple environment
navigation; therefore, the development of a method for generating samples in multiple
environments has considerable potential for the advancement of partially generalised
autonomous UAV navigation.

2.2. Environmental Variation

The most common method for dataset generation is session-based sampling with
expert annotation occurring at the time of sampling or post-session, with large datasets
taking multiple sessions to generate [7]. Due to this, it is guaranteed that environment
variables will change, both between sessions and during sessions (depending on collection
methods). This issue is exacerbated in image-based data gathering, as the complexity
of the data naturally biases the information to the many environment parameters of the
sampled area (e.g., an image dataset created at noon during cloudy weather in Ireland
will naturally bias the trained network to that time, weather type, and location). Figure 3
describes some of the environment-specific parameters that can affect an image. Each “axis”
of variation is based on frequency, time, or location. Even when assisted electronically,
sampling the entire gamut of change for multiple environments manually is unfeasible due
to an exponential increase in the information needed to be collected and stored and the
effort of sampling when considering multiple axes together. This explains why the vast
majority of modern autonomous navigation solutions found in the literary review make up
partial solutions for only the “spatial” and “geographic” axes [5]. A significant portion of
the possible variation in an image is attributed to “short temporal” and “weather” axes,
which are unrepresented in most datasets and solutions. With this in mind, this research
seeks to resolve this exponential scaling issue through simulation while also exploring
these two less considered parameters.

Figure 3. A taxonomic diagram of several example environmental axes that make up a given
environment; each axis contains descriptions of the mechanics from which axial variation derives.
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2.3. Simulating Data

The use of artificial data as training data is becoming more common with the popular-
isation of general adversarial network (GAN)-type models [44]; artificial data have been
previously employed for the training of base models which were then later fine-tuned with
manually collected real data [45]. This shows that certain tasks benefit from the information
that simulation can provide [46–48], especially when dealing with unknown areas or scenar-
ios. One of the major benefits of using simulated data is that they allow for a greater degree
of control during the collection phase, aside from environmental variance [49,50]. As an
example, when generating synthetic data, to pause the simulation runtime and generate all
the samples before resuming, this effectively negates the passage of time in the simulation
and removes usually uncontrollable elements such as delays introduced by the relocation of
sampling equipment or the internal or external operation of physical hardware. However,
simulation does introduce a measure of domain shift, which can be mitigated but will
likely always be present to some degree. Additionally, this work involved in the creation
of bespoke simulations can often be more effort than simply manually gathering the data;
as such, it is recommended only for situations where the benefits can outweigh the costs
of development, which modern optimised development software such as game engines
reduce significantly.

3. Method

The core of this solution relies on the utilisation of three-dimensional scenes which are
accurate reconstructions of physical locations created via a process such as photogrammetry,
lidar scanning, or both. These are referred to in this paper generally as “3D scans”, as
some more common terms for these are trademarked. The process of finding, selecting, or
creating suitable 3D Scans for use in sample generation is challenging, especially for the
task of training autonomous UAVs for navigation. The 3D scan cannot simply be a ground-
level representation; downward angles and high points such as rooves and treetops must
also be represented accurately, and, as is the case with any 3D scan, it is likely necessary
to sample well beyond what would be expected inside the use case. The 3D scan must
of sufficient resolution to not cause artifacts in the resultant captured mesh. However,
the scan must also have enough physical size to be able to gather a valid dataset of the
scene without overexposure to any of the model’s artifacts or errors, while also being of an
acceptable filesize to be loaded into system memory for the duration of the sampling run.
Additionally, as it is with image data, the sampled scene will be effected by the previously
stated intensity and frequency of environmental parameters and effects. It is recommended
that, for sampling an area for the creation of a 3D scan, sampling is performed on an
overcast day at midday as this will result in a bright, softly lit model with fewer sharp
shadows which can affect the accuracy of simulated time and weather.

3.1. Three-Dimensional Area Scans

While it is possible to recreate large area scans without expensive equipment through
the use of commercially available or open source photogrammetry tools such as Meshroom
and decent smartphone cameras [51], due to time constraints, this was considered outside
the achievable scope of this project. The potential for maintaining a DT approach in
the simulation remains possible by using spatial measurements of physically accessible
locations as a DT link, and is intended for future expansions on this project. For this
proof of concept, the referred 3D scan from Sketchfab [52] was used as a placeholder. Six
areas were originally selected, ranging from various locations to structural archetypes such
as urban, suburban, and rural areas. Only one of these scenes was used during testing,
with the intention to bring in additional environments over time as the project develops.
While some scans were discarded due to quality issues, the size and the proportion of
natural to artificial structures were of particular interest. The scan that was chosen for this
experiment was taken so that it contains a good mix of buildings and greenery alongside
a good resolution quality and area size. Generally, the area scan quality is considered to
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be a trade-off for area scan size. For most scans, a researcher will select several points
from which the scanning hardware will sample the area, and it is expected that the quality
will decline as the distance from the nearest sampling location increases. Creating a scan
of a large area with a consistent high resolution can be achieved with many sampling
locations and by combining different sampling hardware, but this can cause other quality
issues with the texture and accuracy of the scan (for outdoor areas) due to the increased
sampling session time. Additionally, since scans are sampled from physical areas, the
lighting information and some weather effects from the time of sampling become baked
into the scan. To mitigate this, it is recommended to sample around midday and in overcast
weather for the most even lighting and minimal weather impact on the resultant mode,
although it may be viable to create multiple scans for common weather types in order
to achieve more realistic weather simulations. Even with bespoke scene creation, it is
unrealistic to expect to gather high-resolution scans of a large area; in most cases, the scenes
are composed of high-resolution point clouds which diminish in resolution the further
they are from the source of the sampling device. Though it is not impossible to create a
scan of an area with a consistently high resolution by using multiple sampling points and
techniques, longer scan times increase the deviation in lighting and texture (for outdoor
scans), which may require post-processing to repair (potentially affecting the connection
between the simulation and the real scene).

3.2. Scene Configuration

For this synthetic dataset to be generated, first it was necessary to gather appropriate
3D-scanned assets fitting the “bicycle” class. This class was chosen specifically due to
it being a detectable object by the YoloV3 algorithm and the ease of finding real image
datasets and 3D scans of the object. Note that this method is not object-specific and could be
completed on any object. For example, canine animals are another popular classifiable object
that were considered for testing this method; however, quality 3D scans were harder to find
and generally of a lower quality than those of more static objects. For this experiment, five
assets were sourced from the same repository as the scene geometry [53–56]; a description
of these assets can be found in Table 1. They represent an acceptable spread of different
bicycle types by two defining factors, these being the frame size and tires of the object.
Each asset was placed in an independent area within the scene; a visual comparison of
each object can be found in Figure 4. It is important to note that while each bicycle is a
unique asset, Bike 3 and Bike 4 are the same model of children’s bicycle but in different
colours. Once the 3D scans were imported though the user interface, they were configured
in a similar fashion to prior research. Area scans that were web sourced were calibrated to
match the approximate average size of a European door frame width at 0.8 m, while bicycle
assets were scaled to approximately match either an adult- or child-sized bicycle. For ease
of operation during the manual collection phase and for future research in autonomous
navigation, the simulation was equipped with a UAV drone control scheme from previous
work, which was modified with the features needed for location logging. A gamepad input
control was included to streamline the manual collection process and enable the rapid
generation of new lists of sample locations. For this, a standard Xbox One gamepad device
was used, as it has a high similarity to a UAV control transmitter. The control scheme
was programmed into the simulation using the Unity Input System, which is preferable
as the C# functions are created by the manager and are then applied to any number of
chosen control inputs. For example, the horizontal movement function is tied to the left
control stick on the gamepad, or the ‘w’, ‘s’, ‘a’, and ‘d’ keys on the keyboard, and can be
rebound at any time without rewriting the function. For the dynamic weather system, a
popular package was acquired on the Unity asset store [57]. This weather package was
chosen for its high level of documentation, its integration with other useful packages for
expanded simulator functionality down the line, and for the high level control of time and
weather configurations. With this system in place, six different weather configurations
were developed for generating a weather-varied and time-varied dataset.
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Table 1. Description of the object assets used for simulator configuration.

Asset Label Description

Bike 1 Mountain bicycle with green frame, off road tires
Bike 2 Racing bicycle with white frame, thin racing tires
Bike 3 Children’s bicycle with small green frame, white tires
Bike 4 Children’s bicycle with small pink frame, white tires
Bike 5 City bicycle with red frame, road tires

Figure 4. Visual comparison of bicycle assets used to populate the simulator scene, ordered left to
right from Bike 1 to Bike 5 (see Table 1 for descriptions of each object).

3.3. Sampling

As previously stated, because temporal flow can be adjusted in real time while the
simulation is running, it is possible to remove any deviation between samples recorded in
different locations within a cycle. Figure 5 is an amended flowchart designed to maximise
the benefit of this property and outline the general sampling process. The process consists
of a manual phase, which is first used to collect the position and rotations of the camera
for each sample, and an automated phase, which moves the camera to each position and
rotation, which then generates the images at that iteration. This process then repeats for
every iteration defined in the simulation. The result of this process is a dataset that can be
sliced in more dimensions than normal manual collection would allow. Prior work [39]
used a recording system which manually logged simulation elements such as the drone’s
position and rotation for each sample, as well as miscellaneous data such as the sample
ID, which was then retained for use over multiple simulations. This approach enables
environment variation when generating data while maintaining the same perspectives,
since the positional information of the drone is the same between cycles. When generating
data through simulation, hardware is often considered as “ideal” (i.e., perfect operation
with no sampling delay). This effect is generally considered as a negative trait; however, it
can prove advantageous in this use case, since the relationship between the simulation and
reality is baked into the dimensions of the already scanned area, and as such there is no
need for realistic hardware simulation. Aside from the manual phase of location logging
and defining the weather and time configurations, the rest of the process is automated and
will run until all samples are generated. For later reference, each sample is tagged with
valuable metadata, namely the cycle iteration number and sample ID which is encapsulated
in the filename.
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Figure 5. A workflow detailing the strategy used for the generation of the artificial datasets from
simulations, including the manual position logging and environmental variance loops.

4. Results

For this round of image generation, a manually defined position and rotation log
containing 410 unique positions was iterated over four weather configurations (described
in Table 2 and shown visually in Figure 6) and twelve time settings covering a 24 h period,
equally spaced at 2 h per setting (see Figure 7). This created a dataset which contains
19,680 images. Each new position in the simulation log creates 48 unique images which are
exact to that position but varied in time and weather. This makes it possible to slice the
data in ways that are unfeasible in traditional sampling (see Figure 8). As an example of
the image total stated above, each slice of the weather axis contains 4920 images, and each
slice of the temporal axis contains 1680 images. For the generation of the rotation/position
log, consideration was taken to sample at realistic angles and distances, varying from very
close (within 1 m of the object) to a “background” distance (approximately 15 m), and
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angles were varied in terms of pitch to include low-pitch shots similar to a pedestrian
photo and high-pitch shots similar to that of a UAV drone or security camera. Additionally,
for some images, angles and distances were chosen to include several objects within
the frame. As a comparison to this simulated dataset, two additional datasets of real
bicycle images were sourced online [58,59] and manually trimmed to create a “day” and
“night” image dataset. To minimise the effect of real images whose contexts sit outside
the scope of the simulation, the datasets were screened to remove images that did not fit
the qualitative criteria (e.g., images of interior environments and exterior environments
with excessive artificial lighting, overly stylised images and artistic composites, and images
where bicycles were tightly stacked together such as overcrowded bike racks). Since YoloV3
detects multiple objects within a single image, multiple bike images were accounted for
in the simulation, and so they were allowed as long as bicycles were not stacked on top
of each other. It is important to note that the virtual daylight cycle is out of phase by
approximately 2 h, which results in a virtual “sunrise” at 04:00 h and virtual “sunset”
at 18:00 h; since the daylight axis is cyclical, this phase shift has no meaningful impact
on the results.

Figure 6. A visual comparison of the four configurations used for the weather dimension component
of the dataset in order of appearance: Clear, Cloudy, Light Rain, and Heavy Rain.

Figure 7. A visual comparison of daylight variation in the synthetic dataset arranged in ascending
order at: 06:00, 10:00, 14:00, and 18:00 simulated hours.

Table 2. Weather configuration by effect presence.

- Clear Cloudy Light Rain Heavy Rain

Clouds None Light Medium Heavy
Sky Visible Partly Obscured Obscured Obscured
Rain None None Light Heavy
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Figure 8. A sample, sliced with time on the X axis and weather on the Y axis (truncated to nine
images for readability), demonstrating how a single position can yield much more information and
even provide a level of validation to the other linked data samples.

4.1. Weather/Time Variation

Exhibiting different time and weather effects in a realistic manner is key to the value
of this dataset. With sufficiently realistic particle and fog simulations combined with
adjustments to the average scene lighting and skybox cloud density, four different visual
estimations of weather conditions were used. The average light level in an given outdoor
scene is primarily impacted by the time of day, with the season and location having smaller
but not insignificant impacts. While the Mean Average Precision (mAP) is a popular
metric for the evaluation of object detection models, it requires ground truth bounding
boxes to calculate the metric, which were not available in the real or simulated datasets.
Additionally, since false negatives occur more frequently than false positives in object
detection, precision is less valuable as a metric. For these reasons, recall and average
recall were chosen as metrics for the evaluation of the experiment. By aligning the average
light in a scene with a cyclical axis, the transition from day to night can be simulated.
Figure 9 demonstrates an unexpected result in the YoloV3 model used for this analysis.
Unexpectedly, the performance of worse weather conditions is slightly better in lower light
conditions than the clearer configurations. This is potentially due to the light diffusion in
images simulated in cloudy or rainy conditions assisting with dark object detection. At
peak conditions, the model detects as normal; when the harmonic mean is considered, Bike
4 was drastically harder to detect than the others. This is not a surprising result by itself;
however, the response for Bike 3 is normal. This is strange given that Bike 3 and Bike 4 are
the same model of children’s bicycle, with green and pink frames, respectively.
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Figure 9. The Recall at peak daylight of scene objects across simulated weather variations compared to
the harmonic mean recall of scene objects identifying which scene object performs worse on average.

Figure 10 shows the object Recall over the simulated day for Bike 3 compared to Bike
4 at each weather configuration. This result is interesting, as the prediction confidence
remains consistent with most objects, such as Bikes 1, 2, 3, and 5, which provided similar
curves in most time/weather configurations. The outlier object, however, demonstrates a
completely different response over the changing light level to that of what would be ex-
pected of a perception-based task at a lower confidence (the prediction drops as it becomes
darker and as the weather becomes less clear). This implies that from this simulated test
data, the YoloV3 model has lower confidence with certain colours of children’s bicycles and
that simulated test data can be potentially used to probe for such weaknesses. Figure 11
shows the results of the harmonic mean recall for the full set over the simulated day/night
cycle compared to a baseline of 96% for real images in the day and 56% for real images
at night. The simulated results clearly show a performance reduction as the light level in
the scene reduces to an average of 32% for the valleys at 02:00 h and 18:00 h. The peak
prediction for clear weather can be seen around simulated midday (10:00 h) at 74%. By
comparing the delta between the simulated peak and real day image baseline to the delta
between the average valleys and the real night image baseline, the domain shift can be
calculated for night and day at 24% and 22%, respectively.

Figure 10. Object Recall graph varied by time and weather for Bike 4, demonstrating how low-
confidence prediction differs from that of high-confidence prediction.
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Figure 11. Graph of avg. object Recall by weather variation and time of day, with baselines for night
and day real image sets included and simulated peak and valleys labelled for comparison.

4.2. Issues

For initial experiments, four equidistant points on the time axis: 6 h, 12 h, 18 h and
24 h, respectively. The resolution of this initial set was too poor to provide an adequate
analysis over the temporal spectrum. In order to generate more informative samples, the
resolution was increased to 12 equidistant points (2 h between each). Additionally, the
imported area mesh contained errors and voids due to missing visual angles when the
mesh was created. This issue is considered to be fixable with additional images for a
bespoke mesh. However, for online-sourced assets this is unavoidable. Though initially
included in prior work, ‘Fog’ and ‘Snow’ weather configurations were not included in
the simulation or subsequent simulated datasets due to poor simulation performance
and a lack of realistic image samples for comparison; however, more bespoke simulation
attempts could consider these elements along with many other environmental factors as
variables to be combined with other effects, and as such, this is considered a viable topic
for future research. Following analysis, there were some unexpected results which merited
investigation into the image data, one such being the rebounding curve in predictions after
18:00 and before 02:00 h, which was expected to lower to a single valley representing the
darkest point in the cycle. Upon investigation, this was attributed to an issue within the
simulator lighting engine, which caused completely dark scenes to illuminate visibly. This
again demonstrates how simulation errors are not inherent, but an issue of implementation
caused by the researcher’s skill set or platform limitations. While the lighting issue can be
solved through changing some parameters in rendering or the daylight gradient, for this
project, the decision was made to minimise changes to account for these issues, as this is a
proof of concept to demonstrate that simulations for this application can be effective for
testing even with a simulation bias.

5. Conclusions

Previous work sought to determine if it is viable to use a high-fidelity rendering
engine in conjunction with 3D scans of a physical space to create an environmentally
varied synthetic dataset for neural network testing [39]. When this was found to be
feasible, successive work determined the viability of using the generated image samples to
observe the response from a pretrained network which was trained for any environmental
variance regarding the task (bicycle detection) in different contexts across one dimension
of variance [60]. For this work, issues from the previous project were addressed; a larger-
sample-size and higher-resolution dataset was created, which was then used to evaluate a
pre-trained network response in different contexts across multiple dimensions of variance
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in the same task against a baseline comparison of two real datasets consisting of day
and night images, respectively. The results of this comparison imply that the domain
shift (i.e., a decrease in a chosen performance metric between real and simulated test
sets) remains fairly constant (2% measured change in domain shift), even when critical
environmental factors are modified in the simulation. As a result, we estimated the domain
shift in an accurate manner and accounted for it via an offset; the remaining impact on the
performance metrics can be considered as a likely result of these environmental factors
being changed, leading to a potentially quantifiable uncertainty analysis and weakness
testing via simulations. Additionally, it was found that although, generally, the impact
of simulated weather variance at a ±2.5% average was small relative to the impact of
daylight variance, the average Recall in clear weather was better during simulated daylight
hours, but the opposite was true outside of daylight hours, where cloudy, overcast, and
rain configurations performed better. Additionally, the network response to the dataset
identified areas of low predictive confidence within the YoloV3 network, namely around
outlier object types such as the pink version of the children’s bicycle object (Bike 3) or
predictably in darker objects (Bike 5) or darker environments such as the times between
simulated 16:00 h and 04:00 h. While the results above demonstrate that this approach
can be used to evaluate the response of object detection networks, further research and
evaluation would be required before the same can be said for other tasks such as semantic
segmentation or motion analysis.

Future Work

This project contributes to a greater research goal: a system and an approach for
generating photo-realistic samples where the environment is varied yet made measurable
through the implementation of digital twin areas. This could potentially form an avenue
to develop partially generalised navigation in the UAV drone research space, potentially
through two topics for future research: the first being the training of a generalised network
via a simulated dataset that contains all realistic environmental variations, and the second
being the use of a simulated environmentally varied dataset to train a network to distin-
guish between these environments, feeding that information forward into more specific
optimised autonomous navigator networks for these environments. This project demon-
strates the validity of using a 3D-scanned environment for the creation of photo-realistic
synthetic datasets. However, the creation of a bespoke, linked mesh of a known area which
is accessible to researchers would add quantitative evidence to the experiment. Since the
dataset is created within a repeatable simulation, there are other potential ways to introduce
more dynamic elements into the dataset, such as programming object movements within
the simulation for motion prediction training or using multiple meshes and textures for the
objects or the world geometry in order to generate datasets with domain randomisation,
which are also viable topics for future research. More immediate research aims to reinforce
the “digital twin” link in the simulation to a known physical space for further experimen-
tation. Further testing of neural networks’ responsiveness to the artificial datasets is also
required, which is likely to involve research performed in the area of uncertainty estimation
for neural networks.
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